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Adjoint-Based, Three-Dimensional Error
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Engineering computational fluid dynamics analysis and design applications often focus on output functions, such
as lift or drag. Errors in these output functions are generally unknown, and conservatively accurate solutions may
be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed
error tolerance. Such an estimate can be computed by solution of the flow equations and the linear adjoint problem
for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed
error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a
user-specified error tolerance. This procedure for estimation and adaptation to error in a functional is demonstrated
for three-dimensional Euler problems. An adaptive mesh procedure that links to a CAD surface representation
is demonstrated for wing, wing–body, and extruded high lift airfoil configurations. The error estimation and
adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined
grids with many more grid points.

Nomenclature
AR = tetrahedral aspect ratio
E = total energy per unit volume
f = functional, such as lift and drag
h = representative element length
I = adaptation intensity
n = total number of mesh nodes
p = pressure
Q = vector of state variables
R = flow equation residual
Rλ = adjoint equation residual
s = primal and dual solution variables
t = user-specified error tolerance
u = x component of velocity
v = y component of velocity
w = z component of velocity
x = grid-point location
λ = adjoint variable
ρ = density
∇s = solution gradient

Subscripts

est = estimated (error-corrected)
g = global sum
s = scaled
0 = normalizing value

Superscripts

H = higher-order interpolated
L = linear interpolated
0 = original mesh
∗ = infinitely refined mesh
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Introduction

E NGINEERING problems commonly require computational
fluid dynamics (CFD) solutions with functional outputs of

specified accuracy. The computational resources available for these
solutions are often limited, and errors in solutions and outputs are
often unknown. CFD solutions may be computed with an unnec-
essarily large number of grid points (and associated high cost) to
ensure that the outputs are computed to within a required accuracy. A
method to estimate the error present in a computed functional offers
the possibility to avoid the use of overly refined grids to guarantee
accuracy.

Unstructured grid technology promises easier initial grid genera-
tion for novel complex three-dimensional configurations compared
with structured grid techniques. The use of unstructured grid tech-
nology for CFD simulations allows more freedom in adaptation
of the discretization of the meshes to improve the fidelity of the
simulation. Many previous efforts have attempted to tailor the dis-
cretizations of unstructured meshes to increase solution accuracy
while reducing computational cost.1−8

Most of these adaptive methods focus on modifying discretiza-
tions to reduce local equation errors. These local errors are not
guaranteed to impact error in global output functions directly. These
adaptive methods, often referred to as feature-based adaptation, fo-
cus on resolving discontinuities or strong gradients in the flowfield.
Flow features, such as shocks, can be in the incorrect location due
to errors elsewhere in the flowfield. Also, resolution of the flow in a
location may have a minimal effect on the output function, such as
a downstream shock. The finite element community has developed
methods to adapt a mesh to target the calculation of a functional of
interest instead of a local equation error estimate.9−12

Pierce and Giles13 have developed an adjoint-based error correc-
tion for functionals computed with finite volume discretizations. If
the flow equations are linearized about the flow solution, the so-
lution of a linear dual problem can yield a direct measure of the
impact of local primal (flow equation) residual on a selected func-
tional output. Venditti and Darmofal14,15 Venditti,16 and Venditti
and Darfomal17 have demonstrated these methods for compressible
two-dimensional inviscid and viscous flow solutions.

If a specified error tolerance in an output function is required,
the cost of computing a CFD solution can be minimized by adapta-
tion of the discretization of the problem to minimize uncertainties
directly in the corrected output function of interest. Also, the en-
tire adaptive simulation can be terminated when the predicted error
is equal to a specified tolerance, preventing the waste of computa-
tional work on an overly large mesh. The present study is essentially
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a three-dimensional extension of the method of Venditti and
Darmofal15 that adapts the mesh to reduce uncertainty in an er-
ror correction. Müller and Giles18 have also presented results for
a similar approach utilizing a different adaptation parameter that
directly targets the error correction.

The use of adjoint variables (solution of the dual problem) is an
efficient method for computation of derivatives of a functional of in-
terest for gradient-based design methods. Some examples of discrete
adjoint design methods are given by Nielsen and Anderson.19,20 The
discrete dual problem for adjoint variables can be expensive (approx-
imately as much work as the primal problem). However, the adjoint
solution is already available for use during the aerodynamic design
process, and so it could be employed for simultaneous design, error
prediction, and grid adaptation.

The combination of adjoint-based grid adaptation and design
techniques can yield an attractive tool for the aerodynamic design of
new configurations. Adjoint-based error prediction and adaptation
can yield smaller meshes than traditional feature-based schemes
with computable error estimates on output functions. Design pro-
cesses require analysis and derivative evaluation tools that operate
with minimal human interaction. Robust, automatic adaptation tech-
niques enable the increased use of nonlinear flow calculations in
larger multidisciplinary design frameworks. These new techniques
will enable efficient analysis for existing configurations and ex-
panded exploration of design spaces for new configurations.

Flow Equations
The FUN3D21−23 (http://fun3d.larc.nasa.gov) suite of codes is

employed in this study. The compressible flow solver employs an
unstructured finite volume tetrahedral method for conserved vari-
ables, Q, that is,

Q = [ρ ρu ρv ρw E]T (1)

The incompressible flow solver employs the following state
variables:

Q = [p u v w]T (2)

The node-based variables Q are computed by driving the flow equa-
tion residual R to steady state with an implicit point-iterative method.
The inviscid mode of FUN3D was used in this study. The solution
of Q allows the calculation of integral quantities f , such as lift and
drag. To speed execution, the problem domain is decomposed and
the flow and the adjoint problems are solved with a parallel ex-
ecution scheme that utilizes the message passing interface (MPI)
standard.

Adjoint Equations
After the flow solution is known, the discrete adjoint

equations19,22,23 are solved to complete the dual problem. The first
step is to linearize the flow equation residual R and output function
f with respect to the flow solution Q. After this linearization, an
adjoint variable λ is solved for each of the flow equations.

An abbreviated derivation, adapted from Taylor et al.,24 is now
used. The chain rule for the linearized output function is

∂ f

∂Q
=

(
∂ f

∂R

)T
∂R
∂Q

(3)

The adjoint variable λ is defined as the effect of a flow residual
source term on the output function:

∂ f

∂R
= λ (4)

A set of linear equations is solved to find λ:

(
∂R
∂Q

)T

λ =
(

∂ f

∂Q

)T

(5)

After the flow solution is known, this set of linear equations is solved
with GMRES.25 See Refs. 19, 20, and 23 for details. A implicit point-
iterative time-marching method is employed to compute the adjoint
solution for the high lift configuration.26,27

Error Correction
The error prediction and correction scheme is taken from Ref. 15.

With a solution on a mesh of reasonable size Q0, it is desirable to
predict the value of an output function evaluated with a solution on
an infinitely refined mesh f (Q∗). This prediction can be computed
without the solution on this infinitely refined mesh when the adjoint
solution on this reasonable mesh λ0 is utilized. The full derivation
of the error correction term is available in Refs. 13, 15, and 18. An
abbreviated derivation is presented by expansion of the Taylor series
about f (Q0), that is,

f (Q∗) = f (Q0) +
(

∂ f

∂R

∣∣∣∣
0

)T

[R(Q∗) − R(Q0)] + · · · (6)

Employment of Eq. (4) and the assumption that Q∗ satisfies the
residual on the infinitely refined mesh yields an improved estimate
for the functional of interest fest:

∂ f

∂R

∣∣∣∣
0

= λ0 (7)

R(Q∗) = 0 (8)

f (Q∗) ≈ fest = f (Q0) − (λ0)T R(Q0) (9)

To improve the prediction of the functional fest, Q0 and λ0 can
be interpolated to an embedded mesh. Interpolation is performed
in two ways for this study: a linear interpolation (QL , λL ) and a
higher-order interpolation (QH , λH ). Details of this interpolation
and the construction of this embedded mesh are in the Interpolation
Techniques and Embedded Mesh sections. Substitution of these in-
terpolated quantities into Eq. (9) yields the linear and higher-order
functional estimates f L

est and f H
est :

f L
est = f (QL) − (λL)T R(QL) (10)

f H
est = f (QH ) − (λH )T R(QH ) (11)

Adaptation Parameter
The adaptation parameter, also from Ref. 15, is intended to specify

a grid spacing modification to reduce the uncertainty in the computed
error prediction. The grid is not modified to reduce the computed
error prediction directly (as in Ref. 18) because an estimate for the
functional including this error term can be computed with Eq. (9).
Instead, targeting the uncertainty in this computed quantity is more
effective and improves the robustness of the adaptive process. The
adaptation parameter is formulated to estimate the distribution of
the remaining error throughout the mesh, not an exact value. One
source of uncertainty in the error correction is due to errors in the
original mesh dual solution. The error correction [Eq. (9)], including
the uncertainty in the dual solution, is

f (Q0) − f (Q∗) ≈ (λ0)T R(Q0) + (λ∗ − λ0)T R(Q0) (12)

The uncertainty in the computed error correction is

fest − f (Q∗) ≈ (λ∗ − λ0)T R(Q0) (13)

The relation of the primal and dual problems13,15 yields another
expression for the error correction uncertainty:

(λ∗ − λ0)T R(Q0) ≈ Rλ(λ
0)(Q∗ − Q0)T (14)

where Rλ(λ) is the residual of the dual problem:

Rλ(λ) =
(

∂R
∂Q

)T

λ −
(

∂ f

∂Q

)T

(15)
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A computable term is found by the use of the interpolation error
of λ to replace (λ∗ − λ0) and the interpolation error of Q to replace
(Q∗ − Q0). The higher-order interpolate for Q0 and λ0 is employed to
improve prediction in place of the linear interpolate in Ref. 15. The
interpolation error is expressed as the difference in the high-order
and linear interpolated values:

(λ∗ − λ0) ≈ (λH − λL) (16)

(Q∗ − Q0) ≈ (QH − QL) (17)

Interpolation error is commonly used as an adaptive indicator to
target regions of the domain where a linear approximation yields a
poor representation of a continuous solution.

The average of the absolute values of the two uncertainty terms
in Eq. (14) yields the adaptation intensity I, which is computed for
each equation on each embedded node:

I = [∣∣(λH − λL)T R(QH )
∣∣ +

∣∣Rλ(λ
H )(QH − QL)T

∣∣]/2 (18)

The intensity I is, therefore, the average of the absolute values
of two terms. The first term is a dual solution interpolation error
weighted with the primal residual. The second term is the dual
problem residual weighted with a primal solution interpolation er-
ror. This form of the adaptation intensity (which includes weighed
interpolation errors) focuses on the nonlinear contributions to the
function error, which increases robustness of the adaptation method.

Error Correction and Adaptation Process
The error correction and adaptation process begins with an ini-

tial tetrahedral mesh, which can come from any mesh generation
system. The state variables are computed as the nonlinear solution
to the flow equations on the initial mesh. The adjoint variables are
then computed with the linearized flow equations at the flow solu-
tion. These flow and adjoint solution procedures employ a parallel
execution scheme. Then the global problem domain is reconstructed
to facilitate the creation of a finer, embedded grid with interpolated
primal and dual solutions.

Embedded Mesh
To compute the error prediction and the adaptation parameter,

a globally embedded or h refined mesh is created. To construct
the embedded mesh, a new node (open circle) is inserted at the
midpoint of each existing edge that connects existing nodes (closed
circles); see Figs. 1a and 1b. Each existing tetrahedron is subdivided
to reconnect these new nodes with eight interior tetrahedra. (Each
of the existing boundary faces is also divided into four triangles.)

The four new tetrahedra constructed at the corners of the existing
tetrahedron have the same shape as the original tetrahedron but are
smaller in size. The construction of the four corner tetrahedra leaves
an interior volume with eight faces, which is subdivided into four
tetrahedra. The four interior tetrahedra have three unique configu-
rations. The configuration with the lowest maximum dihedral angle
is selected.

The new nodes are placed at the midpoints of edges during the
mesh embedding process. The embedded nodes on the boundaries
of the mesh may no longer remain on the original surface definition
of the model. When the grid is adapted to improve the discretization,
the surface fidelity of the mesh is maintained with boundary node
projection.

Interpolation Techniques
The primal and dual solution variables s, which are all elements

of Q and λ, are now interpolated to this embedded mesh. The value
of the solution at each of the existing nodes is directly copied into
the corresponding nodes of the embedded mesh. Each of the so-
lution variables is interpolated in two ways to form the linear and
the higher-order reconstruction for the new nodes. The higher-order
reconstruction of the solution for the new nodes requires the com-
putation of least-squares gradients22 at the existing nodes by the use
of the existing mesh and solution. To simplify the three-dimensional

a) Original tetrahedron

b) Embedded tetrahedron

Fig. 1 Tetrahedron embedding process.

Fig. 2 New node and existing edge.

interpolation, the interpolation is performed by independently exam-
ining each existing edge in the original mesh; thus, the interpolation
problem becomes one-dimensional along each existing edge. Each
existing edge has an existing node at each edge endpoint and a new
node at the edge midpoint (Fig. 2).

An edge has two three-dimensional endpoints: x1 and x2. The
vector that represents the length and direction of the edge is
�x = x2 − x1. The three-dimensional least-squares gradient of the
solution ∇s can be projected to a total derivative along the edge to
facilitate interpolation by

ṡ = ∇sT �x (19)

The new node interpolation s3/2 can be expressed as a combination
of the solution values and the derivatives at each endpoint (s1, ṡ1, s2,
and ṡ2). The linear interpolation sL

3/2 is the average of the two end
nodes

sL
3
2

= (s1 + s2)/2 (20)

The higher-order interpolation s H
3/2 is found with a cubic fit of the

endpoint data that is evaluated at the midpoint:

s H
3
2

= (s1 + s2)/2 + (ṡ1 − ṡ2)/8 (21)
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Equation (21) is equivalent to a least-squares quadratic fit of the
endpoint data that is evaluated at the edge midpoint.

At the completion of the grid embedding and interpolation step,
the linear and higher-order interpolated solutions to the primal and
dual problems QL , λL , QH , and λH are available to compute the
error correction and adaptation parameter.

Error Correction and Adaptation Parameter
Once the new embedded grid is constructed with QL , λL , QH , and

λH , it is partitioned to allow parallel calculation of the functional
and flow and adjoint equation residuals. The flow and the adjoint
equations are not iterated or solved on this embedded grid; the flow
state and adjoint variables are interpolated from the original mesh.
Therefore, the only computational costs on this larger embedded grid
are function evaluations, flow and adjoint residual evaluations, and
dot products of vectors. The linear and higher-order error correction
term, Eqs. (10) and (11), is computed at each node on the embedded
mesh and summed over the entire mesh for all flow equations.

The adaptation intensity, Eq. (18), is also computed at each em-
bedded mesh node. At each node that is also present in the original
mesh, the computed intensity is zero due to the chosen interpolation
technique. The values of the lower- and higher-order interpolation
schemes are the same at these existing nodes; thus, (QH − QL) and
(λH − λL) are exactly zero.

To specify the grid adaptation on the original mesh, the adaptation
intensities must be reduced from the embedded mesh to the original
mesh (I0). The new nodes on the embedded mesh all lie on existing
edges of the original mesh (Fig. 1b). Therefore, to construct I0, the
original mesh is examined one edge at a time (Fig. 2). One-half of
the intensity computed at each new node (which is at the midpoint of
these original edges) is added to each existing node at the endpoints
of these edges. The intensities are also summed over the equations
at this point, resulting in one intensity value for each original node.

The adaptation parameter, which has been reduced to the original
mesh, is summed to find the global intensity Ig = ∑

I0. The number
of nodes in the original mesh n and the user-specified error tolerance
t are combined to scale the adaptation intensity; that is,

I0
s = (Ig/t)(n/t)I0 (22)

To perform the grid adaptation, the mesh is locally enriched in
the location of nodes where the scaled intensity I0

s is greater than
a value, that is, unity. Reference 15 demonstrates a way to specify
a new element spacing function. The adaptation procedure self-
terminates as all elements of I0

s become less than unity, that is, no
nodes are flagged for adaptation.

Adaptation Mechanics
The adaptation mechanics utilize three independent modules. The

first module inserts new nodes into the existing mesh and locally
reconnects tetrahedra and boundary faces to maintain a valid tes-
sellation. The second module employs face and edge swapping to
improve the mesh quality. The final module performs grid smooth-
ing and boundary node projection operations.

Node Insertion
The node insertion method is currently one level of selective h

refinement. To start the refinement, all of the edges surrounding
nodes on the original mesh that have a scaled intensity I0

s greater
than unity are flagged for h refinement. The set of flagged edges
is examined tetrahedron by tetrahedron and additional edges are
flagged in an attempt to maintain grid quality, that is, low maximum
dihedral angles and smooth element size transition. The final set of
flagged edges results in tetrahedra with one edge, three edges on
one face, or all six edges flagged. A tetrahedron with all six edges
flagged is shown in Fig. 1b. The mesh is then h refined by insertion
of new nodes on the midpoint of the flagged edges and reconnection
of these nodes into new tetrahedra and boundary faces.

Face and Edge Swapping
The current postadaptation grid-improvement scheme employs

face and edge swapping.28 The swapping algorithm minimizes a
shape (cost) function, such as aspect ratio or dihedral angle. This
study sought to reduce only the cell aspect ratio AR:

AR = 1

3

tetrahedral circumsphere radius

tetrahedral in-sphere radius
(23)

Reconnections of tetrahedra with undesirable shape measures are
investigated and new local tetrahedra configurations with more de-
sirable shape measures are selected. Edges on boundary faces can
also be swapped. To simplify and speed up the edge swapping rou-
tine, the boundary face information is discarded and reconstructed
at the end of the swapping process. Smart–Laplacian smoothing (see
Ref. 29) is used on the interior nodes. The actual locations of the
boundary nodes is not modified in this module; that modification is
performed by the grid smoothing and projection module.

Grid Smoothing and Projection
The inserted boundary nodes may not be located on the surface

geometry of the model to be simulated because they were inserted
at the midpoints of existing edges. A CAD model is employed to
describe the actual model surface. To regain the surface fidelity of the
mesh, the newly inserted boundary nodes are projected to the model
surface with a CAD interface package, CAPRI.30 The projection of
these new nodes to their location on the CAD surface can result in
inverted, invalid tetrahedral elements.

A grid node-smoothing algorithm is employed to facilitate bound-
ary projection without generation of invalid elements and to improve
the overall quality (shape measure) of the mesh. This postadaptation
smoothing is similar to that by Freitag.29 Boundary node smoothing
is coupled to CAPRI, which utilizes native CAD point projection
routines. Node locations on the boundary are adjusted by evaluating
points on CAD surfaces to improve the shape measure of adjacent
tetrahedra.

As the nodes are projected, the neighboring tetrahedra are tested
for validity. If invalid tetrahedra resulted from the projection, the
projection distance of the boundary nodes is reduced until the neigh-
boring tetrahedra are valid. Then the nodes in the neighborhood of
the projected node are smoothed to improve a quality measure of
the adjacent tetrahedra. The boundary points are then moved into
the fully projected position in a number of iterative cycles.

It is anticipated that grid smoothing in the neighborhood of
projected nodes may not adequately regain surface fidelity of
anisotropic meshes. A grid-movement scheme may be required, as
in Ref. 20. Another possibility is a three-dimensional version of
mesh restructuring, as in Ref. 31.

Adaptation Module Interaction
The current selective h refinement technique often creates high-

degree nodes on the border of the adapted regions. A high-degree
node is defined as a node with a large number of incident elements,
as compared to an average node in the mesh. The smoothing al-
gorithm is currently unable to improve elements that are adjacent
to high-degree nodes. The edge and face swapping techniques ef-
fectively improve shape measures and reduce the number of high-
degree nodes, facilitating projection and node smoothing.

These three adaptation modules were developed independently
to facilitate a quick initial implementation and to investigate the
strengths and weaknesses of each technique. Merging the abilities of
these three separate modules will allow for more flexible modifica-
tions of grids, such as point insertion, point removal, and anisotropic
elements.4,6

Results
Adaptation results are shown for three-dimensional wing, wing–

body, and high-lift configurations. The wing is simulated with in-
compressible and transonic flow conditions. The wing–body and
extruded high-lift configurations are simulated with subsonic flow.
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Initial Mesh Generator
The initial meshes for these error prediction and adaptation stud-

ies are generated with the FELISA mesher4 connected to CAD ge-
ometry by CAPRI through the GridEx32 framework. FELISA is a
Delaunay mesh generator with an advancing front method for insert-
ing nodes. The GridEx framework is currently being developed at
NASA Langley Research Center to link various grid generation and
adaptation strategies to geometry through CAPRI. This framework
is also utilized in a batch mode to perform uniform grid refinement
studies.

Drag Adaptation: Incompressible ONERA M6
The initial mesh for an ONERA M6 wing with 5227 nodes is

shown in Fig. 3a. The mesh has extremely coarse spacing, especially
at the trailing edge, and is intended to resolve the surface curvature of
the leading edge and the wing tip and not any particular flow features.
The spacing function for this mesh is specified manually and is
intended to be representative of an automated curvature or maximum
chord-height specification. The CAD geometry is represented with
the CAPRI native kernel FELISA with a part generated from a
surface IGES definition.

The initial ONERA M6 mesh was used in the grid adaptation
process with incompressible flow at an angle of attack of 0 deg.
Directly computed drag and estimates of drag for an ONERA M6
wing as a function of number of nodes is shown in the Fig. 4 log–
log plot. The adaptation and error correction results are shown for
a drag error tolerance of 0.001. The directly computed drag on the

a) Initial ONERA M6 mesh

b) ONERA M6 mesh adapted to incompressible drag

Fig. 3 Initial and adapted ONERA M6 meshes.

Fig. 4 Coefficient of drag for the ONERA M6 adapted to incompress-
ible drag.

adapted meshes is represented by the solid lines with circular sym-
bols. The error-corrected drag calculated with the linear interpolated
solution f L

est is represented by a dashed line and square symbols. The
estimated functional calculated with the higher-order interpolated
solution f H

est is represented by a dashed line and diamond symbols.
The correct drag is zero because of nonlifting, subcritical, inviscid
flow. Therefore, the y-axis denoted coefficient of drag is also the er-
ror in drag. The adaptive procedure correctly self-terminated when
the drag error of the adapted flow solution reached the user-specified
error tolerance (dot–dash line).

The final grid (454 thousand nodes) after five cycles of grid adap-
tation to incompressible drag is shown in Fig. 3b. The adaptation
process clustered grid points at the leading and trailing edges of the
wing. Points are also clustered in the neighborhood of the stagnation
stream line.

The tetrahedra shape measure AR [Eq. (23)] is minimized by the
mesh improvement algorithm. The boundary node smoothing algo-
rithm is intended to optimize the shape measures of the tetrahedral
elements. Therefore, the shape measures of the boundary faces de-
picted in this surface plot may not be optimal.

Drag Adaptation: Transonic ONERA M6
A uniform refinement of the ONERA M6 wing mesh is com-

puted at 0.84 Mach and an angle of attack of 3 deg. The drag di-
rectly computed by the compressible flow solver is shown with lin-
ear and higher-order interpolated error corrections as a function of
the number of nodes in Fig. 5a. The extrapolated (grid-converged)
drag value for Fig. 5a was estimated with Richardson extrapola-
tion from Fig. 5b. These meshes have the same spacing function as
Fig. 3a, globally modified with a scalar to reduce the element spac-
ing uniformly. These grids were generated with the batch version
of GridEx via the FELISA mesher and CAPRI for CAD geometry
access.

Figure 5b shows drag and estimates of drag as a function of ele-
ment size for the uniform grid refinement of the ONERA M6 wing.
A representative element length h was estimated by one divided by
the cube root of the number of nodes. This length was normalized
by the estimated length of the 624,000 node mesh h0. The symbols
are drag computed by the flow solver and error corrected values. A
linear fit of the data at (h/h0)

2 = 1.0 and (h/h0)
2 = 1.7 is used to

estimate the grid-converged answer for all three schemes. All three
schemes indicate a similar grid-resolved value. An additional flow
solution [1.2 million nodes, (h/h0)

2 = 0.6] is shown to verify the
accuracy of the linear fit; it was not used to construct the linear fit
of the computed drag.

The uniform refinement study of drag and error correct drag
estimates is presented to verify the implementation of the error
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a) Uniformly refined drag covergence b) Richardson extrapolation

Fig. 5 Coefficient of drag for the uniformly refined ONERA M6 at 0.84 Mach.

a) One level of h refinement b) Two levels of h refinement

Fig. 6 Coefficient of drag for the drag adapted ONERA M6 at 0.84 Mach.

correction scheme and illustrate the dependency of the error correc-
tion on the embedded mesh interpolation scheme. The error correc-
tion scheme may not be an improvement in efficiency over existing
techniques such as Richardson extrapolation, but the greatest advan-
tage of this scheme is the extension to a combined error correction
and adaptation methodology.

The initial coarse mesh shown in Fig. 3a is employed in the error
prediction and grid adaptation procedure with two different adapta-
tion methods. The coefficient of drag is plotted as a function of mesh
size in Fig. 6. The user-specified error tolerance in drag is 0.0019.
The uniformly refined flow solution from Fig. 5a is shown with the
adapted grid flow solution and higher-order error prediction of the
adapted grid in Fig. 6. Figure 6a demonstrates a single level of h
refinement for all nodes, with a scaled adaptation intensity I0

s greater
than one. Figure 6b shows h refinement for I0

s greater than one and
a recursive call to the adaptation mechanics for I0

s greater than 75,
yielding two levels of h refinement at each adaptation cycle. The
initial convergence of the function is better in Fig. 6b than Fig. 6a.
This improvement in function convergence shows the limitations of
the use of a single level of selective h refinement as the adaptive
node-insertion procedure. The use of two levels of h refinement
better approximates a continuous variation in element size. The two
adaptation methods converged to similar meshes and drag values.

The upper wing surface grid and Mach contours of the initial
flowfield computed on the mesh from Fig. 3a is shown in Fig. 7. The
shocks in this initial grid are poorly resolved. The mesh (357,000
nodes) and Mach contours of the ONERA M6 adapted to drag with
one level of selective h refinement is shown in Fig. 8. The mesh
(374,000 nodes) and Mach contours of the ONERA M6 adapted to
drag with two levels of selective h refinement is shown in Fig. 9.
The final meshes and solutions are similar for both of the adaptation
methods. The adaptive procedure strongly clustered nodes at the
leading and trailing edges of the wing and lightly clustered nodes at
the shock location on the upper surface. Feature-based adaptations
of this configuration in Refs. 7 and 8 focused on the leading edge
and shock locations but not the trailing edge.

Lift Adaptation: EET
The energy efficient transport (EET) initial coarse mesh is shown

in Fig. 10. The initial grid spacing distribution is specified manually
to resolve the surface details of the fuselage, wing leading edge,
blunt trailing edge, and wing tip. The geometry is represented with
a Parasolid CAD kernel accessed though the CAPRI application
program interface (API).

The initial coarse mesh shown in Fig. 10 is employed in the lift er-
ror prediction and grid adaptation procedure with compressible flow
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a) Upper wing surface mesh b) Upper wing surface Mach contours

Fig. 7 Initial ONERA M6 upper wing surface.

a) Upper wing surface mesh b) Upper wing surface Mach contours

Fig. 8 Final ONERA M6 upper wing surface, adapted with one level of h refinement.

a) Upper wing surface mesh b) Upper wing surface Mach contours

Fig. 9 Final ONERA M6 upper wing surface, adapted with two levels of h refinement.

at 0.40 Mach and an angle of attack of 2 deg. The lift coefficient is
plotted as a function of mesh size in Fig. 11. The adaptive procedure
has a user-specified error tolerance of 0.1 for the lift coefficient er-
ror. The uniformly refined lift calculation is shown with the adapted
grid lift calculation and error predictions on the adapted grid in
Fig. 11. The uniformly refined mesh has not reached the asymptotic
convergence range for this complex geometry. The Richardson ex-
trapolation value is not shown because a reasonable linear fit of the
last three points was not possible. The lift coefficient is calculated

on an adapted mesh one-tenth the size of the uniformly refined grid.
The estimated adapted lift error is well within the user-specified
tolerance.

Lift Adaptation: Three-Dimensional Extruded 30P-30N Airfoil
The McDonnell Douglas 30P-30N airfoil initial coarse mesh is

shown in Fig. 12. The 30P-30N airfoil is extruded between two
symmetry planes to form a three-dimensional geometry. The near
plane has been removed to improve visualization. The geometry
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Fig. 10 Initial EET grid.

Fig. 11 Coefficient of lift for the lift-adapted EET at 0.40 Mach.

Fig. 12 Initial three-dimensional extruded 30P-30N grid.

is represented with a Parasolid CAD kernel accessed though the
CAPRI API. This configuration is the subject of a recent three-
dimensional CFD study.33

The geometry and initial coarse mesh (113,000 nodes), shown
in Fig. 12, is employed in the error prediction and grid adaptation
procedure with compressible flow at 0.20 Mach and an angle of
attack of 16.3 deg. The lift adaptive procedure has a user-specified
error in lift of 0.25. The uniformly refined grid flow solution, adapted

grid flow solution, linear error prediction, and higher-order error
prediction are shown in Fig. 13. The extrapolated coefficient of lift
value was computed with a Richardson extrapolation of the finest
two uniformly refined solutions. The original symmetry plane grid
and the symmetry plane grid (832 thousand nodes) after two cycles
of adaptation is shown in Fig. 14.

Table 1 shows the aspect ratio AR [Eq. (23)] for the initial and the
adapted grids. The AR is the cost function for the grid-improvement

Fig. 13 Coefficient of lift for the lift-adapted three-dimensional ex-
truded 30P-30N at 0.20 Mach.

a) Initial

b) Lift adapted

Fig. 14 Original and adapted three-dimensional extruded 30P-30N
symmetry plane grids.
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Table 1 Shape measure for the 30P-30N adaptation

Cycle Aspect ratio AR, max Face angle, max

1 8.1 154.3
2 5.0 158.1
3 7.5 167.8

optimizer. The face (dihedral) angle is not directly controlled but
could be added as a constraint.

Conclusions
The initial implementation of an adjoint-based error correction

and adaptation method has been demonstrated in three dimensions.
With a given flow and adjoint solution, the error correction for a
functional and adaptation intensity term have been described. The
adaptation intensity was formulated to reduce the uncertainty in the
error correction of a global functional and not a local error esti-
mate as in a feature-based adaptation scheme. The adaptive proce-
dure automatically terminates the simulation when a user-specified
tolerance is satisfied. The error remaining in the simulation at ter-
mination was always within the user-specified tolerance, although
sometimes the simulation was overly accurate.

A wing configuration was adapted to reduce drag error in incom-
pressible and transonic flow. The drag computed by this adaptation
and error correction method was shown to be as accurate as direct
flow calculations that used larger uniformly refined grids. The initial
convergence of adaptation procedure improved with two levels of
h refinement at each adaptation cycle. Lift adaptations of Parasolid
CAD models of wing–body and high-lift configurations demonstrate
the utility of this adaptive methodology on complex geometries. An
equivalent value for lift of the wing–body configuration was com-
puted on an adapted grid that is one-tenth the size of an uniformly
refined grid.
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