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Effects of mesh regularity on accuracy of finite-volume schaes

Boris Diskin James L. Thomas

The effects of mesh regularity on the accuracy of unstructued node-centered finite-volume discretizations are
considered. The focus of this paper is on an edge-based appiah that uses unweighted least-squares gradient
reconstruction with a quadratic fit. Gradient errors and dis cretization errors for inviscid and viscous fluxes are
separately studied according to a previously introduced mghodology. The methodology considers three classes
of grids: isotropic grids in a rectangular geometry, anisotopic grids typical of adapted grids, and anisotropic
grids over a curved surface typical of advancing-layer visous grids. The meshes within these classes range
from regular to extremely irregular including meshes with random perturbation of nodes. The inviscid scheme
is nominally third-order accurate on general triangular meshes. The viscous scheme is a nominally second-
order accurate discretization that uses an average-leastguares method. The results have been contrasted with
previously studied schemes involving other gradient recostruction methods such as the Green-Gauss method
and the unweighted least-squares method with a linear fit. REemmendations are made concerning the inviscid
and viscous discretization schemes that are expected to beakt sensitive to mesh regularity in applications to
turbulent flows for complex geometries.

[. Introduction

Traditional mesh-quality metrics tend to assess meshémutitaking into account the type of equations being
solved, solutions, or the desired computational outpue miost widely-used mesh quality metrics are geometric in
nature, considering shape, size, angles, aspect ratnsks, Jacobian, etc., of the mesh elements. Additional con
siderations include variations between mesh elementh,asicell-to-cell and face-to-face ratios and line smoathne
etc. There is a widespread perception that the most accamatefficient solutions are obtained on “pretty” meshes
similar to either structured Cartesian meshes or to mesirapased from identical perfect elements (perfect triamgle
tetrahedrals, etc.) This perception contradicts modemaational Fluid Dynamics (CFD) practice, in which accu-
rate solutions are computed on practical meshes that weutthéracterized as unacceptable by many geometric mesh
quality metrics. Moreover, the most powerful state-ofraethod for improving solution accuracy, output-based mesh
adaptatiort, tends to produce “ugly” meshes but provides vast improvesneiithe accuracy-per-degree-of-freedom
ratio? It is widely recognized today that mesh quality indicatdrsigd involve information about the solutiéf and,
more generally, the discretization method in use and thiestksomputational output.

Historically, mesh quality analyses were first performedffoite-difference and finite-element methods. It is
not straightforward to translate those approaches to fimteme discretizations (FVD) that represent the statetof a
in CFD computations. While there is no doubt that certainhmgigaracteristics critically affect accuracy of CFD
solutions and gradients, the precise nature of this infle¢wbat affects what) is far from clear.

For finite-difference approaches, most of the mesh qual@hiods try to establish connections between mesh and
truncation errof:” The truncation error analysis is often applied to FVD schea®welf However, it has been
long known, that truncation errors of FVD schemes on unsitired grids are not reliable estimators of discretization
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errors. Thesupra-convergencef discretization errors observed and studied for at le@stears (e.g., see the list of
references in Ref. 8) indicates that design-order acclMR solutions can be computed on unstructured grids even
when truncation errors exhibit a lower-order convergencasome cases, do not converge afall.

The theory and applications of mesh quality assessmentaelt@eveloped and widely used within the finite-
element community. While groundbreaking work focused oremeometrical mesh-quality metrics, such as large
anglest? 13 later developments take the solution into accddnThe standard finite-element estimates use Sobolev
norms that simultaneously estimate errors in the solutiohits derivatives. These estimates might be too conseevati
because recent finite-volume computations indicate thairate solutions can be obtained in spite of poor accuracy
of gradients'>17

Previously, the authors evaluated the effects of meshaeiyubn accuracy of unstructured FVD schemes for vari-
ous common node-centered and cell-centered sch&nid48-29The considered second-order node-centered schemes
employ three gradient reconstruction methods: unweighteweighted least-squares (ULSQ and WLSQ, respec-
tively) methods with a linear fit and a Green-Gauss (GG) nekthiche following observations concerning relations
between accuracy and grid regularity have been made: (1yeCgence and magnitudes of truncation errors are
strongly affected by grid regularity and often mislead irdicting convergence and magnitudes of discretization
errors. (2) Some common inviscid FVD schemes, e.g., with @Wigsadients, produce larger discretization errors
(possibly diverging in grid refinement) on almost perfeetigular grids than on very irregular grids with the same
degrees of freedom (DOF). This striking observation shdwdtility of assessing mesh quality independently of the
discretization scheme and motivates employment of mohdestdl SQ methods. (3) Convergence and magnitude of
discretization errors on isotropic grids are often indegfeet of grid regularity. (4) Gradient accuracy may degratue o
irregular high-aspect-ratio grids; effects of this degtimh are much stronger on viscous solutions than on irisci
solutions. (5) Grid regularity may strongly affect convemge of iterative solvers, e.g., defect-correction iteret
(6) Stochastic tests may be required to account for variatiotroduced by outlier geometries on irregular grids.

The focus of this paper is on an edge-based node-centeredampp An FVD scheme is considered as edge-
based if a loop over edges is sufficient to compute residdall equations’! Edge-based schemes offer advantages
of efficiency (much more efficient than schemes that needdp tver elements in order to compute residuals and
linearizations), generality (applicable to agglomenatipids with no explicit elements), and easier grid adaptati
Widely used node-centered FVD scheRiese edge-based for inviscid residuals on all grids and fras residuals
on simplicial grids; viscous residuals on non-simplici@reents require an element loop. An attractive feature of an
edge-based scheme for integrating fluxes over a mediancdofibl volume is that the integration is up to third-order
accurate on general simplicial grids; the integration @ty may degenerate to first order on general grids including
non-simplicial elements.

There is computational evidence that second-order FVDrsebleused for practical computations of turbulent
flows demonstrate a better accuracy on mixed-element \ssgods with prismatic elements in boundary layers than
on fully tetrahedral grids. This evidence is the main mdtormfor using mixed unstructured grids in spite of efficignc
degradation caused by losing the edge-based character sdltiemes. Recent publicatiéhd*introduced an efficient
edge-based FVD scheme using WLSQ gradient reconstructibrawuadratic fit and showed third-order accuracy for
inviscid fluxes on general triangular grids. With this sclegm comparable or even superior turbulent flow accuracy
may be possible on fully tetrahedral grids.

This paper considers effects of mesh regularity on the acgwf edge-based FVD schemes using ULSQ gradients
computed with a quadratic fit. The inviscid scheme is nonhyrthird-order accurate on general triangular meshes.
The viscous scheme is a nominally second-order accurateetimtion that uses an average-least-squares method.
The schemes have been contrasted with previously studmeshees involving other gradient reconstruction methods
such as the Green-Gauss method and the ULSQ method withea fine

Gradient errors and discretization errors are separatadyesl according to a previously introduced comprehensive
methodology:> *® A linear convection equation,
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with a velocity vectora, serves as a model for inviscid fluxes. Poisson’s equation
AU = f, )

subject to Dirichlet boundary conditions serves as a mamtelitcous fluxes. The method of manufactured solutions
is used. Solutions are chosen to be smooth on all grids ceresidi.e., no accuracy degradation occurs because of a
lack of solution smoothness.

The paper is organized as following. First, grids, FVD schsprand accuracy measures are briefly described.
Then, numerical studies of the FVD accuracy measures aogtegbfor grids of three classes representing isotropic,
adapted, and turbulent-flow grids. Finally, conclusiond@tommendations are offered concerning the FVD schemes
that are expected to be least sensitive to mesh regularépjications to turbulent flows in complex geometries.
Appendix A illustrates high sensitivity of truncation ersdo grid regularity. Appendix B presents a study of gratlien
accuracy as a function of grid deformation typical for cubemisotropic grids used in turbulent-flow computations.

(@) Type (I): regular (b) Type (II): regular tri- (c) Type (III): random (d) Type (IV): random
quadrilateral grid. angular grid. triangular grid. mixed grid.
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Figure 1. Class A: regular and irregular grids.

II. Grid Classes and Types

Computational studies are conducted on two-dimensiofidd ganging from structured (regular) grids to irregular
grids composed of arbitrary mixtures of triangles and qilaérals. Highly irregular grids are deliberately consted
through random perturbations of structured grids. Thraesels of grids are considered. Class A involves isotropic
grids in a rectangular geometry. Class B involves highlgaimopic grids in a rectangular geometry, typical of those
encountered in grid adaptation. Class C involves advaHeiper grids varying strongly anisotropically over a cuive
geometry, typical of those encountered in high-Reynoldsher turbulent flow simulations.

Four basic grid types are considerdd) regular quadrilateral(i.e., mapped Cartesian) grid&f ) regular tri-
angular gridsderived from the regular quadrilateral grids by the samegatial splitting of each quadrilaterdlf17)
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random triangular gridsin which regular quadrilaterals are split by randomly afrodiagonals, each diagonal orien-
tation occurring with a probability of half; and'V') random mixed-element grids which regular quadrilaterals are
randomly split or not split by diagonals; the splitting padiility is half; in case of splitting, each diagonal orierda

is chosen with probability of half. Nodes of any basic-typel gan be perturbed from their initial positions by random
shifts, thus leading to four additionpérturbedgrid types which are designated by the subsgrigs(Z,)-(IV},). The
random node perturbation in each dimension is typicallyrm@fias%ph, wherep € [—1, 1] is a random number and

h is the local mesh size along the given dimension. The reptatiee grids of classes A, B, and C are shown in
Figures 1, 2, and 3, respectively.
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Figure 2. Class B: stretched grid of type(I11I,) with 9 X 65 nodes.
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Figure 3. Class C: representatived X 33 irregular stretched high-I" grids.
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lll. Finite-Volume Discretization Schemes

The FVD schemes are derived from the integral form of a caasien law,

f(F-ﬁ) ds:/fdQ, 3)
Q

o0
wheref) is a control volume with boundagf?, ii is the outward unit normal vector, add is the area differential. The
general FVD approach requires partitioning the domaindnget of non-overlapping control volumes and numerically
implementing Eq. 3 over each control volume.

Node-centered discretization schemes are consideredjamwolutions are defined at the primal mesh nodes. The
control volumes are constructed around the mesh nodes hy¢déan-dual partition. Node-centered discretization
schemes have the same DOF on grids of all types.

For inviscid Eqg. 1, the numerical flux,

(F*-n) =U"(a-f), (4)
at a control-volume boundary is computed according to theditference-splitting schem?,
. 1 . 1 .
UM (a-8) = 5 (Us+Un) (a- ) - 5 |(a- )] (Ur ~ UL). (5)

where the first and second terms represent the flux averagéhandissipation, respectivelyj;, and Ug are the
“left” and “right” solutions reconstructed at the edge ndt by using solutions and gradients defined at the nodes
connected by the edge. The edge-based flux integration scaygpnoximates the integrated flux through the two faces
linked at the edge midpoint by" (a - n), wheren is the combined directed-area vector of the adjacent faces.

The integration scheme is computationally efficient. Faatfluxes, the integration scheme provides third-order
accuracy on regular simplicial grids of typgl'), second-order accuracy on regular quadrilateral and gksierplicial
grids of types(I), (III),(II,), and(II1I,), and first-order accuracy on mixed-element and perturbedrijateral
grids of typeg1V), (IV,,), and(I,,).18:19.27

It was showR® 2 that third order discretization accuracy is achieved orpsigial grids with WLSQ gradients
employing a quadratic fit. Third-order accuracy on simpligrids has been confirmed with quadratic-fit ULSQ
gradients used herein. Note that five neighbors are typisafficient for a quadratic fit. On triangular grids consigtbr
in this study, the average number of edge-connected neiglibsix; and the minimum number of edge-connected
neighbors for an interior node on any grid is four. In casesmithe least-squares stencil of the nearest edge-connected
neighbors is not sufficient for a quadratic fit, the stencéxpanded to include neighbors of neighbors.

For viscous Eq. 2, the numerical flux is defined as

(F® - 4) = (V'U - a), (6)

whereV*U is the gradient reconstructed at the face of the controlmeluTwo gradient reconstruction schemes are
considered. First, the averaged least-squares (Avg-L&@rse averages the ULSQ gradients at the nodes to compute
the face gradiert® 2° Second, the GG sched¥¢*? computes gradients at the primal elements and uses therogn fa
gradient computations at control-volume boundaries. TkedBheme is widely used in node-centered codes and
equivalent to a Galerkin finite-element (linear-elemerggktization for triangular/tetrahedral grids. Both egtes

use the edge gradient to augment the face gradient and $actieen-ellipticity° of the diffusion operatdf-?and
thus, avoid checkerboard instabilities. The gradient aemgation is introduced in the face-tangent fafhiNote that
when the edge is normal to the face, the edge gradient is tlyecontributor to the flux. For the GG scheme, the
implementation of gradient augmentation on three-dimmradinon-simplicial grids requires looping over elements
and thus, alters the edge-based character of the schemaug@heentation does not affect the face gradient within a
simplex element and thus, the GG scheme is edge based oncsigpiids. Both Avg-LSQ and GG schemes possess
second-order accuracy for viscous fluxes on general miledant grids-® 928,29
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IV. Accuracy Measures

The accuracy is analyzed for known exact or manufacturedisak. The forcing function and boundary values are
found by substituting this solution into the governing etiuas, including boundary conditions. The discrete fogcin
function is defined at the nodes that are not necessarilydda centroids of control volumes. Boundary conditions
are over-specified, i.e., discrete solutions at boundanyrobvolumes and, possibly, at their neighbors are spekifie
from the manufactured solution. Unless described othextiie figures in this paper show accuracy measures versus
an effective meshsize which is computed as thenorm of thev/V function, wherel” is a measure of the control
volume,

V= / ds. @)
Q
Relations between different methods of computing the &ffeeneshsize are discussed in Ref. 19.

IV.A. Discretization error

The main accuracy measure is thiscretization erroy F;, which is defined as the difference between the exact descret
solution,U", of the discretized Eq. 3 and the exact continuous solution the corresponding differential equations,

Eq=U-U", (8)

whereU is sampled at mesh nodes.

IV.B. Accuracy of gradient reconstruction

The accuracy of the gradient approximation is also impart&ihe gradient reconstruction accuracy is evaluated by
comparing the reconstructed gradievit,U, with the exact gradien§/U. The accuracy of a ULSQ gradient is eval-
uated by comparing the reconstructed and exact gradiemisdats. The accuracy of a GG gradient is evaluated at
element centers computed as the average of the correspaidiment vertexes. The error in the gradient reconstruc-
tion is measured as

E, =|V'U - VU|. 9)

V. Class A: Isotropic Grids in Rectangular Geometry

V.A. Grid and solution specifications

Sequences of consistently refiRggrids with 52,92, 172,332, 652, 1292, and2572 nodes are generated on the unit
squard0, 1] x [0, 1]. Irregularities are introduced at each grid independesdiyhe grid metrics remain discontinuous
on all irregular grids. With the random perturbation ranigéted by a quarter of the local mesh size, the angles of
triangular elements can approaid0° and the ratio of the neighboring cell volumes can be arlilgraigh.

The exact solution i8 = sin(rz — 27y), so for the inviscid Eq. 1 witlh = (2, 1), the force,f, is zero, and for the
viscous Eq. 2f = —572 sin(mz — 27y). The boundary conditions are over-specified from the manufad solution
for all nodes linked to the boundary.

V.B. Gradient reconstruction errors

Figure 4 shows the variation of tHa norm of the gradient error. As expected, the ULSQ gradiesdmstruction with
a quadratic fit is second-order accurate on all grids. The @@ignt reconstruction is second order only on perfect
grids of type(I); on all other grids, the GG gradients are first-order aceuratl equivalent-order methods provide
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very similar errors. Thus, no mesh regularity effects argeobed for thel,; norm of the gradient error on isotropic
grids.

Although not shown, the observdd,, norms of the gradient errors converge with the same ordetiseasor-
respondingl; norms, but thel.., norms of GG gradient error on grids of type& I,) and(IV,) are an order of
magnitude greater than thie,, norms of other first-order errors. The latter effect is cdusg gradient accuracy
deterioration on triangular elements with obtuse anglgsagrhingl80°. Theoretically, with an infinitesimal prob-
ability, the GG gradient error may become infinitely largeaatelement with a vanishing volume. As opposed to
the anisotropic grids considered below, elements witheexély obtuse angles occur infrequently and in isolation on
isotropic grids. Thus, discretization errors are not défdc
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Gradient error (L1 - norm)
Gradient error (L1 - norm)

. . .
10" 10™ 10° 10° 10" 10°
effective meshsize effective meshsize

(a) ULSQ-quadratic fit at node (b) GG at element

Figure 4. Accuracy of gradient reconstruction on isotropicgrids. Manufactured solution isU = sin (rx — 27y).

V.C. Discretization errors

Convergence rates of tHg norm of discretization errors for inviscid and viscous flsxaee shown in Figures 5 and 6,
respectively. This is an example where inviscid accuracgimplicial meshes is superior to that on meshes with
guadrilateral elements. This is not a surprise becausentiiecid scheme used in this study is designed to be third
order only on simplicial grid$® 24 The edge-based integration scheme used in this schemevismkoaleteriorate to
first order on grids of typegl,, ), (IV), and(IV,,).181927 On triangular grids, the discretization accuracy of inidsc
solutions is not sensitive to mesh regularity. If anythidigcretization errors are somewhat smaller on topololyical
structured grids of typed I) and(/,). Discretization errors for viscous fluxes show no sensjtitci mesh regularity.
The errors for both Avg-LSQ and GG schemes are practicadigtidal to the plotting accuracy for all grids.

VI. Class B: Anisotropic Grids in Rectangular Geometry

VI.A. Grid and solution specifications

This section considers FVD schemes on stretched grids giemeon rectangular domains. Figure 2 shows an example
grid with the maximal aspect ratid = 1,000. A sequence of consistently refined stretched grids is g¢eegon the
rectangle(z, y) € [0,1] x [0,0.5] in the following 3 steps.
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Figure 5. Inviscid discretization errors on isotropic grids. Manufactured solution isU = sin (wx — 27y).
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(@) Avg-LSQ (b) GG

Figure 6. Viscous discretization errors on isotropic grids Manufactured solutionisU = sin (7wx — 27y).

1. A background regular rectangular grid with= (N, + 1) x (N, + 1) nodes and the horizontal mesh spacing

h, = 1/N, is stretched toward the horizontal lige= 0.25. They-coordinates of the horizontal grid lines in
the top half of the domain are defined as
N,

n i (Ny
y%ﬂ = 0.25; Y = Yj-1 —l—hyﬁ] ( 2 +1), j= 77! +2,...,Ny,Ny + 1. (10)

Heref{y = h, /A is the minimal mesh spacing between the vertical links; 1,000 is a fixed maximal aspect
ratio, andg is a stretching factor which is found from the conditipi, +1 = 0.5. The stretching in the bottom
half of the domain is defined analogously.
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2. Irregularities are introduced by random shifts of irdemodes in the vertical and horizontal directions. The
vertical shift is defined ady; = % pmin(hi~!, hJ), wherep is a random number betweer and1, andh
andhé are vertical mesh spacings on the background stretched aneshd the grid node. The horizontal shift

is introduced analogously\z; = %phw. With these random node perturbations, all perturbed dladehal
cells are convex.

3. Each perturbed quadrilateral is randomly triangulatét ane of the two diagonal choices; each choice occurs
with a probability of one half.

Sequences of consistently refined stretched grids with maxi aspect ratiod = 1,000 including9 x 65,17 x
129,33 x 257, 65 x 513, and 129 x 1025 nodes have been considered. The corresponding stretchiiog are
£~ 1.207,1.098,1.048,1.025, and1.012. The aspect ratio near the external horizontal boundaziasout.7.

In the tests on grids of Class B performed with either the rfeartured solutiosin (72 — 27y) or extended over-
specification used in tests on grid of Class A, the asympbmtitavior of the discretizations errors for viscous fluxes
was not observed on coarse grids. The exhibited discritizatrors were uncharacteristically low on coarse grids,
but did not converge with the asymptotic order. The diszatibn errors for this specific manufactured solution on
the chosen domain are small in the interior and peak towarddundary. Thus, over-specification that involves all
neighbors of boundary nodes affects solutions on a too lgogéon of stretched grids. As a result, the manufactured
solution has been changedlio= cos (mx — 27y); the discretization errors for this solution peak in the abédof the
computational domain. Also only solutions at boundary rsogie over-specified, and not at their neighbors as was
done for Class A grids. With these changes, the asymptotiayier of the discretizations errors for the viscous fluxes
is established on relatively coarse grids. Note that theirigrterm for inviscid equations is stifl = 0 fora = (2, 1).

VI.B. Gradient reconstruction errors

[N

o
o
[
o

Gradient error (L_ — norm)
Gradient error (L_ — norm)

. .
10° 10 10™ 10° 107 10"
effective meshsize effective meshsize

(a) ULSQ-quadratic fit at node (b) GG at element

Figure 7. Accuracy of gradient reconstruction on stretchedgrids with maximum aspect ratio A = 1,000. Manufactured solution is U =
cos (wx — 27y).

A recent stud§® assessed the accuracy of gradient approximations on sagiids with high aspect ratid =
Z—z > 1. The study indicates that for rectangular geometries andtions predominantly varying in the direction of
Y
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small mesh spacing{direction here), gradient reconstruction is accurate@ndides small relative error while con-
verging with at least first order in consistent refinement odsgof all types. For manufactured solutions significantly
varying in the direction of larger mesh spacingdirection), the gradient reconstruction may produceesrly large
relative errorsD(AhP) affecting the accuracy of thedirectional gradient component. Hegeis the formal gradient
reconstruction ordefj = 1 for the GG method and for the ULSQ method with a lineanfit: 2 for the ULSQ scheme
with a quadratic fit.

A summary of the results concerned with gradient accuracgrosotropic grids is presented in Table 1. The
gradient is accurately reconstructed on all unperturbitsdry the GG scheme. All gradient reconstruction methods
considered may generate large relative errors on perttasl of typeq1,,) — (IV,).

Table 1. Relative error of gradient reconstruction on anisaropic grids for solutions with significant variation in the a-direction of larger mesh spacing.

Grid Types (I)
ULSQ-linear fitatnode O(h2) O(
ULSQ-quadratic fit at node O(h2) O(
GG atelementcenter  O(h2) O(h,) O(hy)  O(hs

The convergence of thé,, norm of gradient errors is shown in Figure 7. Thg, norm is used to highlight
the worst gradients observed in high-aspect ratio regidniseostretched grids of Class B. All quadratic-fit ULSQ
gradients converge with second order, but the magnitudeeadtadient errors is sensitive to grid regularity. As shown
in Table 1, with any deviation from the regularity of gridstgpes(7) and(IT), the ULSQ gradient error becomes
proportional to aspect ratio. The GG gradients convergh fiist order on all grids beside the grids of tyfB,
where a second-order convergence is observed. In spiteowfea brder convergence, the GG gradients show a clear
advantage over the ULSQ gradients on coarse unperturbesl girtypes(/)—(IV'). The GG scheme on such grids
provides gradient accuracy independent of aspect ratigpe@mrbed grids of typeld,,)—(1V},), the GG errors are also
proportional to the aspect ratio, and quadratic-fit ULSQlgnats are preferable.

—
O‘

Discretization error (L1 - norm)
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o\
b
T
Discretization error (L1 - norm)
=
o

=
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. .
10 107 10 10" 107 10

3 1 3
effective meshsize effective meshsize
(a) Triangular meshes (b) Mixed and quadrilateral meshes
Figure 8. Inviscid discretization errors on anisotropic stetched grids with maximum aspect ratio A = 1,000. Manufactured solution is U =

cos (mx — 27y).
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Figure 9. Viscous discretization errors on anisotropic stetched grids with maximum aspect ratio . A = 1,000. Manufactured solution is U =

cos (wx — 27y).

VI.C. Discretization errors

The convergence of the; norm of discretizations errors for inviscid fluxes is showrFigure 8. The convergence
characteristics are similar to those exhibited on isotrgpids of Class A. Third-order convergence insensitivertd g
regularity is observed on all triangular grids. Convergeoi grids of typéI) is second order, but any irregularity on
mixed and quadrilateral meshes degrades the convergefics torder.

The convergence of thB; norm of discretization errors for viscous fluxes is shown iigufe 9. All discretiza-
tion errors converge with second order. While second-ozdavergence of the Avg-LSQ scheme is not apparent in
Figure 9(a) on triangular and mixed-element grids, a searddr slope has been attained on finer grids. For refer-
ence, convergence of the errors obtained with a linear fitrats @f type(I7) is also shown. The Avg-LSQ errors
are relatively small only on pure quadrilateral grids ofegp!) and(1,). The magnitude of errors obtained with a
guadratic fit is much smaller than the magnitude of erroraiabt with a linear fit. However, discretization errors of
the GG scheme are significantly better than any of the Avg-e8Qrs. The GG errors are clearly divided into two
groups. The errors on unperturbed grids of typBs— (IV') are small on all grids; the errors on perturbed grids are
roughly two orders of magnitude higher for any given numb&®©F. The ratio is about the same as the ratio between
gradient errors shown in Figure 7(b).

VIl. Class C: Grids with Curvature and High Aspect Ratio

VIILA. Grid and solution specifications

In this section, we discuss FVD schemes on grids with cureadnd high aspect ratio. The grid nodes are generated
from a cylindrical mapping, wherg, #) denote polar coordinates with spacingsipfandhg, respectively. The grid
aspect ratio is defined as the ratio of mesh sizes in the cferemtial and the radial directiong, = Rhg/h,, where
R is the radius of curvature.

The curvature-induced mesh deformation paranietet®is defined as:
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R(1—cos(hg)) _ Rhy A@

hy 2h, 2

The following assumptions are made about the range of paeasa® ~ 1, A > 1, andT'h,. < 1, which implies
that bothh, andhy are small. For a given value of, the parametelr may vary:I" < 1 indicates meshes that are
locally (almost) non-deformed. As a practical matter, gridth I < 0.2 can be considered as nominally non-curved.
In a mesh refinement that keeddfixed,I" = O(.Ahy) asymptotes to zero. This property implies that on fine enough
grids with fixed curvature and aspect ratio, the error cageece is expected to be the same as on similar Class B grids
generated on rectangular domains with no curvature.

Four basic types of grids are studied in the cylindrical getsyn Unlike Class B grids used in the rectangular
geometry, random node perturbation is not applied to figjnids of Class C because even small perturbations in the
circumferential direction may lead to non-physical commumes. Representative stretched grids of tyddd) and
(IV') are shown in Figure 3.

The manufactured solution considered in this sectioli is- sin(57r). The convection direction is changed to
a variable tangential directiom = (y/r?, —x/r?), so the inviscid forcing term remains zero. Solutions atriztary
nodes are over-specified.

I =

(11)

VII.B. Gradient reconstruction errors

Table 2. Relative errors of gradient reconstruction for marufactured solutions varying only in the radial direction on high-I" grids.

Grid Types (I) (I (11 (v
ULSQ-linearfit  O(1) O(1) 0O@1) 0Q1)
ULSQ-quadratic fit O(hg) O(hg) O(hg) O(hy)

GG O(h3) O(hg) O(hg) Ol(ho)

Our main interest is solutions varying predominantly in thdial direction on grids with® > 1 corresponding
to meshes with large curvature-induced deformation. Thergiof gradient reconstruction for a radial solution are
summarized in Table 2. The ULSQ gradient approximation wilinear fit is zeroth-order accurate for such solutions,
in agreement with computations and analysis reportedegafi?® The use of the ULSQ method with a quadratic fit
dramatically improves gradient accuracy on higlgrids leading to a first-order convergence of gradient sroor
grids with highl.

The computational tests are performed with downscalidgjon a sequence of narrow arc-shaped domains with
the angular extent of L radians and the radial extentbf< r < 1+ gLA—l. The scalel changesag = 27", n =
0,...,8. Oneach domain, & x 17 grid is generated with nodes uniformly spaced in the polardioates. Figure 10
shows convergence of thie,, norms of gradient errors computed for the manufacturedisold/ = sin(57r) on
grids with aspect ratiogl = 100 and.4 = 1,000. The errors are shown versus the grid deformation paranigter
defined in Eq. 11. Figures 10(a) and 10(b) show convergentk 80 gradient errors computed with quadratic and
linear fits on grids of type§l)—(IV'). Figures 10(c) and 10(d) show convergence of GG gradieat®rAs known
from previous studie¥ " the errors of GG gradients are small and show the order poperall grids. The ULSQ
gradients computed with a linear fit lose accuracy on Higjrids. The ULSQ gradients computed with a quadratic fit
recover a first-order convergence on higlarids and show the smallest error magnitudes on grids obtiig, (I11),
and(IV). The GG gradients show the smallest errors on regular datetal grids of typé ). Appendix B presents a
detailed study of gradient reconstruction errors for ULS&Hods with linear and quadratic fits on a family of stencils
corresponding to a wide range Bf
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Figure 10. Accuracy of gradient reconstruction on highI" grids. Manufactured solution isU = sin (57 r).

VII.C. Discretization errors

Computational grids used in the grid-refinement study afréigzation errors are radially stretched grids with aaadi
extent ofl < r < 1.2 and an angular extent @f)°. Fixed maximal aspect ratios are used. The maximal aspect
ratio is.A ~ 1,000 for viscous computations. The grids have four times moris gethe radial direction than in the
circumferential direction. The maximum valuelo€hanges approximately &s~ 22,11, 5.5,. ... The corresponding
grid stretching ratios change As= 1.25,1.11, 1.06, ... ..

The third-order inviscid scheme produces highly accuraiigi®ns, so local errors become very small on relatively
coarse highly stretched grids and convergence is obscynedibd-off errors interfering with the solutions. A reddce
maximal aspect ratio ofl ~ 100 has been chosen for inviscid computations.
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Figure 12. Viscous discretization errors on highE stretched grids with maximum aspect ratio. A = 1, 000. Manufactured solution isU = sin (57 ).

Convergence of thé; norm of discretization errors is shown in Figures 11 and X 2fascid and viscous fluxes,
respectively. The inviscid errors converge with (almost)rth order on grids of typ€l), with third order on grids of
types(I7) and(II1I), and with first order on grids of typdV'). The unusually high order of convergence on grids
of type (1) is explained by the fact that, for a manufactured solutioying in the radial direction only, the inviscid
scheme on grids of typ€l) turns into a fourth-order pure one-dimensional scheme. #alytion variation in the
circumferential direction results in the expected secordbr convergence on grids of typg). Note that, because
of asymmetric gradient-reconstruction stencil on gridsyples(7/7) and (I11), the scheme does not become one-
dimensional and thus, its third order of convergence oretlgeisls is independent of solution variation. Second-order
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convergence and no sensitivity to grid type are observelddtr viscous schemes.

VIIl. Conclusions

The effects of mesh regularity on the accuracy of unstrecturode-centered finite-volume discretizations for
viscous and inviscid fluxes have been considered for an bdged approach that use unweighted least-squares gra-
dient reconstruction with a quadratic fit. The inviscid soeeis nominally third-order accurate on general triangular
mesheg324 The viscous scheme is a nominally second-order accuratetization that uses an average-least-squares
method with a face-tangent augmentati®r?? The results have been contrasted with previously studieerses in-
volving other gradient reconstruction methods such as tteesGauss method and the unweighted least-squares
method with a linear fit. Gradient errors, truncation err@nsd discretization errors have been separately studied
according to a previously introduced methodoldgy®

The methodology considers three classes of grids: ClasslAdas isotropic grids in a rectangular geometry, Class
B includes anisotropic grids representative of adaptié-gjmulations, and Class C includes anisotropic advagcin
layer grids representative of high-Reynolds number tunhiflow simulations over a curved body. Regular and irreg-
ular grids have been considered, including mixed-elemeads @nd grids with random perturbations of nodes. Grid
perturbations and stretching have been introduced inalely of solution variation to bring out the worst possible
behavior.

The gradient accuracy deteriorates on high-aspect-ratioifbed grids. On grids of Class B, the gradient errors
converge with the design orders — first order for the Greens&method and the least-squares method with a linear fit
and second order for the least-squares method with a qiafitafhe least-squares gradient errors become propor-
tional to the aspect ratio on all irregular grids. On gridéhwiode perturbation, all gradient errors are proportiomal
the aspect ratio. On Class C grids characterized by a higirdetion parametdr, the Green-Gauss gradient errors
converge with at least first order and are small on all gridse &rrors of least-squares gradients with a quadratic fit
converge with first order. The magnitude of the quadratieffiors is superior to th€(1) magnitude observed with a
linear fit.

As observed previousty'>1°and confirmed here in Appendix A, lack of mesh regularity sty affects trun-
cation errors, which converge with lower-than-design oateall irregular meshes. Viscous truncation errors do not
converge at all on perturbed grids.

Inviscid discretization errors are practically insensitto mesh regularity on triangular grids, demonstrating a
third-order convergence and small variation of the errogmitaides. Discretization accuracy is more sensitive tomes
regularity on grids with quadrilateral elements. On thoddgj the results observed with the least-squares method
with a quadratic fit show no advantage over previous resuitained with a linear fit® 1% both showing first-order
convergence on mixed and perturbed quadrilateral grids.

In all cases, the viscous discretization errors asympalyiconverge with second order. Similar to the gradient
accuracy, the magnitude of discretization errors of vis@mlutions is insensitive to grid regularity on grids of §$3&,
but may be sensitive on grids of classes B and C. On such ghiei§reen-Gauss method is the most accurate, although
the errors on the grids with node perturbation are still ificgntly larger than errors on grids with unperturbed nodes
Asymptotically, the difference is proportional to the agipratio. Accuracy of the average-least-squares methods
deteriorates on irregular high-aspect-ratio grids, altffothe deterioration is less with a quadratic fit than witimedr
fit.

The following recommendations are offered:

1. The unweighted least-squares method with a quadrati Hiighly recommended as a robust way to compute

accurate gradients on all grids.

2. The edge-based scheme that uses the unweighted leasésauethod with a quadratic fit is recommended
for inviscid fluxes. On triangular grids, it produces thotder accurate solutions and is insensitive to mesh
regularity.
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3. The Green-Gauss scheme is recommended for viscous floresotropic and advanced-layer grids of classes
A and C, both Green-Gauss and averaged-least-squaresdagttualuce uniformly second-order solutions and
are insensitive to mesh regularity. On grids of Class B dli&n sensitivity to grid regularity; the Green-Gauss
solutions are less sensitive than averaged-least-sgs@td®ons.

Robust iterative convergence is also critically importiamtpractical applications. The solver for the third-order
scheme reported previoushfailed to converge on higli-grids of Class C. This failure is attributed in part to use of
a WLSQ gradient reconstruction that causes difficultiestByative solvers in complex geometri&sAlthough, we
do not consider iterative convergence in this paper, pieliny tests indicate that a combination of a ULSQ method
with an approximate mapping technid&é® enables fast and robust convergence of defect-corredtomtions for
this third-order scheme on high-aspect-ratio grids in demageometries. Also, the approximate-mapping approach
to gradient reconstruction can recover a second-orderecgance of gradient errors on hidghgrids of Class C.

The overall conclusion is that relations between mesh ciertiatics and solution accuracy are complicated. The
mesh regularity affects gradient, truncation, and digcaion errors in dramatically different ways. The resmlntis
expected in the form of adjoint-based grid adaptation tivactly and rigorously connects the local mesh properties
with the desired solution outcome.

A. Truncation errors

Truncation errorF;, characterizes the accuracy of approximating the diffibequations. For finite differences,
the truncation error is defined as the residual obtained aftbstituting the exact solutioli into the discretized
differential equationé! For FVD schemes, the traditional truncation error is usuddifined from the time-dependent
standpoint? 33 In the steady-state limit, it is defined (e.g., in Ref. 34)ls tesidual computed after substitutitig
into the normalized discrete Eqg. 3,

Et:% —/fth—i-j{(Fh-ﬁ) ds|, (12)
Q

o0

whereV is the measure of the control volume, Eq.f%,is an approximation of the forcing functighon €2, and the
integrals are computed according to quadrature formulas.

The truncation errors are extremely sensitive to mesh aeigyil Convergence rates of thig norm of truncation
errors for inviscid and viscous fluxes on isotropic grids ¢3S A are shown in Figures 13 and 14, respectively. The
inviscid scheme and the viscous Avg-LSQ scheme use the UL&Qaud with a quadratic fit; the viscous GG scheme
is shown for comparison. The grids and manufactured salatie defined in Section V.A.

The inviscid errors converge with third order only on regtlengular meshes of tygd ). On irregular triangular
grids of types(I11), (I1,), and(I11I,) and on perfect quadrilateral grid of tygé), the inviscid truncation errors
converge with second order. Irregularities on grids withdyilateral elements (typg$V), (I,,), and(IV},)) lead to
zeroth-order convergence.

Similar sensitivity is observed for the truncation errofgiscous fluxes discretized by the Avg-LSQ scheme with
second-order accurate ULSQ gradients (Figures 14(a) afi))14 he second-order convergence is observed only on
perfectly regular grids of typed) and(II). The convergence deteriorates to first order on irregukandular grids
and to zeroth order on mixed-element and perturbed quéshalegrids. For viscous fluxes discretized with the GG
scheme (Figures 14(c) and 14(d)), truncation errors do owterge on any but perfectly regular grids of tygés
and(I7). Note that GG scheme produces identical discretizationgrinis of types(I), (1), and(I11).}® Thus,
corresponding GG solutions and truncation errors on gfithgpes(7) and(17) are always identical. Different results
on grids of typg(II1) are explained by the differences in the dual volumes.

The qualitative behavior (orders of convergence) of trtinogerrors on anisotropic grids of Class B is the same
as on isotropic grids, shown in Figures 13 and 14. On gridk siinilar DOF, the magnitude of the errors increases
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Figure 13. Inviscid truncation errors on isotropic grids. Manufactured solution isU = sin (wx — 27y).

proportional to the aspect ratio.

B. \Variation of gradient errors on grids of Class C

Table 3. Stencil for study of accuracy of gradient reconstretion on highly deformed grids.

Point r 0 X y
0 R 0 0 0
N R+ h, 0 0 hy
S R—h, 0 0 —hy
E R he Rsin(hg) —R(1 — cos(hy))
w R —hg —Rsin(hy) —R(1 — cos(hyg))

NE R+h, hy (R+ hy)sin(hg)  —(R+ hy)(1 — cos(hg))
SW  R—h, —hy —(R—hy)sin(hg) —(R—h)(1—cos(hy))

To illustrate the convergence property of gradient erraasr @ wide range of the deformation paramdiera
special computational test is designed. In the test, thdigmareconstruction is performed on a seven-point stencil
corresponding to a TypdI) curved grid. The positions of stencil points (labeled in¢benpass notation) are shown
in Table 3 in polar coordinate@, §) and in Cartesian coordinatés, y) relative to the stencil center. In this test,
radiusR = 1 and radial mesh spacing. = 2.5 - 108 are kept fixed, the initial value of angular mesh spacing
he = 0.04 is reduced by factor 2 in each of 13 refinement steps. With*seisi-refinement”I" is reduced by factor
4 in each step, varying a®), 000 > T" > 0.0005 over the entire test. Figure 15 shows convergence of theofrayl
expansion coefficients for thecomponent of the gradient. The coefficients of terms thanat present in the figure
are smaller than0~1°. For the Taylor coefficients of the ULS@gradient with a linear fit, a large magnitude and
a flat convergence of the coefficient bf., observed in Figure 15(a) fdf > 1 confirm anO(1) accuracy of this
gradient reconstruction method. In contrast, all Taylafficients of the ULSQy-gradient with a quadratic fit shown
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Figure 14. Viscous truncation errors on isotropic grids. Manufactured solution isU = sin (wx — 27y).

in Figure 15(b) are small and converge with at least first ofolehighI" stencils.

The magnitudes of the relative errors for the GG scheme

anthéoULSQ scheme with a quadratic fit are much

smaller than the magnitude for the ULSQ scheme with a linedfifjure 16 shows the gradient errors measured at the

center of the stencil for a radial solutiéh = sin(57r). The grad

ient errors in Figure 16(a) confirm lack of accuracy

for the ULSQ method with a linear fit on high-grids. Low errors and flat convergence of the ULSQ method with
guadratic fit observed in Figure 16(b) are expected for atewgradient reconstructions because the radial mesh size
does not decrease in the test. This behavior indicatesdhabfutions varying predominantly in the radial direction
the gradient accuracy is determined by the radial mesh mpaaid independent df, which is a highly desirable

property on highF grids.
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