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This paper presents a free-form deformation technique suitable for aerodynamic shape optimization. Because 
the proposed technique is independent of grid topology, we can treat structured and unstructured 
computational fluid dynamics grids in the same manner. The proposed technique is an alternative shape 
parameterization technique to trivariate volume technique. It retains the flexibility and freedom of trivariate 
volumes for CFD shape optimization, but it uses a bivariate surface representation. This reduces the number 
of design variables by an order of magnitude, and it provides a much better control for surface shape 
changes. The proposed technique is simple, compact, and efficient. The analytical sensitivity derivatives are 
independent of the design variables and are easily computed for use in a gradient-based optimization. The 
paper includes the complete formulation and aerodynamics shape optimization results. 

 

Nomenclature 

B = B-spline basis functions 
C = product of B-spline basis functions 
I = maximum number of points in u-direction 
J = maximum number of points in v-direction 
M = number of surface points 
V = control points 
W = weights 
b = baseline grid 
i = time index during navigation 
m,n = grid number 
r = coordinates (x, y, z) 
v = design variable vector 
ξ,η = surface bivariate coordinates 

I. Introduction 

Over the past several decades, Aerodynamic Shape Optimization (ASO) has been successfully applied for two-
dimensional and simple three-dimensional configurations. There are four distinct steps involved in ASO: 1) 
geometry parameterization; 2) surface grid generation; 3) volume grid generation, regeneration, or deformation; and 
4) Computational Fluid Dynamics (CFD) function and sensitivity analyses. Automatic grid generation and grid 
sensitivity analysis are two important issues for ASO. CFD grid generation for a full airplane model is time-
consuming and costly: detailed CFD grids based on a computer-aided design (CAD) model can take several weeks 
to develop and validate. The gradient-based optimization requires accurate sensitivity analysis for all four steps of 
ASO. Steps 2-4 can be automated for general configuration with unstructured grid technology and for specific 
configurations with structured grid technology. Level of effort for the geometry parameterization depends on the 
complexity of the vehicle configuration. This step is a labor-intensive process, and it is difficult to automate. For 
more details, readers are referred to an overview paper by this author1 on geometry modeling and grid generation for 
design and optimization. The purpose of this paper is to present a technique to simplify step 1 (shape 
parameterization) of ASO.  
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In general, the shape parameterization techniques can be divided into eight categories2: basis vector, domain 
element, discrete, analytical, free-form deformation (FFD), partial differential equation (PDE), polynomial and 
spline, and Computer Aided Design (CAD). Among these techniques, FFD and CAD-based appear to have the 
following desirable characteristics: 1) efficiency, 2) compactness, and 3) suitability for complex configurations. In 
addition, the CAD-based parameterization techniques can achieve large geometry changes. This capability makes 
CAD-based techniques suitable for the conceptual design efforts. Another advantage of CAD-based optimization is 
the availability of a comprehensive set of geometric functionalities provided by commercial CAD systems. 
However, the existing CAD systems lack tools for the automation of geometry abstraction and analytical sensitivity 
derivatives calculations.  
 
Commercial CAD systems use the feature-based solid modeling (FBSM) concept to create parametric design 
models.  To parameterize an existing complex model is still a challenging task with today's CAD systems, and the 
models created are not always good enough for automatic grid generation tools. Even though the use of parametric 
modeling in design would make the FBSM tools ideal for optimization, existing FBSM tools are not capable of 
calculating sensitivity derivatives analytically. The computer codes for commercial CAD systems are very large; to 
differentiate the entire system with automatic differentiation tools may not be a trivial task. Therefore, calculation of 
the analytical sensitivity derivatives of geometry with respect to the design variables could prove to be difficult 
within a commercial CAD environment. For some limited cases, the analytical shape sensitivity derivatives can be 
calculated based on a CAD model; however, this method will not work under all circumstances. One difficulty is 
that, for perturbation of some parameters, the topology of the CAD part may be changed. Another way to calculate 
the sensitivity derivatives is to use finite differences, as long as the perturbed geometry has the same topology as the 
unperturbed geometry. Both methods—the analytical and finite-difference approximations—have their difficulties 
and limitations for CAD-based parameterization.  
 
Free-form deformation is a subset of the soft object animation (SOA)2 algorithms used in computer graphics for 
morphing images and deforming models. The FFD technique can achieve only small to medium geometry changes. 
Because the FFD parameterizes the grid, it eliminates the need for geometry abstraction and surface grid generation. 
Unlike CAD-based technique, FFD does not require one to reverse engineer the original design parameters. The 
FFD technique is suitable for the preliminary design phase, where geometry changes are rather small. Another 
advantage of parameterizing grid is that the grid topology stays fixed throughout optimization; hence the grids can 
be regenerated (deformed) automatically. The disadvantage is that the large shape changes could produce 
unacceptable grids due to the fixed topology. 
 
Our proposed technique uses Non-Uniform Rational B-Spline (NURBS) to model the geometry perturbations rather 
than the geometry itself. The parameterization of the shape perturbations is used in conjunction with the FFD. An 
appendix is included to provide a brief overview of NURBS representation and terminologies. 
 

II. Shape Perturbations 

During the preliminary design phase, optimization starts with an existing design, and the goal is to redesign and/or 
improve performance by using numerical optimization. The geometry changes (perturbations) between initial and 
optimized shape are very small2, but the difference in the performance can be substantial. An effective way to 
reduce the number of shape design variables is to parameterize the shape perturbations instead of parameterizing the 
shape itself. Throughout the optimization cycles, the analysis grid can then be updated as 

 ( ) ( )b
n n nr v r r v= + ∆    (1.1) 

where nr is the design grid point n, v is design variable vector, b
nr is the baseline grid, and ( )nr v∆ is the shape 

design perturbation for grid point n. Far fewer design variables are required to parameterize the shape perturbations, 
( )nr v∆ , than the baseline shape b

nr itself. Because the parameterization is independent of grid topology, we can use 
this technique for structured and unstructured CFD.  
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III. Trivariate Volume-Based Deformation Techniques 

Use of trivariate volume-based deformation technique for shape optimization has been discussed in reference3. The 
FFD algorithm described by Sederberg and Parry4 is ideal for deforming the polygonal models (e.g., CFD grids). 
Like other SOA algorithms, this algorithm maintains the polygon connectivity, and the deformation is applied only 
to the vertices of the model. The FFD process is analogous to embedding the grid inside a block of clear, flexible 
plastic (deformation object) so that, as the plastic is deformed, the grid is deformed as well. Deformation of complex 
shapes may require several deformation objects. The shapes of these deformation objects are not arbitrary. In fact, 
the shapes are trivariate volumes and could range from a parallelepiped to a general NURBS volume as shown in 
Fig. 1. The grid is deformed by perturbing the vertices that control the shape of the deformation block (e.g., corners 
of the parallelepiped). Sederberg and Parry used a Bézier volume4. Coquillart at INRIA extended the Bézier 
parallelepiped to non-parallelepiped cubic Bézier volume5. Lamousin and Waggenspack have further generalized 
this idea to NURBS volume6, and they used multiple blocks to model complex shapes. This technique has been used 
for design and optimization by Yeh and Vance7; Perry and Balling8; and Ronzheimer9. For trivariate volume blocks, 
coordinates controlling the deformation are related through the mapping coordinates (ξ, η, ζ). These coordinates are 
used in both forward and backward mapping. For more details, readers are referred to the paper by this author2. 
 

IV. Proposed Technique 

The trivariate volume operates on the whole space, regardless of the representation of the deformed objects 
embedded in the space (Fig. 2).  Aerodynamic shape optimization is concerned with modifying the aerodynamic 
surfaces, not volumes. Because the trivariate representation operates on the whole space, the design variables may 
have no physical significance for the design engineers. This drawback makes it difficult to select an effective and 
compact set of design variables.  
 
If we shrink the trivariate volume along one coordinate direction (e.g., ζ), it will be reduced to a bivariate FFD 
surface (Fig. 3). These surfaces can be laid (pasted) onto Outer Mold Line (OML) surfaces. Then as these bivariate 
FFD surfaces move, the underlying grid point points move as well. It is much more effective to modify the OML 
surfaces by these bivariate FFD surfaces than by trivariate volumes. The proposed technique retains the flexibility 
and freedom of trivariate volumes for CFD shape optimization, but it uses a bivariate representation. This reduces 
the number of design variables by an order of magnitude, and it provides a much better control for surface shape 
changes. Because the NURBS formulation is the most general free-form surface representation, they are used for the 
bivariate surfaces in this paper. 
 
The implementation of the proposed algorithm is divided into the following steps: 

1. Identify regions of OML that need to be designed/adjusted (e.g., fillet, inboard leading edge, …). These 
regions are identified by pasting a set of NURBS surfaces on the OML. We will refer to these surfaces as 
“marking surface.” These surfaces are used to “mark” and identify surface grid points that belong to 
individual design regions. 

2. Determine the bivariate coordinates (ξ,η) of each grid point by projecting it onto the “marking surfaces”. 
3. Create design surfaces corresponding to each marking surface defined in step 1  

 
Step 1: Identify Design Regions 

CAD systems are frequently used during the preliminary design phase to model and represent the OML geometry. 
These representations are either bivariate functions (e.g., NURBS, Bézier, …) or implicit functions (cylinders, 
spheres, …), which can be converted to bivariate functions. The left-hand side of Fig. 4 shows the CAD 
representation of a business jet model. Any bivariate surface can be used to represent the marking surfaces. We have 
used NURBS representation, but the algorithm presented here is equally applicable for any bivariate surface 
representation. The right-hand side of Fig. 4 shows a marking surface for a business jet. There are two important 
requirements for creating marking surfaces: 1) they cannot overlap each other, but they can overlap CAD surfaces, 
and 2) they must be laid very close to OML surfaces within some tolerance. The number of control points and order 
of marking surfaces play no role in the parameterization process. However, the knot vector distribution could play a 
role in the quality of shape deformation. 
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Step 2: Project Grid Points on Marking Surfaces 

Each baseline surface grid point is projected to all marking surfaces created in step 1. Then, each grid point is linked 
to the closest marking surface. The algorithm for grid point projection can be found in reference 10. After this step, 
each grid point in the design region is assigned a design surface (closest surface) and a corresponding bivariate 
coordinates ( ,ξ η ).  
 
Step 3: Create NURBS Design Surfaces 

The ( )r v∆  in Eq. (1.1) is represented by a NURBS (see appendix for details on NURBS representation): 

 ( ) ( , , ) ( , )
M

n n n m n n m
m

r v r v C vξ η ξ η∆ = ∆ =∑   (1.2) 

The coefficients Cm are product of B-Spline basis functions. The only requirement for this design surface is that its 
knot vectors must span over bivariate coordinates (ξ, η) of all grid points belonging to individual design surfaces. 
We are free to pick the NURBS order and number of control points. The latter allows us to easily change the number 
design variable regardless of complexity of the baseline surfaces. As the control points of NURBS design surfaces 
move, the grid points belonging to the surface will move as well. The movement is based on an inverse mapping 
between the grid-point bivariate coordinates and the NURBS surface. The bivariate coordinates of the grid points 
with respect to the marking surfaces are kept fixed through the optimization cycles. The movement may have no 
constraints, or it can be constrained to move normal to the OML. The latter will reduce the number of control points 
(design variables) by a factor of three. All NURBS control points are initially set to zero, so the first computation 
gives the baseline grid.  
 
 
The analytical sensitivity derivatives of grid points with respect to the design variables is determined from Eq. (1.2).  

( ) ( ( )) ( , )n n
m n n

m m

r v r v C
v v

ξ η∂ ∂ ∆= =
∂ ∂

  (1.3) 

The grid point sensitivity is independent of the design variables. Thus, we needed to calculate the sensitivity only 
once, at the beginning of the optimization. Then grid points can be updated as 

( ) ( , )
M

b
n n m n n m

m
r v r C vξ η= +∑    (1.4) 

The Cm coefficients are precomputed, and they are used for sensitivity analysis as in Eq. (1.3) and for updating the 
grid point locations, as Eq. (1.4). 
 
 

Results 

Results are presented for a generic business jet and a morphing aircraft vehicle. Figure 5 shows the deformed fillet 
for the business jet shown in Fig. 4. The marking surface was represented by a NURBS with 24 control points. The 
control points on the boundary were not allowed to move. The deformation was based on Eq. 1.4. 
 
The second example is for the aerodynamic shape optimization of a morphing aircraft vehicle.11 The overall vehicle 
optimization requires multiple disciplines (e.g., structures, control, ..) and constrains to provide useful results for 
design. The purpose of these optimization runs is only to demonstrate the shape parameterization technique 
presented in this paper. Half of the vehicle was used for the aerodynamic optimization (Fig. 6). The FUN3D12 CFD 
program was used for sensitivity analysis. This program is an unstructured Euler and Reynolds-averaged Navier-
Stokes solvers, which computes the sensitivity derivatives efficiently and accurately.  FUN3D is a node-based, 
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implicit, upwind finite volume solver on mixed-element unstructured grids across the speed range. The discrete-
adjoint sensitivity derivatives are hand-coded. The Euler mesh was generated for a Mach 0.8 and angle of attack of 
2.0. The mesh had 238, 362 nodes (1,401,823 tetrahedral cells). Figure 7 shows the surface grid.  Figure 8 shows the 
marking NURBS surfaces used for the shape parameterization. There are 150 control points (design variables) 
available for optimization, but 54 design variables were active for shape optimization. Figure 9 shows surface grid 
points that are allowed to move. Two optimization calculations were performed on a 32-CPU Pentium IV cluster. 
The first optimization run was a lift-constrained drag minimization, resulting in a 23% reduction in drag (Fig. 10) 
while maintaining constant lift. The second case is an unconstrained L/D maximization, resulting in a 32% increase 
in L/D (Fig. 11). It took less than a day to prepare the CAD model, generate the Euler grid, set up the 
parameterization model, and set up CFD runs and optimization. It took another day to complete the calculations. 
 

Summary and Conclusions 

This paper presented a free-form deformation technique suitable for aerodynamic shape optimization. The present 
technique reduced the number of design variables by an order of magnitude. The analytical sensitivity derivatives 
were independent of the design variables and were easily computed for use in a gradient-based optimization. The 
aerodynamic shape optimization results demonstrated the effectiveness of the present formulation. 
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Appendix-NURBS 

This section contains a brief overview of the NURBS, and readers should consult13-14 for a detailed discussion. 
Before we describe a NURBS surface representation, we will present a brief description of NURBS curves. A 
NURBS curve, ( )r ξ , can be represented as 

,
1

,
1

( )
( )

( )

I

i p i i
i

I

i p i
i

B W V
r

B W

ξ
ξ

ξ
=

=

=
∑

∑
  

 
The univariate coordinate, ξ, is bounded by min maxξ ξ ξ≤ ≤ . The Vi are the control points (forming a control 
polygon), and Wi are the weights. The Bi,p are the p-th degree B-spline basis functions defined on the non-periodic 
and nonuniform knot vector (ξ) 
 min 1 2 max[ ]kξ ξ ξ ξ ξ ξ∈ = ≤ ≤ ≤ =L  
 
where k is the number of knots. This completes the mapping between the one-dimensional univariate coordinate, ξ, 
and the three-dimensional Euclidean space, r. A NURBS curve has five important properties: 

o It is invariant under linear transformation. 
o A NURBS curve of order p, having no multiple interior knots, is p - 2 differentiable. 
o The approximation is local in nature. 
o A NURBS curve is contained in the convex hull of its control points. 
o The NURBS approximation is variation diminishing. 

 
To evaluate, the three-dimensional curve NURBS is commonly represented in homogeneous form as  
 ( , , ) ( , , , )wr x y x r wx wy wz w⇔  
So, the NURBS curve can conveniently be defined as a perspective map of its nonrational counterpart in four-
dimensional space as 

 ,
1

( )
I

w w
i p i

i
r B Vξ

=

=∑  

where w
iV is defined as { , , , }w

i i i i i i i iV x w y w z w w= . The basis functions can be efficiently computed by using 
DeBoor algorithm13. 
  
A NURBS surface is a parametric surface and is defined as a bivariate function as   

, ,

, ,

( ) ( )
( , )

( ) ( )

I J

i p j q ij ij
i j

I J

i p j q ij
i j

B B W V
r

B B W

ξ η
ξ η

ξ η
=
∑∑

∑∑
 

where the ijV  are the locations of NURBS control points, the ijW coefficients are the weights, andξ η  are the 

bivariate coordinates, JI and are the numbers of control points in andξ η  directions, and , ( )i pB ξ  and 

, ( )j qB η  are the B-spline basis functions of degrees qp and  respectively.   

Similar to NURBS curve, the NURBS surface can conveniently be defined as a perspective map of its nonrational 
counterpart in four-dimensional space as 
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 , , ,( , ) ( ) ( )
I J

w w
i p j q i j

i j
r B B Vξ η ξ η=∑∑  

 

This equation can be written in a compact form by collapsing the two summations into a single summation as 

( , ) ( , ) ,

where *( 1), * , and

M
w

m m
m

r C V

m i I j M I J

ξ η ξ η=

= + − =

∑  

, ,( , ) ( , ) ( ) ( )m ij i p j qC C B Bξ η ξ η ξ η= =  
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Figure 1: (a) Parallelepiped volume, (b) NURBS volume 
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Figure 2 (a) Trivariante volume deformation (b) deformed shape 
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Figure 3 (a) Bivariante surface deformation, (b) deformed cross-section  

 

 

 
Figure 4 Parameterizing wing-fuselage fillet of a bushiness jet fillet 
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Figure 5 Free-form deformation of  wing-fuselage fillet 

 
Figure 6 Morphing vehicle 
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Figure 7 Surface grid  

 

Figure 8 NURBS marking surface 

 

Figure 9 Identified surface grid points for deformation 
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Figure 10 Lift-constrained dray minimization 
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Figure 11 Unconstrained L/D maximization 
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