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Motivation

To enable rapid, high-fidelity design optimization in the early stages of tl
design cycle and to discover new aerodynamic concepts

o Complex flow physics

Interaction through the flowfield

Global cost functions

Prior knowledge of the flowfield not require
Design of any vehicle where fluid mechani
IS Important

Design of experiments
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The Aerodynamic Optimization Problem

min f(x W X)
s.t. Ce(x,u(x) =0, C(x,u(x)=<0, X <X=<X,

where giverx u(x) Is computed viaa(x, u(x)) = 0O

» Often assumed th§tCg, C,, [J are readily available -here this

IS not the case!
« A computational aero simulation Is used to obta®:, C,, U:

fmay beC, Cp g , etc.
Ce, C, may beC, C,, , etc.
These are typically integrated quantitiesifxk)
e Question of validation

- Error bounds
- Useful in adaptation—»  decrease in expense of evaluation



The Reynolds-Averaged Navier-Stokes Equations
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Turbulence Model
Spalart-Allmaras One-Equation Model
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Functions



Flow Solver

» Solves the governing equations using a finite-volume node-based upw
iImplicit solution scheme on mixed-element unstructured grids

e Highly scalable MPI implementation using domain-decompaosition

« Compressible and incompressible formulations; reacting-gas chemisti
option being matured

« Spalart’s one-equation turbulence model integrated to the wall, solved
loosely or tightly coupled

* Time-accurate options

« Multigrid with point- and line-implicit smoothers

Pre-processor is ~80,000 lines of source code
Solver is ~115,000 lines of source code

~ Problem Areas: Flow Solver-

« Knobs always need adjusting
e Turbulence modeling

Functions



Grid Used for Typical RANS Computation

1,827,470 Nodes
10,715,204 Elements
Partitioned for 20 CPU'’s

Functions Grid Courtesy of E. Lee-Rausch and S. Pirzadeh




Results of a Typical T
RANS Analysis
M_ =075 Re= 3><106 C,. =05 zj
~30 Hours Wallclock Time on 20 CPU’s Gloaf
02F
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0-8§ 08 ‘o.;)z‘ ‘0.63‘ ‘0.64‘ ‘0.235
ol “o
clfo.z:-

0.4
-0.6 Experiment
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Functions Solution Courtesy of E. Lee-Rausch



The Design Environment
Domain Decomposition Flow Solver
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Obtaining Design Sensitivities:
An Overview of Various Techniques

Finite-Differences

e Easy to implement

o Each variable must be perturbed independently
* Choice of step size is always an issue

Direct Differentiation
* Yields the most sensitivity information, but requires the solution
of a large linear system of equations for each design variable

Complex Variables
* Yields similar information as direct approach, very little coding

effort required

Adjoint Approach
« Solution of one linear system produces gradients of a cost
function “independent” of the number of design variables



Differentiation Using Complex Variables

e Traditional Finite Difference

F(x) = f(x+ h)z_hf(x_h) +0O(h?)

e Complex-Variable Approach (Lyness & Moler)
in?
6
_Im[ f(x+ ih)]
- h

h2 h4 .
f(x+ih) = () +ihf'(x) - () - f'"(x)+ﬂf'v(x)+...

— > f(x)

Second-order accurate, incurs no subtractive cancellation error,
andrequires hardly any coding

* Ruby script “complexifies” current code base every night - handles all
variable declarations, file I/0, MPI, operator overloading, etc.

* Resulting code is readable

e Extremely useful in tracking down hand-differentiated linearization buc



Adjoint and Design Equations

Define a Lagrangian function, L.:
L(D,Q, X,\) = f(D,Q, X)+ATR(D, Q, X)

Now differentiate:

oL _ Lof [axfaf% [GQ}TEBf [GR]TAE+§‘3—R]T+[GXTFR]T§/\

oD D |9DJ oXf 0Q  19Q) "5 HaD oD | [oX
R TA _ @0 Adjoint
[a_QJ - [pod Equation

oL _
D

X7'af O, O9R1", [aX]'[0R1' U, Sensitivity
Tt O=r| *+ D’\ -
aD 0X{ [oD oD| |0X Equation

%?Q

(Adaptation)




Some Remarks on the Adjoint Equation

Key idea: Adjoint communicates high-fidelity physi
Information through the flowfield

variables (performed by hand in current work)

Ignoring pieces of the linearizations is dangerous
Careful construction of a time-marching algorithm based on the flow

solver yields identical asymptotic convergence rates

CS

Requires complete linearizations of discrete residual wrt dependent

By including the ability to handle multiple RHS’s, some of the overhea

associated with multiple cost functions/constraints can be mitigated
» Adjoints provide a mathematically rigorous approach to error estimatic
and grid adaptation

(Adaptation)

- Problem Areas: Adjoint Solver

 If nonlinear problem is unsteady, little hope for linearized vel
» Can use stronger solvers, but some (most) problems are jus

sion

—t

unsteady




Consistency of Linearization
Three-Dimensional Turbulent Flow

Camber Thickness Twist Shear
C Adjoint 0.956208938269467 -0.384940321071468 -0.010625997076936 -0.005505627646872
L
Complex 0.956208938269046 -0.384940321071742 -0.010625997076937 -0.005505627647001
C AdjOint 0.027595818243822 0.035539494383655 -0.000939653505699 -0.000389373578383
D
Complex 0.027595818243811 0.035539494383619 -0.00093965350‘5699 -0.000389373578412
Twist I\/loo = 0.84
Shggfgwist a = 3.06
Camber S Twist Re= 5x10
Thicknes Shear
#1 A
Camber o Shear Twist
Thickness Shear
#2 #5
-¢ Camber
hel Thickness
e #5
Thickness \
Camber
"3 '(I':re:irgl?neerss ;Ll;gickness

#4




Adjoint Methods for Error Estimation
and Grid Adaptation

Traditional grid adaptation relies on solution gradients.
But what If the feature (e.g., shock) is In
the wrong place to begin with?

Adjoints avoid this problem and can be used to “tune” grids to
accurately predict a given engineering quantity, such as lift or drag.

This can dramatically reduce the number of
mesh points required for a given application,
and produce the correct answer.

- Problem Areas: Grid Adaptation

» Highly anisotropic 3D adaptation mechanics neegd to
be developed

(Adaptation)




Traditional Versus Adjoint Adaptation

Adjoint x-momentum variable

Mach number - M =3.0 (based on lower airfoil drag)
IR N R N R | | IR N N N N A N |
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i B i / B
| ~ 1 = i
T~
I I I I I I I I I I I I I I I I I I
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Pressure-based adaptation Final grid Adjoint-based adaptation Final grid
C, = 0.0767 (lower airfoil) 37352 Nodes C, = 0.0766 (lower airfoil) 3810 Nodes
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RN -
RN S St i
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K[> 4 —
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0 1 2

(Adaptation)

Courtesy of D. Venditti and D. Darmofal, MIT




Sensitivity Evaluation Using Adjoint Variables

L  f rox71'af 0 OgR
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* Requires complete linearizations of
- Discrete residual wrt grid (distance function, etc)
- Surface parameterization wrt design variables
- Mesh movement scheme wrt design variables

* Ignoring pieces of the linearizations is dangerous

Evaluating this expression is expensive and
IS not independent of the number of design variables

- Problem Areas: Gradient Evaluation

* Mesh sensitivities are extremely expensive - can an adjoint
problem be formulated?




Geometric Parameterization Using MASSOUD

(Jamshid Samareh, NASA Langley)

« Parameterizes the changes in shape, not the shape itself - reduces th
number of design variables

e Parameterizes the discipline grids - avoids manual grid regeneration

e Uses advanced soft object animation algorithms for deforming grids

« Analytic sensitivities available

A aO,, T

SETEASINNNNNN I

/ k ‘.\\ \\\m-

(LSS T

............
- Problem Areas: Parameterization
* What are good design variables to use?

« What design variables are going to cause mesh movement prgblems?
* How to pick bounds?




Functions
Gradients

Mesh Movement Techniques
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Mesh Movement Techniques

Linear Elasticity

Original Mesh

Distance/Springs
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Mesh Movement
« Extremely difficult to move realistic 3D grids - showstoppe!

Problem Areas:

» High quality grids do not grow on trees - take what you can get

 Irreversible process causes problems for optimizer
» Grid regeneration introduces noise (even differentiable?)

Functions
Gradients



Design Example:
Multielement Airfoil for
Open-Wheel Racing Car

Goal: Increase the downforce e
65 Design Variables, 25 Design Cycles|

15,446 Nodes
a = 12° Re= 2.4x 10




Multielement Airfoil for Open-Wheel Racing Car

Close-up of Velocity Vectors at Flap Trailing Edge
Initial Flow Field Final Flow Field
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Application of Mesh Movement to a

Multielement Airfoil Configuration

M_ =070 =15,Re= 30x 10’

Experiment had non-uniform gap/overlap across span and deflected at high dynamic pressur
Objective: Determine flap position based on experimental pressures

—2.0 — T T 17 T 1 T T
i Baseline ]
Modified |
Experiment .
® -
C </ O O rrrrrrr O - O@ | Basellne
Py ; O, O\ 1 Modified
e}




Large Scale Design Case
Turbulent Flow Over Slotted Cruise Configuration

Goal: Reduce drag while maintaining lift
M, = 0.75 Re = 6.2x10°

843,385 Nodes
4,796,360 Cells

34 Design \riables
- Angle of attack
- 15 Camber values
on each element

- Flap translation
and rotation

[N]

5 Design cycled 6 CPU’s
~6 Days wall clock time

12 GB memory
required /!
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Large Scale Design Case
Turbulent Flow Over Slotted Cruise Configuration

Baseline Geometry Modified Geometry

a = 2.87

C, = 0.4375
0.0399

O
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Typical Cost of a Single Design Cycle
Assuming 1,000,000 Mesh Points on 20 CPU'’s

Flow Solve 10 Hours

Adjoint Solve 8 Hours

20-30 Grid Sensitivities and 10 Hours
Gradient Evaluations

Line Search with 5-6 Grid 20 Hours

Moves and Flow Solves

Single Design Cycle ~2 Days Wallclock Time

Now consider:

« ~10 Design cycles in a given run ¢ Reacting gas chemistry
* Robust (i.e., multipoint) design + MDO

« Unsteady flows



Future Directions / Possible Solutions

Flow and Adjoint Solutions

e Adaptive, “smart” algorithms

e Simultaneous convergence/error estimation monitoring
o Adjoint-based grid adaptation

Mesh Movement

« High quality initial grids

 Mesh untangling (Freitag)

e Quaternion-based approaches (Samarenh)
« Adjoint-based sensitivities

Grid Adaptation
 Algorithms for highly anisotropic meshes

Optimization
 Model management (Alexandrov)
 Parallel algorithms

Hardware
» Massively parallel computing



