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Summary
A technique for obtaining sensitivity derivatives using complex

variables is described and demonstrated. The method is very easy to
implement and is applicable for computing derivatives for turbulent
flow applications. In fact, the methodology is applicable to any
simulation code using real-valued variables.

Although the specification of a step-size parameter is required,
the resulting sensitivity derivatives are highly accurate and not
prone to errors caused by subtractive cancellation. In this regard,
two additional digits of accuracy are obtained each time the step
size is lowered by one order of magnitude, enabling highly accurate
derivatives without the need to adjust the step size. Lastly, second-
derivative information is easily computed using available data,
although these computations are subject to cancellation errors.

The drawbacks of the current methodology are that the required
memory essentially doubles over the original flow solver because
of the use of complex variables in the code. Also, the computer
time increases by as much as a factor of three.
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Comparisons with ADIFOR
One of the most recently developed techniques for obtaining

discretely consistent sensitivity derivatives from complicated engi-
neering codes is ADIFOR (Automatic Differentiation for FOR-
tran).9 ADIFOR is a precompiler that accepts an existing code as
input and creates new source code with necessary modifications for
computing sensitivity derivatives. Because complex variables and
ADIFOR can both produce sensitivity derivatives which are dis-
cretely consistent with the flow solver, it is useful to attempt a com-
parison.

A two-dimensional inviscid version of the current unstructured
mesh methodology has been precompiled using ADIFOR and com-
parisons are made with the complex-variable approach. The geome-
try is a NACA 0012 airfoil at a Mach number of  and an angle
of attack of . For this study, only the free-stream Mach num-
ber is considered as a design variable and the only two sensitivity
derivatives of interest are for the lift and drag coefficients. In Table
6, the derivatives obtained using complex variables, ADIFOR, and
the adjoint formulation are compared with each other as well as
with a central difference formula. As seen in the table, complex-
variables, ADIFOR, and the adjoint method all give identical
results whereas the derivatives obtained using finite differences
show some sensitivity to the step size. Also, note that in this case,
the step size that yields the highest accuracy is . This is in
contrast to the example shown in Figs. 3 and 4 where a step size of

 gave the best results in terms of accuracy.
In Table 7, a comparison of several features of the complex-

variable approach and ADIFOR is made. In this table, the column
marked as CV denotes the complex-variable approach and AD
denotes ADIFOR. In each column, a check mark indicates an

advantage for the method denoted at the top of the column. If both
columns contain a check mark, then neither the complex-variable
approach nor ADIFOR have a clear advantage over the other. In
general, the complex-variable approach compares quite favorably
to ADIFOR, and actually holds the advantage in most areas. The
largest advantages of the complex-variable approach over ADIFOR
are that it requires very little “training” and that the resulting code
is easy to read and therefore easy to maintain. In addition, although
the complex-variable approach requires editing of the computer
code, ADIFOR usually requires code modifications to the source in
order to be successfully precompiled. In this area, both approaches

Table 6 Derivatives of lift and drag coefficients with respect to Mach
number using various techniques.

Methodology

Complex Variable 2.576118 0.5683333

ADIFOR 2.576118 0.5683333

Adjoint 2.576118 0.5683333

Finite Difference
2.515242 0.5642697

Finite Difference
2.474685 0.5630385

Finite Difference
2.576150 0.5683350

0.8
1.25°

1 10 6–×

1 10 5–×

M∞∂
∂Cl

M∞∂
∂Cd

h 1 10 4–×=

h 1 10 5–×=

h 1 10 6–×=

suffer from the possibility of introducing new errors into an exist-
ing (and presumably debugged) code. In comparing the execution
times, the complex-variable approach will require an essentially
fixed cost for each design variable. The cost for ADIFOR, however,
appears to be most expensive when considering a single design
variable. The execution time using ADIFOR improves as more
design variables are added. However, with ADIFOR, the memory
increases linearly with the addition of new design variables
whereas for the complex-variable approach, the memory is fixed.

While the complex-variable approach has several advantages
over ADIFOR, the latter approach has the very significant advan-
tage of extensibility to C programs and reverse mode differentia-
tion. Because the C programming language does not have a native
complex data type, incorporating the complex-variable approach
into a C code would require additional coding. The largest advan-
tage for ADIFOR over the complex-variable method is that there is
a related effort to produce reverse mode differentiation through
ADJIFOR.11 The complex-variable approach does not offer this
capability.

Table 7 Comparison between complex-variable approach and
ADIFOR.

CV AD Comments

Restart
capability

✓

AD does not maintain derivative his-
tory. Automatically taken into
account by complex approach.

Code
ownership

✓

AD license requires that permission
be obtained to distribute code once it

has been precompiled.

Learning curve ✓

Subjective, although “verified” by
several researchers with knowledge

of both CV and AD.

Modification
for new design
variables and

outputs

✓

AD requires reprocessing. CV only
requires that the complex part of the

quantity be printed.

Speed of
execution

✓ ✓

For small numbers of design vari-
ables, CV appears faster. With
increasing design variables,
ADIFOR cost amortized.

Memory ✓
Memory for CV fixed. Increases lin-
early with design variables for AD.

Maintenance ✓

CV code essentially identical to the
baseline version. AD very difficult to

read.

Time to
develop deriv-
ative versions

✓ ✓

Depends on length of code for CV.
AD may require extensive code prep-
aration for successful precompiling.

Extensibility ✓

AD offers upgrade path to ADIC and
ADJIFOR. CV offers no real path to

reverse mode differentiation.

Accuracy of
derivatives

✓ ✓
Both techniques can provide machine

levels of accuracy.
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evaluations can lead to large errors in the derivatives because of the
division by  .

Second derivatives have been obtained for the geometry shown
in Fig. 14. In this figure, 39 B-spline control points are used to
describe the initial geometry. All of the control points are depicted
as open circles with the “active” control points shown as filled cir-
cles. In this figure, a few numbers have been placed above selected
control points for reference purposes. The flow conditions for this
inviscid case are a free-stream Mach number of  and an angle
of attack of . The cost function is associated with attempting to
obtain a specified pressure distribution and is given by

(10)

where the integral is taken over the surface of the airfoil,  is the
pressure coefficient on the airfoil, and  is the desired, or target,
pressure coefficient. Here, the initial and target pressure distribu-
tions are shown in Fig. 15.

A plot depicting the second derivatives of the cost function
with respect to each of the design variables is shown in Fig. 16.
Here, the design variable is the y-position of each of the control
points shown as filled circles in Fig. 14. Second derivatives are
shown which have been obtained using 3 step sizes ranging over 3
orders of magnitude. Although no cross derivative information is
available, it can be seen using Figs. 14, 15 and 16 that the curvature
of the design space is much higher in the vicinity of the leading
edge of the upper surface than it is away from this region. In fact,
the highest curvature, which is associated with design variable
number 24, is about 100 times as high as the lowest curvature
located at design variable 28. The area where the curvature is the
highest is where supersonic flow is present.

Figure 14. Initial geometry used for obtaining second derivatives.

Figure 15. Initial and target pressure distributions.
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35 A comparison of second derivatives which have been obtained

using both complex variables and finite differences is shown in
Table 5. In this table, second derivatives of the cost function with
respect to design variables 10, 25, and 30 are shown for 3 different
step sizes. As seen in the table, both complex variables and finite
differences give similar approximations to the derivatives and both
approaches exhibit some sensitivity to the step size.

In an attempt to accelerate the convergence of the design pro-
cess, the diagonal contributions obtained at the beginning of the
design have been used as the initial approximation to the Hessian
needed for the quasi-Newton method outlined in Ref. 41. Although
not shown, no significant improvement in the reduction of the cost
function was obtained when compared to using the identity matrix
as the initial guess for the Hessian.

Figure 16. Second derivatives for each design variable.

Table 5 Comparison of second derivatives obtained using complex
variables and finite differences.

Design
Variable

Step Size
Complex
Variables

Finite
Difference

10

74.8455 74.7628

74.7929 74.7924

74.7765 74.8087

25

1429.49 1428.64

1429.35 1429.56

1418.76 1435.73

30

91.2012 91.1143

91.1459 91.1466

91.0860 91.2058

D2

2

∂
∂ I

1 10 5–×

1 10 4–×

1 10 3–×

1 10 5–×

1 10 4–×

1 10 3–×

1 10 5–×

1 10 4–×

1 10 3–×
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Two-Dimensional Flow for a Complicated Equation of State
The next example is for the flow over an airfoil in a non-ideal

gas. The purpose is to demonstrate the versatility of the complex-
variable approach in determining sensitivity derivatives of very
complicated functions. In this case, the complexity enters through
the fact that the gas, sulfur hexafluoride, is neither thermally nor
calorically perfect. The equation of state for sulfur hexafluoride is
given as36

(8)

where  is the specific gas constant,  is the temperature,  is
the temperature at the critical point,  is the specific volume and
the remainder of the terms are constants. To determine the pressure
at each iteration of the solution process, the temperature is first de-
termined by solving the following non-linear equation at each point
for the local temperature

(9)

In this equation,  is the actual internal energy and  is the ideal
gas internal energy which is only a function of temperature. Equa-
tion (9) is solved at each mesh point using several iterations of
Newtons method. Note that unlike an ideal gas, the solution for a
real gas depends on the free-stream reference pressure in addition
to the Mach number and Reynolds number.

For this computation, the flow solver has been modified to
include two “equivalent” ’s as described in Ref. 16. One of these
is associated with the pressure at each point in the flowfield while
the other is for the speed of sound. The process required to account
for the real gas effects is similar to that needed for other thermody-
namic models such as equilibrium air. It should be pointed out that
the modifications to the code that are required to get the derivatives
using the complex-variable approach took only a single day, includ-
ing the thermodynamics and turbulence models. This is due to the
fact that the only real modifications required were to declare the
floating point variables in these routines as complex.

In Fig. 12, the computed pressure distribution is compared with
experimental data from Ref. 1 for a free-stream Mach number of

, an angle of attack of , a Reynolds number of
based on the chord of the airfoil and a reference pressure of

Figure 11. Computer time to obtain lift derivative for camber #4.
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atmospheres. The mesh used for the computation contains 38,637
nodes with a normal spacing at the wall of .

As noted earlier, the results for a real gas depend on the free-
stream pressure so that the lift and drag coefficients will change in
response to changes in the free-stream reference value. Using a for-
ward-difference formula with a step size of , the deriva-
tives of the lift and drag coefficients with respect to changes in the
free-stream pressure are  and  respec-
tively. The corresponding values obtained using the complex-vari-
able approach are  and . Contours of
the sensitivity derivatives of Mach number with respect to the free-
stream pressure are shown in Fig. 13. As expected, the effect of
changing the free-stream pressure is most strongly felt in the region
of the shock near the leading edge of the airfoil.

Obtaining Second Derivatives Using Complex Variables
In Eq. (6), a formula for obtaining second derivatives is given

which requires no additional computations over those required for
obtaining first derivatives. In this formula however, it is apparent
that the determination of second derivatives will be susceptible to
subtractive cancellation error. In addition, unconverged function

Figure 12. Pressure distribution for sulfur hexafluoride; ,
, ,

Figure 13. Sensitivity derivatives of Mach number with respect to free-
stream pressure.
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Three-Dimensional Turbulent Flow over an ONERA M6 Wing
Three-dimensional results have been obtained for turbulent

flow over the ONERA M6 wing35 depicted in Fig. 9. The mesh has
been generated using the methodology described in Ref. 32 and
contains 16,391 nodes and 90,892 tetrahedra. This mesh is obvi-
ously too coarse for accurate resolution of the physics but the flow
solvers can easily be run to machine zero, which is necessary to
verify the accuracy of the derivatives. The flow conditions for this
case are a free-stream Mach number of , an angle of attack of

, and a Reynolds number of  based on the mean aero-
dynamic chord. The geometry has been parameterized using the
free-form deformation technique described in Ref. 34, although the
control points in the B-spline net have been further grouped into
more intuitive design variables as shown in Fig. 10.

A comparison of sensitivity derivatives obtained using finite
differences, the adjoint methodology, and complex variables is
shown in Table 4. The step sizes used for these results are the same
as those used for the two-dimensional cases:  for finite dif-
ferences and  for the complex variables. As in the two-
dimensional case, the derivatives obtained with the adjoint and
complex-variable approaches are in excellent agreement whereas
slight discrepancies are evident in the finite-difference results.

Figure 8. Computer time required to obtain lift derivative for point B.

Figure 9. Grid used for assessment of three-dimensional design
sensitivities.

0.3
2.0° 5 106×

1 10 5–×
1 10 7–×

As with the two-dimensional results, a comparison has also
been made of the computer time required to obtain a derivative
using the complex-variable approach and a central-difference for-
mula. In this test, the design variable is the fourth camber variable
shown in Fig. 10. Figure 11 depicts the comparison in computer
times for both the complex-variable approach and the use of finite
differences. As seen, the timing between the two approaches is
comparable so that the cost of the complex-variable approach is
similar to that of a central-difference approximation to the deriva-
tive.

As previously mentioned, the use of complex variables
increases the memory requirement of the code by approximately a
factor of two because of the complex declaration of the floating
point variables. For three-dimensional computations, this could
place an unwanted restriction on the size of the problem. In order to
mitigate the penalty of extra memory, the flux Jacobians have been
stored using “half precision” so that 32 bits are used for both the
real and imaginary parts; i.e. 64 total bits are used to store each con-
tribution to the flux Jacobian. Because the Jacobians are responsi-
ble for the largest amount of storage in the code, the use of half-
precision Jacobians yields approximately 32% savings over storing
the Jacobians with full precision. In terms of computer time, Fig. 11
indicates that the use of half precision Jacobians has not yielded
any significant savings. Note that the use of half precision Jacobi-
ans could also have been used for the baseline flow solver so that a
similar savings in memory could be realized. In this case, of course,
the complex version of the code still requires about twice the mem-
ory of the baseline flow solver.

Figure 10. Location of design variables for wing.

Table 4  Comparison of derivatives for three-dimensional wing

Design Variable
Finite

Difference
Adjoint

Complex
Variables

Camber #4 1.409643 1.409592 1.409592

Thickness #3 0.041174 0.041195 0.041194

Twist #3 -0.010392 -0.010372 -0.010372

Shear #3 0.045804 0.045844 0.045844

Twist
Shear

#1 Twist
Shear

#2 Twist
Shear

#3
Twist
Shear

#4
Twist
Shear

#5

Camber
Thickness
#1

Camber
Thickness
#2

Camber
Thickness
#3

Camber
Thickness
#4

Camber
Thickness
#5

Camber
Thickness
#6
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approach and a central-difference technique. The design variable
used for this study is point B shown in Fig. 2 and all runs have been
started using free-stream values so that each case begins at a com-
mon datum. It is apparent that the cost of the complex-variable
approach is almost identical to that of a central-difference approxi-
mation to the derivative. However, while the cost of the central-dif-
ference formula is fixed at twice that of a single flow solution, the
actual cost of the complex-variable approach depends somewhat on
the computer code, the compiler, and hardware considerations such
as cache size. In practice, the computer times for the complex-vari-
able approach range from 2-3.5 times that of the original flow
solver. In addition, because of the complex declaration of the float-
ing point variables, the memory for the complex-variable version of
the code is roughly twice that of the baseline flow solver. In this
regard, the complex-variable approach does not offer a saving of
resources when compared to using finite-differences. The primary
advantage of the complex-variable approach over the use of finite-
differences is through the accuracy of the resulting derivatives.
However, although the step size chosen for the finite-difference
approximation yields accurate results for the current design vari-
ables, it has been observed in practice that different design vari-
ables may require different step sizes in order to achieve accurate
derivatives. In this regard, the use of complex variables offers a sig-
nificant advantage over finite-differences because the step size can
be chosen based on accuracy requirements without concern for sub-
tractive cancellation errors.

Figure 3. Errors in derivatives of lift coefficient due to step size.

Figure 4. Errors in derivatives of drag coefficient due to step size.

ε

h

ε

h

Figure 5. Residual history for transonic airfoil.

Figure 6. Lift history for transonic airfoil.

Figure 7. History of lift derivatives for transonic airfoil.
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Two-Dimensional Transonic Turbulent Flow Over an Airfoil
The first case presented is for a transonic flow over the RAE

2822 airfoil.12 The free-stream Mach number is 0.75 while the
angle of attack and Reynolds number are  and 6.2 million
respectively. The mesh has been generated using the program
described in Ref. 24 and contains 14,127 nodes with a wall spacing
of . The computed pressure distribution is shown in Fig.1
along with the experimental data taken from Ref. 12. For this case,
a shock is present on the upper surface of the airfoil which leads to
a region of separated flow immediately aft of the shock.

For demonstrating the accuracy of the derivatives obtained
using the complex-variable approach, comparisons are made with
results obtained using finite differences as well as the adjoint
approach described in Refs. 3, 4, 29, and 30. In the results shown
below, the geometry of the airfoil has been described using a third-
order B-spline, where the location of the defining control points are
shown as circles in Fig. 2.

Derivatives of the lift and drag coefficients have been obtained
with respect to the vertical positions of the three control points
shown as solid circles in Fig. 2. In Tables 1 and 2, the sensitivity
derivatives obtained using the complex-variable approach are com-
pared with those obtained using both finite differences as well as
the adjoint approach. For the finite-difference method, a step size of

 is used and has been chosen based on the results of an
accuracy study shown later. The step size used for the complex-
variable method is  so that the resulting derivatives should
be accurate to approximately machine precision. As seen in the
tables, the agreement between the adjoint and complex-variable
approaches is excellent.

The finite-difference results shown in Tables 1 and 2 differ
somewhat from the derivatives obtained using both the adjoint and
complex-variable approaches. In the finite-difference results, the
largest errors appear in the derivatives with respect to control point
B. Here, the lift and drag derivatives differ from the complex-vari-
able and adjoint approaches by about 0.15% and 0.3% respectively.
However, results are shown in Table 3 which indicate that for this
design variable, the finite-difference derivatives are dependent on
the step size.

Figure 1. Pressure distribution for transonic RAE 2822.

Figure 2. Design variables for RAE 2822.
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1 10 5–×
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 Figures 3 and 4 show the errors in the derivatives of the lift and
drag coefficients with changing step sizes obtained using both finite
differences and the complex-variable formulation. Here, the error is
defined as

(7)

where  is the derivative determined using the current step size pa-
rameter and  is the derivative obtained using the complex-vari-
able approach with a step size of . It is apparent that the
accuracy of the finite-difference formulation depends on the step
size and does not recover second-order accuracy as the step size is
reduced; this behavior is due to subtractive cancellation error. With
the complex-variable approach, the accuracy of the derivatives is
increased by two digits each time the step size is lowered one order
of magnitude, thus demonstrating that the complex-variable ap-
proach recovers true second-order accuracy and is not susceptible
to subtractive cancellation errors.

The iterative convergence history for the residual, the lift coef-
ficient, and the derivatives of the lift coefficient are shown in Figs.
5, 6, and 7, respectively. Note that only the first 5000 iterations
have been shown although the results have been run to machine
zero. From the figures, it is evident that the residual is reduced by
approximately five orders of magnitude in about 1000 iterations, at
which point the lift coefficient is converged to 4 digits of accuracy.
It can be seen in Figs. 6 and 7 that the convergence of the deriva-
tives resembles that of the lift history in that when the lift coeffi-
cient is converged, the derivatives are also converged. Although not
shown, the convergence of a central-difference approximation con-
verges in a similar manner.

 In terms of computer time, Fig. 8 depicts the lift coefficient as
a function of computer time for both the complex-variable

Table 1 Sensitivity derivatives for lift coefficient for RAE 2822

Design
Variable

Finite
Difference

Adjoint
Complex
Variables

Point A 7.98260 7.98144 7.98143

Point B 1.92469 1.92185 1.92185

Point C 1.32831 1.32826 1.32826

Table 2 Sensitivity derivatives for drag coefficient for RAE 2822

Design
Variable

Finite
Difference

Adjoint
Complex
Variables

Point A -0.273960 -0.273954 -0.273954

Point B -0.031486 -0.031580 -0.031580

Point C 0.100724 0.100713 0.100714

Table 3 Sensitivity of finite-difference derivatives to step size for point B

Step Size

Lift Derivative 1.91870 1.92469 1.91501

Drag Derivative -0.026180 -0.031486 -0.031911

1 10
6–× 1 10

5–× 5 10
5–×

ε
ϕ ϕC–( )

ϕC
--------------------log=

ϕ
ϕC

1 10 7–×
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given in Ref. 27 where an inviscid flow solver has been coupled
with a structural analysis code for obtaining multidisciplinary sen-
sitivity derivatives. It has been demonstrated in this reference that
accurate aero-structural sensitivity derivatives can be obtained with
minimal changes to the existing analysis codes. The complex vari-
able approach has been further applied for aero-structural sensitiv-
ity analysis in Ref. 28.

The purpose of the present paper is to extend the work
described in Ref. 27 to obtaining sensitivity derivatives for turbu-
lent flows. In addition, several features, as well as drawbacks, of
this approach will be more clearly discussed and demonstrated.

The current approach uses complex variables to aid in the
determination of the derivatives. The resulting information includes
the discretely consistent derivatives of all the flow variables with
respect to the design variables similar to that obtained using either
finite differences or automatic differentiation. However, unlike
finite differences, the present approach is not subject to subtractive
cancellation errors. Also, the computer code does not require pre-
processing with an automatic differentiation procedure so the
resulting code is virtually identical to the original code. This feature
enables easy maintenance of the resulting software.

Complex-Variable Approach for Sensitivity Derivatives
The simplest, and perhaps most commonly used method for

obtaining derivatives is a central-difference approach:

(1)

where  is the function of interest,  is the independent variable,
and  is a small perturbation parameter. The use of Eq. (1) simply
requires that the function be evaluated at two nearby states and the
results subtracted. This feature is very attractive when the function
is sufficiently complicated that obtaining an analytic derivative is
cumbersome and error-prone. In addition, when used in the context
of obtaining derivatives for cost functions that depend on the solu-
tion of the Navier-Stokes equations, the above procedure is particu-
larly attractive because it does not require any modifications to ex-
isting computer codes. However, the drawback of this technique is
that it is prone to subtractive cancellation errors. While it is desir-
able to use a step size as small as possible to minimize the trunca-
tion error, too small of a step size can lead to errors in the deriva-
tives caused by subtractive cancellation of the terms in the
numerator of Eq. (1). As a result of having to adjust the step size in
order to obtain accuracy while at the same time minimizing sub-
tractive cancellation errors, it is not unusual that this technique re-
quires a different step size for each design variable. In addition,
with a small step size, the solution to the Navier-Stokes equations
must be very well converged so that the cost function can be evalu-
ated with sufficient precision.

In the complex-variable approach, a series expansion is also
used with the exception that a complex perturbation is taken

(2)

The real and imaginary parts of this equation yield

(3)
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(4)

From Eqs. (3) and (4), the first and second derivatives may be
obtained as

(5)

(6)

From Eq. (5), it is apparent that obtaining the derivative using the
complex-variable approach does not involve subtracting the values
of two functions. This feature is one of the primary advantages of
the complex-variable approach because it eliminates any concerns
about subtractive cancellation errors. The advantage of this prop-
erty has been demonstrated in Ref. 27 where aero-structural sensi-
tivity derivatives have been obtained using both finite differences
as well as the complex-variable approach. In this reference, it is
demonstrated that the finite-difference approach is sensitive to the
step size while for the complex-variable approach, two decimal
places of accuracy are obtained each time the step size is reduced
by an order of magnitude.

To incorporate the complex-variable approach into an existing
flow solver, the only requirement is that the floating point variables
be declared as complex and a complex perturbation be added to the
design variable of interest. The resulting flow solver is then run and
the derivatives of any function dependent on the flow solution is
determined by examining the complex part divided by the step size
(see Eq. (5)). However, there are several functions such asmin() ,
max() , andabs()  that require some care in order to evaluate cor-
rectly for complex arguments. In most cases though, the transfor-
mation of the basic code into a complex version can be
accomplished in a very short time (usually a single day). The result-
ing code is virtually identical to the initial code and is therefore
easy to follow and easy to maintain; each time a new routine is
added to the flow solver, a similar one is added to the complex ver-
sion.

Note that during the course of a design, the basic flow solver
would be employed the majority of the time. Therefore, the unper-
turbed function evaluation, , is available at all points visited in
the design space. When the complex version of the flow solver is
then run to obtain derivatives, the real part of this solution can be
used in Eq. (6) to obtain second derivatives. These derivatives may
be used for the diagonal contributions to the Hessian and are
obtained without additional cost. However, this computation is
prone to cancellation errors.

There are two primary disadvantages in applying the complex-
variable approach for obtaining sensitivity derivatives. The first is
that the required memory essentially doubles due to the use of com-
plex declarations of the floating point variables. Secondly, the exe-
cution time is increased over the original flow solver. Both of these
issues will be further addressed in a later section.

Results
In this section, some initial results for obtaining sensitivity

derivatives for turbulent flows are demonstrated. The flow solver
used for all of the results given below is an unstructured, implicit,
upwind scheme described in Refs. 2 and 6. The turbulence model of
Spalart and Allmaras39 is used for determining the eddy viscosity.
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Introduction
There are currently several ongoing efforts to develop aerody-

namic design optimization techniques using the Navier-Stokes
equations (see e.g. Refs. 3, 4, 14, 19, 20, 25, 29, 30 and 38). Many
of the prominent techniques being utilized are gradient-based meth-
odologies in which a specific cost function is minimized subject to
both geometric and flow-field related constraints. A primary
requirement of these techniques is the determination of the gradi-
ents of the cost function and the constraints with respect to the
design variables. These gradients are subsequently used to reduce
the cost function in a systematic manner while not violating the
constraints.

The techniques available for obtaining sensitivity derivatives
can be generally classified into either direct or adjoint methodolo-
gies. Both techniques can be further divided into either discrete or
continuous approaches. More information on these techniques can
be found in Refs. 3-5, 7-11, 13-15, 17-21, 25-30, 33, 37, and 38.

The direct approach, which includes techniques such as finite
differencing, forward differentiation,9 and sensitivity equations,10

yields the most information in that the derivatives of all of the flow
variables in the domain are obtained with respect to each design
variable. The derivatives of the cost function, as well as any con-
straints which depend on the flow variables, may then be obtained
using these quantities. The primary advantage of the direct
approach is that the derivatives of all quantities that depend on the
flowfield can be obtained. The disadvantage of this approach is that
the procedure must be repeated for each design variable separately.
For cases in which there are many design variables, this can be pro-
hibitively expensive.

The other methodology which has received much attention is

the adjoint approach. Here, an adjoint system of equations is solved
and the results are then used to determine the sensitivity deriva-
tives. This approach has an advantage over the direct approach in
that after the solution of the adjoint equations is obtained, the deriv-
atives of the cost function with respect to all the design variables
can be evaluated with the same operation count as a single matrix-
vector product where the size of the matrix is determined by the
number of design variables. Provided that the cost of the matrix-
vector product is not large, the adjoint approach can yield a signifi-
cant savings over the direct approach when there are many design
variables. The disadvantage of this approach, however, is that an
adjoint equation must be solved for each flow-field constraint so
that if there are many such constraints, this technique is very expen-
sive.

The choice of either the direct or adjoint approach depends on
the problem at hand and it is likely that both approaches will con-
tribute significantly to design efforts underway. In addition, Hes-
sian information can be obtained in an efficient manner by
combining both techniques.21,37 Therefore, it is desirable to have
both direct and adjoint techniques available.

In Refs. 3, 4, 29, 30, and 31 an adjoint approach has been
described for obtaining sensitivity derivatives for turbulent flows
on unstructured meshes. In these references, two- and three-dimen-
sional flow solvers have been accurately differentiated for both
compressible and incompressible flows. The focus of the present
study is to develop an approach for obtaining the derivatives which
is equivalent to direct differentiation.

In the 1960’s, Lyness22 and Lyness and Moler23 suggested that
complex variables be more prominently utilized in the development
of numerical algorithms. One of the techniques demonstrated in
these references was the determination of numerical derivatives for
complicated functions. The resulting technique is very general,
easy to apply, and is not sensitive to subtractive cancellation errors
that often arise in finite differencing. To date, this technique has not
been widely exploited and has only recently been reviewed in Ref.
40 for determining derivatives for functions of a single variable.

Although this technique offers much potential for simplifying
the computation of derivatives such as flux Jacobians or in per-
forming matrix-vector products using only function evaluations,
perhaps the largest benefit to be gained is in the differentiation of
entire codes used for analysis purposes, so that discretely consistent
derivatives can be obtained.

 The first use of this technique for large-scale computations is
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