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1. Introduction

The convergence rates and, therefore, the overall parallel e�ciencies of addi-
tive Schwarz methods are often notoriously dependent on subdomain granularity.
Except when e�ective coarse-grid operators and intergrid transfer operators are
known, so that optimal multilevel preconditioners can be constructed, the number
of iterations to convergence and the communication overhead per iteration tend
to increase with granularity for elliptically-controlled problems, for either �xed or
memory-scaled problem sizes.

In practical large-scale applications, however, the convergence rate degrada-
tion of �ne-grained single-level additive Schwarz is sometimes not as serious as the
scalar, linear elliptic theory would suggest. Its e�ects are mitigated by several
factors, including pseudo-transient nonlinear continuation and dominant intercom-
ponent coupling that can be captured exactly in a point-block ILU preconditioner.
We illustrate these claims with encouraging scalabilities for a legacy unstructured-
grid Euler ow application code, parallelized with the pseudo-transient Newton-
Krylov-Schwarz algorithm using the PETSc library. We note some impacts on
performance of the horizontal (distributed) and vertical (hierarchical) aspects of
the memory system and consider architecturally motivated algorithmic variations
for their amelioration.

2. Newton-Krylov-Schwarz

The discrete framework for an implicit PDE solution algorithm, with pseudo-
timestepping to advance towards an assumed steady state, has the form: ( 1

�t`
)u`+

f(u`) = ( 1
�t`

)u`�1; where �t` ! 1 as ` ! 1: Each member of the sequence of
nonlinear problems, ` = 1; 2; : : : , is solved with an inexact Newton method. The
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resulting Jacobian systems for the Newton corrections are solved with a Krylov
method, relying only on matrix-vector multiplications. The Krylov method needs
to be preconditioned for acceptable inner iteration convergence rates, and the pre-
conditioning is the \make-or-break" aspect of an implicit code. The other phases
parallelize well already, being made up of vector updates, inner products, and sparse
matrix-vector products.

The job of the preconditioner is to approximate the action of the Jacobian
inverse in a way that does not make it the dominant consumer of memory or cy-
cles in the overall algorithm. The true inverse of the Jacobian is usually dense,
reecting the global Green's function of the continuous linearized PDE operator
it approximates. A good preconditioner saves time and space by permitting fewer
iterations in the Krylov loop and smaller storage for the Krylov subspace. An ad-
ditive Schwarz preconditioner [4] accomplishes this in a localized manner, with an
approximate solve in each subdomain of a partitioning of the global PDE domain.
Applying any preconditioner in an additive Schwarz manner tends to increases op
rates over the same preconditioner applied globally, since the smaller subdomain
blocks maintain better cache residency. Combining a Schwarz preconditioner with
a Krylov iteration method inside an inexact Newton method leads to a synergis-
tic parallelizable nonlinear boundary value problem solver with a classical name:
Newton-Krylov-Schwarz (NKS) [5, 8].

When nested within a pseudo-transient continuation scheme to globalize the
Newton method [11], the implicit framework (called 	NKS) has four levels:

do l = 1, n_time

SELECT TIME-STEP

do k = 1, n_Newton

compute nonlinear residual and Jacobian

do j = 1, n_Krylov

do i = 1, n_Precon

solve subdomain problems concurrently

enddo

perform Jacobian-vector product

ENFORCE KRYLOV BASIS CONDITIONS

update optimal coefficients

CHECK LINEAR CONVERGENCE

enddo

perform vector update

CHECK NONLINEAR CONVERGENCE

enddo

enddo

The operations written in uppercase customarily involve global synchronizations.
We have experimented with a number of Schwarz preconditioners, with varying

overlap and varying degrees of subdomain �ll-in, including the new, communication-
e�cient, Restricted Additive Schwarz (RAS) method [6]. For the cases studied
herein, we �nd the degenerate block Jacobi form with block ILU(0) on the subdo-
mains is adequate for near scalable convergence rates.
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3. Parallel Implementation Using PETSc

The parallelization paradigm we employ in approaching a legacy code is a
compromise between the \compiler does all" and the \hand-coded by expert" ap-
proaches. We employ the \Portable, Extensible Toolkit for Scienti�c Computing"
(PETSc) [2, 3], a library that attempts to handle through a uniform interface, in a
highly e�cient way, the low-level details of the distributed memory hierarchy. Ex-
amples of such details include striking the right balance between bu�ering messages
and minimizing bu�er copies, overlapping communication and computation, orga-
nizing node code for strong cache locality, preallocating memory in sizable chunks
rather than incrementally, and separating tasks into one-time and every-time sub-
tasks using the inspector/executor paradigm. The bene�ts to be gained from these
and from other numerically neutral but architecturally sensitive techniques are so
signi�cant that it is e�cient in both the programmer-time and execution-time senses
to express them in general purpose code.

PETSc is a large and versatile package integrating distributed vectors, dis-
tributed matrices in several sparse storage formats, Krylov subspace methods, pre-
conditioners, and Newton-like nonlinear methods with built-in trust region or line-
search strategies and continuation for robustness. It has been designed to provide
the numerical infrastructure for application codes involving the implicit numerical
solution of PDEs, and it sits atop MPI for portability to most parallel machines.
The PETSc library is written in C, but may be accessed from user codes written
in C, FORTRAN, and C++. PETSc version 2, �rst released in June 1995, has been
downloaded thousands of times by users worldwide. PETSc has features relevant
to computational uid dynamicists, including matrix-free Krylov methods, blocked
forms of parallel preconditioners, and various types of time-stepping.

A diagram of the calling tree of a typical 	NKS application appears below.
The arrows represent calls that cross the boundary between application-speci�c
code and PETSc library code; all internal details of both are suppressed. The top-
level user routine performs I/O related to initialization, restart, and post-processing
and calls PETSc subroutines to create data structures for vectors and matrices and
to initiate the nonlinear solver. PETSc calls user routines for function evaluations
f(u) and (approximate) Jacobian evaluations f 0(u) at given vectors u representing
the discrete state of the ow. Auxiliary information required for the evaluation
of f and f 0(u) that is not carried as part of u is communicated through PETSc
via a user-de�ned \context" that encapsulates application-speci�c data. (Such
information typically includes dimensioning data, grid data, physical parameters,
and quantities that could be derived from the state u, but are most conveniently
stored instead of recalculated, such as constitutive quantities.)

4. Parallel Port of an NKS-based CFD Code

We consider parallel performance results for a NASA unstructured grid CFD
code that is used to study the high-lift, low-speed behavior of aircraft in take-o� and
landing con�gurations. FUN3D [1] is a tetrahedral vertex-centered unstructured
grid code developed by W. K. Anderson of the NASA Langley Research Center for
compressible and incompressible Euler and Navier-Stokes equations. FUN3D uses
a control volume discretization with variable-order Roe schemes for approximat-
ing the convective uxes and a Galerkin discretization for the viscous terms. Our
parallel experience with FUN3D is with the incompressible Euler subset thus far,
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Figure 1. Coarsened calling tree of the FUN3D-PETSc code,
showing the user-supplied main program and callback routines for
providing the initial nonlinear iterate, computing the nonlinear
residual vector at a PETSc-requested state, and evaluating the
Jacobian (preconditioner) matrix.

but nothing in the solution algorithms or software changes for the other cases. Of
course, convergence rate will vary with conditioning, as determined by Mach and
Reynolds numbers and the correspondingly induced grid adaptivity. Furthermore,
robustness becomes more of an issue in problems admitting shocks or making use of
turbulence models. The lack of nonlinear robustness is a fact of life that is largely
outside of the domain of parallel scalability. In fact, when nonlinear robustness
is restored in the usual manner, through pseudo-transient continuation, the condi-
tioning of the linear inner iterations is enhanced, and parallel scalability may be
improved. In some sense, the Euler code, with its smaller number of ops per point
per iteration and its aggressive trajectory towards the steady state limit may be a
more, not less, severe test of scalability.

We employ 	NKS with point-block ILU(0) on the subdomains. The original
code possesses a pseudo-transient Newton-Krylov solver already. Our reformulation
of the global point-block ILU(0) of the original FUN3D into the Schwarz framework
of the PETSc version is the primary source of additional concurrency. The timestep
grows from an initial CFL of 10 towards in�nity according to the switched evolu-
tion/relaxation (SER) heuristic of Van Leer & Mulder [12]. In the present tests,
the maximum CFL is 105. The solver operates in a matrix-free, split-discretization
mode, whereby the Jacobian-vector operations required by the GMRES [13] Krylov
method are approximated by �nite-di�erenced Fr�echet derivatives of the nonlinear
residual vector. The action of the Jacobian is therefore always \fresh." However, the
submatrices used to construct the point-block ILU(0) factors on the subdomains as
part of the Schwarz preconditioning are based on a lower-order discretization than
the one used in the residual vector, itself. This is a common approach in practical
codes, and the requisite distinctions within the residual and Jacobian subroutine
calling sequences are available in the legacy FUN3D version.
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Table 1. Cray T3E parallel performance (357,900 vertices)

E�ciency
procs its time speedup �alg �impl �overall

16 77 2587.95s 1.00 1.00 1.00 1.00
32 75 1262.01s 2.05 1.03 1.00 1.03
64 75 662.06s 3.91 1.03 0.95 0.98
128 82 382.30s 6.77 0.94 0.90 0.85

4.1. Parallel Scaling Results. We excerpt from a fuller report to appear
elsewhere [10] tables for a 1.4-million degree-of-freedom (DOF) problem, converged
with a relative steady-state residual reduction of 10�10 in approximately 6.5 min-
utes using approximately 1600 global �ne-grid ux balance operations (or \work
units" in the multigrid sense), on 128 processors of a T3E; and for an 11.0-million
DOF problem, converged in approximately 30 minutes on 512 processors. Relative
e�ciencies in excess of 80% are obtained over relevant ranges of processor number
in both cases. Similar results are presented in [10] for the IBM SP. The minimum
relevant number of processors is (for our purposes) the smallest power of 2 that can
house a problem completely in distributed DRAM. In practice, using fewer than
this holds high performance resources captive to paging o� of slow disks (and dra-
matically inates subsequent parallel speedups!). The maximum relevant number
is the maximum number available or the largest power of 2 that allows enough
volumetric work per processor to cover the surfacial overhead. In practice, tying
up more processors than this for long runs can be construed as wasting DRAM.

The physical con�guration is a three-dimensional ONERA M6 wing up against
a symmetry plane (see Fig. 2) an extensively studied standard case. Our tetra-
hedral Euler grids were generated by D. Mavriplis of ICASE. We use a maximum
Krylov dimension of 20 vectors per pseudo-timestep. The pseudo-timestepping is a
nontrivial feature of the algorithm, since the norm of the steady state residual does
not decrease monotonically in the larger grid cases. (In production, we would em-
ploy mesh sequencing so that the largest grid case is initialized from the converged
solution on a coarser grid. In the limit, such sequencing permits the �ner grid
simulation to be initialized within the domain of convergence of Newton's method.)

Table 1 shows a relative e�ciency of 85% over the relevant range for a problem
of 4�357; 900 DOFs. Each iteration represents one pseudo-timestep, including one
Newton correction, and up to 20 Schwarz-preconditioned GMRES steps. Conver-
gence is de�ned as a relative reduction in the norm of the steady-state nonlinear
residual of the conservation laws by a factor of 10�10. The convergence rate typ-
ically degrades slightly as number of processors is increased, due to introduction
of increased concurrency in the preconditioner, which is partition-dependent, in
general.

The overall e�ciency, �overall, is the speedup divided by the processor ratio.
The algorithmic e�ciency, �alg , is the ratio of iterations to convergence, as proces-
sor number varies. The implementation e�ciency, �impl, the quotient of �overall and
�alg , therefore represents the e�ciency on a per iteration basis, isolated from the
slight but still signi�cant algorithmic degradation. �impl is useful in the quantita-
tive understanding of parallel overhead that arises from communication, redundant
computation, and synchronization.
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Figure 2. The surface triangulation of the M6 wing, the symme-

try root plane, and the far�eld bounding surface are shown for a

relatively coarse grid.

Table 2. Cray T3E parallel performance (2,761,774 vertices)

E�ciency
procs its time speedup �alg �impl �overall Gop/s

128 164 6,048.37s 1.00 1.00 1.00 1.00 8.5
256 166 3,242.10s 1.87 0.99 0.94 0.93 16.6
512 171 1,811.13s 3.34 0.96 0.87 0.83 32.1

Table 2 shows a relative e�ciency of 83% over the relevant range for a problem
of 4�2; 761; 774 DOFs. Each iteration represents up to 45 preconditioned GMRES
iterations (with restarting every 16 iterations). This grid is the largest yet generated
by our colleagues at NASA Langley for an implicit wing computation. Coordinate
and index data (including 18 million edges) alone occupy an 857 MByte �le.

The 32.1 Gop/s achieved on 512 nodes for this sparse unstructured compu-
tation is 12% of the best possible rate of 265 Gop/s for the dense LINPACK
benchmark on a matrix of order 79,744 (with 6.36 billion nonzeros) on the identical
con�guration [7]. The principal \slow" routines (at present) are orthogonalization
in the Krylov method and subdomain Jacobian preconditioner formation (soon to
be addressed), together accounting for about 20{23% of execution time and running
at only 20% of the overall sustained Gop/s rate.

It is interesting to note the source of the degradation of �impl in going from
128 to 512 processors, since much �ner granularities will be required in ASCI-
scale computations. The maximum over all processors of the time spent at global
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Table 3. Cray T3E parallel performance | Gustafson scaling

vert procs vert/proc its time time/it

357,900 80 4474 78 559.93s 7.18s
53,961 12 4497 36 265.72s 7.38s
9,428 2 4714 19 131.07s 6.89s

synchronization points (reductions | mostly inner products and norms) is 12% of
the maximum over all processors of the wall-clock execution time. This is almost
entirely idle time arising from load imbalance, not actual communication time, as
demonstrated by inserting barriers before the global reductions and noting that the
resulting fraction of wall-clock time for global reductions drops below 1%. Closer
examination of partitioning and pro�ling data shows that although the distribution
of \owned" vertices is nearly perfectly balanced, and with it the \useful" work, the
distribution of ghosted nodes can be very imbalanced, and with it, the overhead
work and the local communication requirements. In other words, the partitioning
objective of minimizing total edges cut while equidistributing vertices does not, in
general, equidistribute the execution time between synchronization points, mainly
due to the skew among the processors in ghost vertex responsibilities. This example
of the necessity of supporting multiple objectives (or multiple constraints) in mesh
partitioning has been communicated to the authors of major partitioning packages,
who have been hearing it from other sources, as well. For PDE codes amenable to
per-iteration communication and computation work estimates that are not data-
dependent, it is plausible to approximately balance multiple distinct phases in an
a priori partitioning. More generally, partitionings may need to be rebalanced
dynamically, on the basis of real-time measurements rather than models. This
will require integration of load balancing routines with the solution routines in
parallel. We expect that a similar computation after such higher level needs are
accommodated in the partitioner will achieve close to 95% overall e�ciency on 512
nodes.

Since we possess a sequence of unstructured Euler grids for the same wing, we
can perform a Gustafson-style scalability study by varying the number of processors
and the discrete problem dimension in proportion. We note that the concept of
Gustafson-style scalability does not extend perfectly cleanly to nonlinear PDEs,
since added resolution brings out added physics and (generally) poorer conditioning,
which may cause a shift in the \market basket" of kernel operations as the work in
the nonlinear and linear phases varies. However, our shockless Euler simulation is
a reasonably clean setting for this study, if corrected for iteration count. Table 3
shows three computations on the T3E over a range of 40 in problem and processor
size, while maintaining approximately 4,500 vertices per processor.

The good news in this experiment is contained in the �nal column, which shows
the average time per parallelized pseudo-transient NKS outer iteration for problems
with similarly sized local workingsets. Less than a 7% variation in performance
occurs over a factor of nearly 40 in scale.

4.2. Serial Cache Optimization Results. From a processor perspective we
have so far looked outward rather than inward. Since the aggregate computational
rate is a product of the concurrency and the rate at which computation occurs in
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Table 4. IBM P2SC cache performance in serial (22,677 vertices)

Enhancements Results
Field Structural Edge impr.

Interlacing Blocking Reordering its time time/it ratio

1 28 2905s 103.8s |
2 � 25 1147s 45.9s 2.26
3 � � 25 801s 32.0s 3.24
4 � � 25 673s 26.9s 3.86
5 � � � 25 373s 14.9s 6.97

a single active thread, we briey discuss the per-node performance of the legacy
and the PETSc ported codes. Table 4 shows the e�ect, individually or in var-
ious combinations, of three cache-related performance enhancements, relative to
the original vector-oriented code, whose performance is given in row 1. Since the
number of iterations di�ers slightly in the independent implementations, we nor-
malize the execution time by the number of iterations for the comparisons in the
�nal column. These optimizations are described in more detail in [9]. We observe
certain synergisms in cache locality; for instance, adding structural blocking to
the interlaced code without edge-reordering provides a factor of 1.43, while adding
structural blocking to the edge-reordered code provides a factor of 1.81. Similarly,
adding edge-reordering to a code without structural blocking provides a factor of
1.71, while adding structural edge-reordering to the blocked code provides a fac-
tor of 2.15. Including the iteration count bene�t, the cache-oriented serial code
executes 7.79 times faster than the original, before parallelization.

5. Conclusions

We have demonstrated very respectable scaling behavior for a 	NKS version of
a 3D unstructured CFD code. We began with a legacy vector-oriented code known
to be algorithmically competitive with multigrid in 2D, improved its performance
as far as we could for a sequential cache orientation, and then parallelized it with
minimal impact on the sequential convergence rate. The parallel version can be
scaled to accommodate very rich grids.

Pro�ling the highest granularity runs reveals certain tasks that need additional
performance tuning | load balancing being the least expected. With respect to
the interaction of algorithms with applications we believe that the ripest remaining
advances are interdisciplinary: ordering, partitioning, and coarsening must adapt to
coe�cients (and thus grid spacing, ow magnitude, and ow direction) for conver-
gence rate improvement. Trade-o�s between grid sequencing, pseudo-time iteration,
nonlinear iteration, linear iteration, and preconditioner iteration must be further
understood and exploited.
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