
Aerodynamic Design Optimization
Using the Navier-Stokes Equations

Eric J. Nielsen
Eric.J.Nielsen@nasa.gov
http://fun3d.larc.nasa.gov

Computational Modeling and Simulation Branch
NASA Langley Research Center

Hampton, Virginia USA

Motivation

To enable rapid, high-fidelity design optimization in the early stages of the
design cycle and to discover new aerodynamic concepts

• Complex flow physics
• Interaction through the flowfield
• Global cost functions
• Prior knowledge of the flowfield not required
• Design of any vehicle where fluid mechanics

is important
• Design of experiments

x, inches
10 20 30 40 50 60 70

40

30

20

10

0

10

s=71

s=24

s=67

s=59

New Design
1089 Node Unstructured Mesh

38 Design Variables

This case features an increased number of control points in the vicinity of the "test section".

Design Upper Wall to Give “Stratford-like”
Distribution on Lower Wall

Design One Tunnel Wall to Give a
Pressure Distribution on Another

Design Constant Pressure Inner Wall
for Turbulence Modeling Study

The Aerodynamic Optimization Problem

s.t. , ,

where given , is computed via

• Often assumed thatf, , , are readily available —here this

is not the case!
• A computational aero simulation is used to obtainf, , , :

f may be , , , etc.

, may be , , etc.

These are typically integrated quantities of .

• Question of validation
- Error bounds
- Useful in adaptation decrease in expense of evaluation

min f x u x(),()
CE x u x(),() 0= CI x u x(),() 0≤ xL x xU≤ ≤

x u x() A x u x(),() 0=

CE CI ∇

CE CI ∇
CL CD q̇

CE CI CL CM

u x()

The Reynolds-Averaged Navier-Stokes Equations

V
t∂

∂Q
F i n̂⋅()dΩ

Ω
∫° Fv n̂⋅()dΩ

Ω
∫°–+ 0= Q

ρ
ρu

ρv

ρw

E

= F i

ρu

ρu2 p+

ρuv

ρuw

E p+()u

î

ρv

ρvu

ρv2 p+

ρvw

E p+()v

ĵ

ρw

ρwu

ρwv

ρw2 p+

E p+()w

k̂+ +=

Fv f vî gv ĵ hvk̂++= f v

0

τxx

τxy

τxz

uτxx vτxy wτxz qx–+ +

= gv

0

τyx

τyy

τyz

uτxy vτyy wτzy qy–+ +

= hv

0

τzx

τzy

τzz

uτxz vτyz wτzz qz–+ +

=

τxx µ µt+()
M∞
Re
---------2

3
--- 2ux vy wz+()–[]= τyy µ µt+()

M∞
Re
---------2

3
--- 2vy ux wz+()–[]= τzz µ µt+()

M∞
Re
---------2

3
--- 2wz ux vy+()–[]=

τxy τyx µ µt+()
M∞
Re
--------- uy vx+()= = τxz τzx µ µt+()

M∞
Re
--------- uz wx+()= = τyz τzy µ µt+()

M∞
Re
--------- vz wy+()= =

qx

M– ∞
Re γ 1–()
----------------------- µ

Pr

µt

Prt
--------+

 
 
 

x∂
∂a

2
= qy

M– ∞
Re γ 1–()
----------------------- µ

Pr

µt

Prt
--------+

 
 
 

y∂
∂a

2
= qz

M– ∞
Re γ 1–()
----------------------- µ

Pr

µt

Prt
--------+

 
 
 

z∂
∂a

2
=

p γ 1–() E ρ u2 v2 w2+ +()
2

-----------------------------------–= µ µ̂
µ̂∞

1 C∗+() T̂ T̂∞⁄()3 2⁄

T̂ T̂∞⁄ C∗+
--= =

Perfect Gas
Eqn of State Sutherland’s Law

Functions

Turbulence Model
Spalart-Allmaras One-Equation Model

Dυ̃
Dt

M∞
σRe
---------- ∇ υ 1 cb2

+()υ̃+() υ̃∇[] cb2
υ̃∇2υ̃–⋅

 
 
 

=

M∞
Re
--------– cw1

f w

cb1

κ2
------- f t2

–
 
 
  υ̃

d
--- 

  2
cb1

1 f t2
–()S̃υ̃ Re

M∞
-------- f t1

U2∆+ +

f v1

χ3

χ3 cv1
3+

--------------------=

χ υ̃
υ
---=

S̃ S
M∞
Re
-------- υ̃

κ2d2
------------ f v2

+=

f v2
1 χ

1 χ f v1
+

---------------------–=

f w g
1 cw3

6+

g6 cw3
+

 
 
 
  1 6⁄

=

g r cw2
r 6 r–()+=

r
M∞
Re
-------- υ̃

S̃κ2d2
---------------=

µt ρυt ρυ̃ f v1
= =

Functions

Flow Solver
• Solves the governing equations using a finite-volume node-based upwind

implicit solution scheme on mixed-element unstructured grids
• Highly scalable MPI implementation using domain-decomposition
• Compressible and incompressible formulations; reacting-gas chemistry

option being matured
• Spalart’s one-equation turbulence model integrated to the wall, solved

loosely or tightly coupled
• Time-accurate options
• Multigrid with point- and line-implicit smoothers

Pre-processor is ~80,000 lines of source code
Solver is ~115,000 lines of source code

Problem Areas: Flow Solver
• Knobs always need adjusting
• Turbulence modeling

Functions

Grid Used for Typical RANS Computation

1,827,470 Nodes
10,715,204 Elements
Partitioned for 20 CPU’s

Grid Courtesy of E. Lee-Rausch and S. PirzadehFunctions

X/C

-C
p

0 0.25 0.5 0.75 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Experiment
Computation

η = 0.377

CD

C
L

0.01 0.02 0.03 0.04 0.05
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Experiment
Computation

Results of a Typical
RANS Analysis

M∞ 0.75= CL 0.5=Re 3
6×10=

~30 Hours Wallclock Time on 20 CPU’s

Solution Courtesy of E. Lee-RauschFunctions

The Design Environment

Adjoint Solver

Λ

Flow Solver

Gradient Evaluation

f∇
Mesh Movement

Optimizer

min f()

Domain Decomposition

Parameterization
MASSOUD

(Samareh)

and Adaptation

Obtaining Design Sensitivities:
An Overview of Various Techniques

Finite-Differences
• Easy to implement
• Each variable must be perturbed independently
• Choice of step size is always an issue

Direct Differentiation
• Yields the most sensitivity information, but requires the solution

of a large linear system of equations for each design variable

Complex Variables
• Yields similar information as direct approach, very little coding

effort required

Adjoint Approach
• Solution of one linear system produces gradients of a cost

function “independent” of the number of design variables
Gradients

Differentiation Using Complex Variables

• Traditional Finite Difference

• Complex-Variable Approach (Lyness & Moler)

Second-order accurate, incurs no subtractive cancellation error,
andrequires hardly any coding

• Ruby script “complexifies” current code base every night - handles all
variable declarations, file I/O, MPI, operator overloading, etc.

• Resulting code is readable
• Extremely useful in tracking down hand-differentiated linearization bugs

f ' x() f x h+() f x h–()–
2h

--- O h2()+=

f x ih+() f x() ih f ' x() h
2

2
----- f '' x()–

ih
3

6
------- f ''' x()–

h
4

24
------ f

iv
x() …+ + +=

f ' x() Im f x ih+()[]
h

----------------------------------≈

Gradients

Adjoint and Design Equations

Define a Lagrangian function, L:

Now differentiate:

L D Q X Λ, , ,() f D Q X, ,() ΛT R D Q X, ,()+=

D∂
∂L

D∂
∂ f

D∂
∂X T

X∂
∂ f

+
 
 
 

D∂
∂Q T

Q∂
∂ f

Q∂
∂R T

Λ+
 
 
 

D∂
∂R T

D∂
∂X T

X∂
∂R T

+
 
 
 

Λ+ +=

Q∂
∂R

T

Λ
Q∂

∂ f
 
 –=

D∂
∂L

D∂
∂ f

D∂
∂X

T

X∂
∂ f

+
 
 
 

D∂
∂R

T

D∂
∂X

T

X∂
∂R

T

+
 
 
 

Λ+=

Adjoint
Equation

Sensitivity
Equation

Gradients

Adaptation

Some Remarks on the Adjoint Equation

Key idea: Adjoint communicates high-fidelity physics
information through the flowfield

• Requires complete linearizations of discrete residual wrt dependent
variables (performed by hand in current work)

• Ignoring pieces of the linearizations is dangerous
• Careful construction of a time-marching algorithm based on the flow

solver yields identical asymptotic convergence rates
• By including the ability to handle multiple RHS’s, some of the overhead

associated with multiple cost functions/constraints can be mitigated
• Adjoints provide a mathematically rigorous approach to error estimation

and grid adaptation

Problem Areas: Adjoint Solver
• If nonlinear problem is unsteady, little hope for linearized version
• Can use stronger solvers, but some (most) problems are just

unsteadyGradients

Adaptation

Consistency of Linearization
Three-Dimensional Turbulent Flow

Camber Thickness Twist Shear

 Adjoint 0.956208938269467 -0.384940321071468 -0.010625997076936 -0.005505627646872

Complex 0.956208938269046 -0.384940321071742 -0.010625997076937 -0.005505627647001

 Adjoint 0.027595818243822 0.035539494383655 -0.000939653505699 -0.000389373578383

Complex 0.027595818243811 0.035539494383619 -0.000939653505699 -0.000389373578412

CL

CD

M∞ 0.84=
α 3.06°=

Re 5 10
6×=

Twist
Shear

#1 Twist
Shear

#2 Twist
Shear

#3 Twist
Shear

#4 Twist
Shear

#5

Camber
Thickness
#1

Camber
Thickness
#2

Camber
Thickness
#3 Camber

Thickness
#4

Camber
Thickness
#5

Camber
Thickness
#6

Gradients

Adjoint Methods for Error Estimation
and Grid Adaptation

Traditional grid adaptation relies on solution gradients.
But what if the feature (e.g., shock) is in

the wrong place to begin with?

Adjoints avoid this problem and can be used to “tune” grids to
accurately predict a given engineering quantity, such as lift or drag.

This can dramatically reduce the number of
mesh points required for a given application,

and produce the correct answer.

Problem Areas: Grid Adaptation
• Highly anisotropic 3D adaptation mechanics need to

be developed

Adaptation

0 1 2

-1

0

Final grid
3810 Nodes

Adjoint-based adaptation
CD = 0.0766 (lower airfoil)

0 1 2

-1

0

Final grid
37352 Nodes

Pressure-based adaptation
CD = 0.0767 (lower airfoil)

0 1 2

-1

0

Mach number - M∞ = 3.0

0 1 2

-1

0

Adjoint x-momentum variable
(based on lower airfoil drag)

Traditional Versus Adjoint Adaptation

Courtesy of D. Venditti and D. Darmofal, MITAdaptation

Sensitivity Evaluation Using Adjoint Variables

• Requires complete linearizations of
- Discrete residual wrt grid (distance function, etc)
- Surface parameterization wrt design variables
- Mesh movement scheme wrt design variables

• Ignoring pieces of the linearizations is dangerous

Evaluating this expression is expensive and
is not independent of the number of design variables

D∂
∂L

D∂
∂ f

D∂
∂X

T

X∂
∂ f

+
 
 
 

D∂
∂R

T

D∂
∂X

T

X∂
∂R

T

+
 
 
 

Λ+=

Problem Areas: Gradient Evaluation
• Mesh sensitivities are extremely expensive - can an adjoint

problem be formulated?

Gradients

Geometric Parameterization Using MASSOUD
(Jamshid Samareh, NASA Langley)

• Parameterizes the changes in shape, not the shape itself - reduces the
number of design variables

• Parameterizes the discipline grids - avoids manual grid regeneration
• Uses advanced soft object animation algorithms for deforming grids
• Analytic sensitivities available

Problem Areas: Parameterization
• What are good design variables to use?
• What design variables are going to cause mesh movement problems?
• How to pick bounds?Gradients

Functions

Mesh Movement Techniques

Linear ElasticityOriginal MeshDistance/Springs

Spring Analogy

Kij xi x j∆–∆()
j Ni∈
∑ 0=

Linear Elasticity

u
1

1 2ν–

x∂
∂ ∇ V⋅+∇2 0=

v
1

1 2ν–

y∂
∂ ∇ V⋅+∇2 0=

Set
1

1 2ν–
--------------- aspect ratio=

Gradients

Functions

Mesh Movement Techniques

Problem Areas: Mesh Movement
• Extremely difficult to move realistic 3D grids - showstopper!
• High quality grids do not grow on trees - take what you can get
• Irreversible process causes problems for optimizer
• Grid regeneration introduces noise (even differentiable?)

Linear ElasticityOriginal MeshDistance/Springs

Gradients

Functions

α 12°= Re 2.4 10
6×=

Design Example:
Multielement Airfoil for

65 Design Variables, 25 Design Cycles
Goal: Increase the downforce

15,446 Nodes

Open-Wheel Racing Car

Initial Flow Field

Final Flow Field

Cl 2.3068–=

Cl 2.4379–=

Close-up of Velocity Vectors at Flap Trailing Edge

Initial Flow Field Final Flow Field

Multielement Airfoil for Open-Wheel Racing Car

Application of Mesh Movement to a
Multielement Airfoil Configuration

, ,

Experiment had non-uniform gap/overlap across span and deflected at high dynamic pressures
Objective: Determine flap position based on experimental pressures

M∞ 0.7= α 1.5°= Re 30 10
6×=

Baseline
Modified

Baseline
Modified
Experiment

Large Scale Design Case
Turbulent Flow Over Slotted Cruise Configuration

Goal: Reduce drag while maintaining lift

5 Design cycles

843,385 Nodes
4,796,360 Cells

12 GB memory

M∞ 0.75= Re 6.2
6×10=

required

34 Design Variables
- Angle of attack
- 15 Camber values

on each element

~6 Days wall clock time

- Flap translation
and rotation

/16 CPU’s

Large Scale Design Case
Turbulent Flow Over Slotted Cruise Configuration

CL 0.4375=
CD 0.0399=

CL 0.4374=
CD 0.0378=

α 2.81°= α 3.30°=
Baseline Geometry Modified Geometry

Typical Cost of a Single Design Cycle
Assuming 1,000,000 Mesh Points on 20 CPU’s

Now consider:

Flow Solve 10 Hours

Adjoint Solve 8 Hours

20-30 Grid Sensitivities and
Gradient Evaluations

10 Hours

Line Search with 5-6 Grid
Moves and Flow Solves

20 Hours

Single Design Cycle ~2 Days Wallclock Time

• Reacting gas chemistry
• MDO

• ~10 Design cycles in a given run
• Robust (i.e., multipoint) design
• Unsteady flows

Future Directions / Possible Solutions
Flow and Adjoint Solutions
• Adaptive, “smart” algorithms
• Simultaneous convergence/error estimation monitoring
• Adjoint-based grid adaptation

Mesh Movement
• High quality initial grids
• Mesh untangling (Freitag)
• Quaternion-based approaches (Samareh)
• Adjoint-based sensitivities

Grid Adaptation
• Algorithms for highly anisotropic meshes

Optimization
• Model management (Alexandrov)
• Parallel algorithms

Hardware
• Massively parallel computing

