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Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational

assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural

laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary

layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestreamMach number of 0.75,

and chordReynolds numbers of 17 × 106, 24 × 106, and 30 × 106 suggest that discrete roughness elements could delay

laminar–turbulent transition by about 20%when transition is caused by stationary crossflow disturbances. Compu-

tations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness

element) also suppresses the growth of most amplified traveling crossflow disturbances.

Nomenclature

Aini = initial disturbance amplitude
C = wing/airfoil chord length
CL = lift coefficient
Cp = pressure coefficient
f = disturbance frequency
H = flight altitude
M = freestream Mach number
m = time Fourier mode number
N = N factor
n = spanwise Fourier mode number
Rcf = crossflow Reynolds number
Rec = Reynolds number based on wing chord
Tu = turbulence level in the freestream
Uc = velocity component in the crossflow direction
Us = velocity in the inviscid streamline direction
Wmax = maximum crossflow velocity in a crossflow-velocity

profile
X = chordwise coordinate (in a direction normal to the

leading edge)
x = chordwise surface coordinate (in a direction normal to

the leading edge)
x0 = chord surface location where perturbation is initialized
Y = distance from center of the aircraft fuselage
y = wall normal coordinate
Z = spanwise coordinate in traveling frame of reference
z = spanwise coordinate

αmn = chordwise wave number of Fourier mode �m; n�
β = fundamental spanwise wave number
δ0.1 = distance fromwallwhere the crossflow velocity reduces

to 10% ofWmax

νe = kinematic viscosity at boundary-layer edge
ξ = dummy variable for chordwise integration
ϕ = any perturbation field variable
ϕ
⌢

= Fourier transform of ϕ

I. Introduction

S KIN friction constitutes about 50% of the drag budget of a
business jet or a long-haul transport aircraft [1,2]. Therefore,

reduction in skin friction has the potential of yielding substantial
savings in fuel burn. According to a system study [3], fuel burn
savings in access of 9% are achievable for transport aircraft. Because
laminar skin friction is much less than the turbulent value, the subject
of maintaining laminar flow for high-Reynolds-number flows (i.e.,
delay of boundary-layer transition) has been of interest for well over
half a century; see [4–8] for reviews of the subject.
In the low-amplitude freestream disturbance environment typical

of subsonic flight applications, transition in two-dimensional bound-
ary layers is caused by Tollmien–Schlichting (TS) instability, which
can be controlled by favorable pressure gradients, wall suction, and
wall heat transfer (cooling in air, heating in water). Transition in
three-dimensional (3-D) swept-wing boundary layers can also be
caused by crossflow instability, which often manifests itself in the
form of stationary corotating streamwise vortices that originate at
minute roughness sites [9,10]. These vortices break down via a high-
frequency secondary-instability mechanism [11–15]. Crossflow in-
stability can be controlled by using wall suction, and experimental
campaigns for demonstrating laminar-flow control (LFC) using
suction have been conducted in subsonic [16–18] as well as in super-
sonic [19] flight.
Crossflow-instability results due to an inflection point in the

crossflow-velocity component (i.e., the component in the direction
normal to the inviscid streamlines) and minimizing this velocity
component would weaken the instability and yield extended runs
of laminar flow. For a given leading-edge sweep angle and unit
Reynolds number, the only way to reduce the crossflow-velocity
component is to minimize the chordwise pressure gradient, but that
would result in amplification of the TS instability, which is enhanced
under less favorable pressure gradients. Thus, swept-wing natural-
laminar-flow (NLF) design is based upon striking a delicate balance

Presented as Paper 2013-0412 at the 51st AIAA Aerospace Sciences
Meeting, Grapewine, TX, 7–10 January 2013; received23 June 2014; revision
received 14 October 2014; accepted for publication 16 October 2014;
published online 12 March 2015. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center,
Inc., 222RosewoodDrive,Danvers,MA01923; include the code 1533-385X/
15 and $10.00 in correspondence with the CCC.

*Senior Aerodynamicist, Computational AeroSciences Branch, MS 128;
Mujeeb.R.Malik@nasa.gov. Fellow AIAA.

†Research Scientist; Wei.Liao@nasa.gov. Senior Member AIAA.
‡Aerospace Technologist, Computational AeroSciences Branch, MS 128;

Fei.Li@nasa.gov.
§Aerospace Technologist, Computational AeroSciences Branch, MS 128;

Meelan.M.Choudhari@nasa.gov. Associate Fellow AIAA.

AIAA Early Edition / 1

AIAA JOURNAL

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
3,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
36

37
 

http://dx.doi.org/10.2514/1.J053637


by tailoring the pressure distribution such that the crossflow instabil-
ity is reduced sufficiently while keeping TS growth at subcritical
levels with respect to transition. One can only maintain this balance
for a limited range of chord Reynolds numbers, and so LFC via
suctionmust be employed if laminar flow is desired at high Reynolds
numbers associated with large transport aircraft.
Thewavelength of crossflowdisturbances scaleswith the boundary-

layer thickness, with small-wavelength disturbances growing first
(i.e., at small distance from thewing leading edge), but decaying over
relatively small distances. The longer wavelength disturbances
become unstable farther downstream, but remain unstable over
longer streamwise distances, and eventually break down via
secondary instabilities that lead to laminar–turbulent transition. Saric
et al. [20] discovered that forcing small-wavelength disturbances
(i.e., the “control” mode) at relatively high amplitudes changes the
boundary-layer mean flow, such that the growth of more dominant
larger-wavelength disturbances (i.e., the “target” mode) is pushed
downstream, thus delaying transition. This concept has been studied
by using nonlinear parabolized stability equations (NPSEs) [21] and
direct numerical simulations (DNSs) [22]. Both these analyses
support the soundness of the fundamental concept. In practice, the
control mode is introduced via discrete spanwise periodic roughness
elements placed near the neutral point of the instability diagram.
These control disturbances only introduce harmonics and no
subharmonics, and therefore, do not directly feed into the larger-
wavelength target modes. This strategy for controlling crossflow
disturbances is known as discrete-roughness-element (DRE)
technology, and has the potential to increase the range of ap-
plicability of NLF to higher chord Reynolds numbers. Computations
based on NPSE and secondary-instability analysis have been
performed for subsonic swept-wing designs at Reynolds numbers of
7.15 × 106 and 17 × 106, which showed that DRE could delay the
growth of the stationary target modes and the associated secondary
instabilities at these Reynolds numbers [23,24].
Saric et al. [25] reported a flight experiment using Cessna O-2

aircraft to demonstrate the DRE concept. The test article consisted of
a 30 deg swept blade that was mounted vertically under one of the
wings of the aircraft. The maximum transition Reynolds number
obtained on the test articlewas about 6.4 × 106 when the leading edge
was polished with a surface finish quoted as 0.3 μm rms and 2.2 μm
average peak to peak. Here, the transition Reynolds number was
limited by a pressure minimum (i.e., adverse pressure gradient)
because of the relatively low chord Reynolds number of 8 × 106. In
other words, an increased extent of the NLF could be had for a larger
test article. When the leading edgewas painted to yield a deteriorated
surface finish (quoted as 1 μm rms, with 3.8 μm peak to peak), the
transition Reynolds number dropped to about 2.4 × 106 owing to the
adverse effect of surface roughness on transition; with the application
of DRE, the transition Reynolds number increased to about 4.8 × 106

for the chord Reynolds number of 8 × 106. This is the highest
Reynolds number at which the DRE technology has been demon-
strated to delay crossflow-induced transition. Clearly, NLF could
be maintained at such Reynolds numbers without the use of DRE,
and there is a need to demonstrate the technology at higher chord
Reynolds numbers, Mach numbers, and lift coefficients of relevance
to transport aircraft.
NASA’s Environmentally Responsible Aviation (ERA) Project

sponsored the evaluation of DRE as an LFC technology for potential
application to transport aircraft. A collaborative effort between
NASAArmstrong Flight Research Center, NASA Langley Research
Center, and TexasA&MUniversity (TAMU)was initiated to design a
flight experiment using NASA Armstrong Flight Research Center’s
Gulfstream-III (G-III, hereinafter G-3) aircraft. A wing glove was
designed by TAMU, with the glove leading-edge sweep of 34.6 deg
with a maximum possible chord Reynolds number approaching
30 × 106. The details of the glove design and analyses using compu-
tational fluid dynamics and stability-analysis codes have been given
in [26–30].
This paper provides an assessment of the DRE applicability to high-

Reynolds-number flows using NPSEs and secondary-instability anal-
ysis, extending the previous results obtained for a different airfoil
design in [24]. The particular conditions used for the assessment
consist of a freestreamMachnumber of 0.75 andReynolds numbers of
17 × 106, 24 × 106, and 30 × 106. A small-wavelength subcritical
stationary crossflow disturbance (i.e., the control mode) is introduced
to study its effect on the nonlinear evolution of the longer wavelength,
most amplified stationary crossflow disturbances (i.e., the target
mode). Secondary-instability analyses of the target mode with and
without control were performed to provide an assessment of the ability
of DRE to delay laminar–turbulent transition at high Reynolds
numbers. The initial amplitudes of the target and control modes were
assumed, and the modal shapes were taken from the stability analysis.
Thus, the impact of the actual surface roughness to initiate natural
crossflowdisturbances, aswell as the controlmode,was not simulated,
as this simulation is not trivial andwas considered outside the scope of
the present study.
Traveling disturbances of the crossflow type are also amplified by

the boundary layer, and, in fact, these disturbances are known to be
more unstable than the stationary crossflow disturbances. Traveling
disturbances are sensitive to freestream turbulence level, which is
relatively low at aircraft flight altitudes. Therefore, traveling distur-
bances are considered to be much less relevant as compared to station-
ary disturbances, which are directly induced by surface roughness.
Here, the results of the NPSE computations are presented, which show
that the growth of traveling disturbances is also suppressed by
introducing smaller-wavelength stationary crossflow disturbances
(i.e., DRE).

Fig. 1 G-3 aircraft and the glove: a) installed glove, b) planform, and c) cross section of the wing-glove.
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II. Computational Test Article

A. Laminar-Flow-Glove Design

The goal set by the ERA Project was to demonstrate the DRE
technology for a leading-edge sweep in excess of 30 deg and chord
Reynolds numbers that are characteristic of midrange transport
aircraft (i.e.,Rec up to 30 × 106). The design of a laminar-flow glove
for the G-3 aircraft was described in [28]. The glove has a leading-
edge sweep of about 34.6 deg compared to 31.7 deg for the original
wing. Figure 1 shows the glove as installed on the G-3 aircraft wing.
The glove width is 6 ft and the midspan chord length, including the
glove, is 14.5 ft. The Mach-number range of interest is 0.66–0.75,
with cruise section CL of approximately 0.5. The chord Reynolds
numbers in the range of 15 × 106 to 30 × 106 could be achieved
within the designed flight envelope. One of the objectives of the
experiment was to demonstrate that DRE could delay transition by
50% as compared to the NLF case.
The flow conditions for the present computations are M � 0.75,

H � 38; 840 ft, angle of attack � 3.5 deg. The resulting glove
midspan chord Reynolds number is 24.2 × 106; however, for con-
venience, it is identified as 24 × 106 elsewhere in the paper. In [29],
both structured-grid (OVERFLOW, [31]) and unstructured-grid
(FUN3D¶) Navier–Stokes codes were used to compute the aircraft
flowfield including thewing glove. Figure 2 shows the upper-surface
Cp distribution in the glove region. The three vertical lines (Y � 204,
234, and 264 in.) in the plot indicate the distance from the center of
the aircraft fuselage. The three spanwise lines indicate relative
distance X∕C from the leading edge, the line denoted X∕C � 0.6
being slightly ahead of the shock. In these computations, turbu-
lent flowwas assumed everywhere (and is computed using theSpalart–
Allmaras model) except on the glove upstream of the shock where the
flow is assumed to be laminar. It should be noted that the isobars in the
glove region have sweep angles smaller than the constant X∕C lines,
particularly at larger distances from the leading edge. This unsweeping
of the isobars has an important effect on boundary-layer stability, as
discussed in [29] and summarized as follows.

B. Boundary-Layer Mean Flow

Figure 3 shows theCp distribution along theY � 234 in: butt line.
The favorable pressure distribution on the upper surface assures that
the TS instability is minimized and crossflow instability is present
due to the glove sweep. The upper-surface-pressure distribu-
tion along with the airfoil cross section along Y � 234 in: is used in
the laminar boundary-layer code [32] under the infinite-swept-wing
assumption, and the resulting mean-flow profiles will be used in the
analyses presented in the next section. However, it is important to
point out the differences between this mean flow computed under the
infinite-swept-wing assumption and the fully 3-D mean flow present
in the midspan region of the glove. The 3-D boundary-layer flow on
the glove was extracted from the FUN3D and OVERFLOW viscous
computations. A quantity that can be used to gauge the strength of
crossflow instability is the crossflow Reynolds number defined as

Rcf �
Wmaxδ0.1

νe

in whichWmax is themaximum crossflow velocity, δ0.1 is the distance
from the wall where the crossflow velocity reduces to 10% of its
maximum value, and νe is the kinematic viscosity at the boundary-
layer edge.
Figure 4a shows a comparison of Rcf computed from the

boundary-layer code, under infinite-swept-wing assumption and
full 3-D solution from the two Navier–Stokes codes. For the latter
computations, boundary-layer profiles were extracted from the
steady laminar Navier–Stokes solutions to obtain the maximum
crossflow velocity and the crossflow length scale at each station. The
values of crossflow Reynolds numbers computed from FUN3D and
OVERFLOW solutions are quite close, except that the former gives a

nonsmooth distribution, as the boundary-layer profiles are linearly
interpolated from the tetrahedral grid in this case, whereas no
interpolation was required for the case of the OVERFLOW solution.
Figure 4b shows inviscid streamlines computed from the FUN3D
solution. A streamline computed from the OVERFLOW solution is
also shown for comparison, and the results from the two Navier–
Stokes codes essentially coincide. It is clear that the full 3-D mean
flows from the FUN3D and OVERFLOW codes yield much lower
values of Rcf , particularly away from the leading edge, and this is
because the unsweeping of the isobars helps reduce the crossflow
component of the velocity as compared to the infinite-swept assump-
tion. The much lower values of crossflow will then result in much
reduced growth rates for the crossflow instability. This is shown in
Fig. 5, in which N factors are plotted for stationary crossflow distur-
bances of fixed spanwisewavelengths. TheseN factors are computed
using quasi-parallel linear-stability theory (LST), as implemented in
the LASTRAC code [33]. The mean flows used in these analyses are
computed using the boundary-layer code and the FUN3D code. The
boundary-layer solution, under the infinite-swept assumption, yields
a maximum N factor of about 20, which reduces to about 12 for the
mean flow using FUN3D. This reduction in N factor is expected
because of a substantial reduction in the Rcf shown in Fig. 4a. A
similar reduction in theN factor was noted when mean flow from the
structured-grid OVERFLOW code was used.
The preceding results show that the as-designedG-3 glove boundary

layer is much more stable than the boundary layer under the infinite-
swept assumption using the same streamwise pressure distribution.
However, to simplify the computations of nonlinear disturbance
evolution, the infinite-swept-wing boundary-layer solutionwas used in

Fig. 2 Upper-surface Cp distribution computed using FUN3D.

Fig. 3 Computed Cp (Y � 234 in:) using FUN3D and OVERFLOW.

¶Data available online at http://fun3d.larc.nasa.gov/ [retrieved Decem-
ber 2012].
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the computational results presented as follows. Because of the sub-
stantially higher linear growth in the infinite-swept case, transition
assessment in this context presents a more stringent test for the effec-
tiveness of DREs in comparison with the actual boundary-layer flow
over the glove. The reader should note that the chord Reynolds number
for the freestream conditions given previously is 24 × 106. In the next
section, the stability results for two additional Reynolds numbers,
namely, 17 × 106 and 30 × 106, are presented, but the boundary-layer
mean flows for these cases were computed with the sameCp shown in
Fig. 3 by simply changing the freestream Reynolds number.

III. Nonlinear Computations and Secondary-Instability
Analysis

A. Selection of Target and Control Modes

Calculations were first performed to determine the wavelength of
the most amplified stationary (zero frequency) crossflow distur-
bances, whose growth needs to be suppressed to delay transition.
Because these are the targets of the DRE control, instability

associated with this wavelength is designated as the target mode. The
determination of the target-modewavelength is done by performing a
linear-parabolized-stability-equation (LPSE) analysis, which in-
cludes surface curvature and nonparallel effects. Figure 6 presents the
LPSE results for three Reynolds numbers (17 × 106, 24 × 106, and
30 × 106). For demonstration purposes, the target-modewavelengths
were selected to be 10, 8, and 7 mm for the three Reynolds numbers,
respectively. The N factors computed using the LPSE for these
spanwisewavelengths, and others, grow to large numbers between 11
and 20, approximately. The stationary crossflow disturbances associ-
atedwith thesewavelengths are the targetmodes for this control study
and the subject of control using DRE. The results in Fig. 6 also show
N factors for smaller-wavelength disturbances. For example,
wavelengths of 2.67 and 4mm reach themaximumN factors of 4 and
6.5, respectively, for Rec � 24 × 106. A wavelength of 4 mm was
selected as the control mode because the 2.67mmmodewas found to
have a relatively weak effect on the target mode. The control modes
with wavelengths of 5 and 2.33 mm are selected for the Reynolds
numbers of 17 × 106 and 30 × 106, respectively. Table 1 lists the
corresponding Reynolds number, and the target- and control-mode
wavelengths.

B. Nonlinear Evolution of Stationary Crossflow Disturbances with
and Without DRE Control

NPSEs, as implemented in LASTRAC, were used to study the
evolution of target modes with and without the control modes. For an
infinite-swept wing, the NPSE solution for a general nonlinearly
developing traveling crossflowwavewith a fundamental frequency f
and fundamental spanwise wave number β is given by

ϕ�x; y; z; t� �
X
m

X
n

ϕ̂�x; y;m; n�

× exp

�
i

Zx
x0

αmn�ξ� dξ� inβz − im2πft
�

(1)

Fig. 4 Crossflow Reynolds number and inviscid streamlines.

Fig. 5 N factors for various disturbance wavelengths using LST.

Fig. 6 N factors using LPSE for various Reynolds numbers: a) 17 × 106, b) 24 × 106, and c) 30 × 106.
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in which ϕ represents any perturbation field variable; x, y, and z are,
respectively, the chordwise, wall-normal, and spanwise surface
coordinates; and αmn is the streamwise wave number of Fourier
component �m; n�. Resolving a general nonlinear perturbation wave
accurately requires many Fourier modes �m; n�, which makes the
computation of traveling waves more time consuming than that of
stationary waves. However, to begin with, we present results for
purely stationary modes, in which case f � m � 0, and Eq. (1)
becomes

ϕ�x; y; z� �
X
n

ϕ
⌢

�x; y; n� exp
 
i

Zx
x0

α0n�ξ� dξ� inβz
!

(2)

In the computations discussed next, both target and control modes
are initiated at the lower-branch neutral location of the target mode.
The initial mode shapes for the target and control modes were
determined from the LPSE analysis. These modes were assigned
some arbitrary initial amplitude, which was very small for the target
mode and relatively larger for the control mode. This is because the
DRE control will induce relatively large amplitude of the smaller-
wavelength control mode as compared to the target mode, which is
induced by the natural distributed surface roughness. Different initial
amplitudes of the target modes are linked to the surface quality (e.g.,
polished vs painted), and different initial amplitudes of the control
mode to the height and diameter of the DREs. A quantitative analysis
for a specific experimental configuration would require the determi-
nation of boundary-layer receptivity to the actual shape, height, and
distribution of the roughness. Lacking a priori information concern-
ing the roughness definition, the consideration of the receptivity
phase is avoided in the current analysis, which makes the present
results qualitative in nature. It is clear that an analysis using other
methods, such as the linear-receptivity theory or DNS of the natural

and imposed surface roughness, will be required to draw definitive
conclusions.
Throughout this paper, the word “amplitude” will frequently be

used; therefore, it is necessary to clarify itsmeaning here at the outset.
Unless otherwise stated, the amplitude of the perturbation at a loca-
tion on the wing is defined as the ratio of the local maximum of the
chordwise perturbation velocity to the global freestream velocity.
Perturbation quantities are often decomposed into spanwise Fourier
modes. The modal amplitude of a Fourier mode, consistent with the
preceding definition, is the maximum of its chordwise component
normalized by the global freestream velocity.
The results for the evolution of various modes in a nonlinear

computation for Rec � 24 × 106 are described first. To initiate the
nonlinear computation, the mode shape is first computed for the
target mode of wavelength 8 mm using LPSE. The chordwise-
velocity component for this mode is assigned an initial amplitude of
10−4 (i.e., 0.01% of the freestream velocity). For stationary crossflow
computations, the number of Fourier modes used in the spanwise
direction is 40 [i.e., −40 < n < 40 in Eq. (2)]. Figure 7a presents the
results for the case without control. The primary mode (0, 1) initially
follows the LPSE result until its harmonics grow to significantly
enough amplitudes for the primary mode to saturate, as indicated
by the flattening out of the amplitudes in Fig. 7a. It can be seen that
the disturbance energy cascades into the harmonics (0, 2), (0, 3), etc.
The mean-flow distortion (0, 0) mode also gains significance, and it
attains amplitude equivalent to the first harmonic (i.e., 0, 2) mode.
These results are similar to the nonlinear crossflow-disturbance
evolution computed in [12] for a canonical problem and in [13] for a
low-speed swept-wing flow. The results for the case with DRE
control using a control wavelength of 4 mm [(0, 2) mode] are shown
in Fig. 7b,with an initial amplitude for the controlmode of 0.015 (i.e.,
1.5%of the freestreamvelocity). Note that, in contrast with the results
in Fig. 7a, an initial amplitude of (0, 2) mode is much higher than the
(0, 1) mode by specification. It can be seen that the control mode
initially grows, but eventually decays within a short chordwise
distance, as expected from the LPSE results. The target-mode growth
is delayed, as discussed in detail in the following paragraphs. Here,
one should note that, after a period of decay, the control mode picked
up again further downstream as a harmonic of the targetmode,which,
by then, had attained a large amplitude.
Figure 8 shows the results of a stationary crossflow vortexwith and

without control at x∕c � 0.35. Two spanwise periods are shown. The

Table 1 List of corresponding target- and control-
mode wavelengths and Reynolds number

Rec × 10−6
Target-mode

wavelength, mm
Control-mode

wavelength, mm

17 10 5
24 8 4
30 7 2.33

Fig. 7 Evolution of modal amplitudes with and without control for Rec � 24 × 106.

Fig. 8 Stationary crossflow vortices showing chordwise velocity at X∕C � 0.35 for the case in Fig. 7.
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introduction of the small-wavelength control mode suppresses the
development of the crossflow vortex, which can be clearly seen in
Fig. 8b when compared to Fig. 8a, implying that the transition
induced by the stationary crossflow mechanism will be delayed.
The results for the crossflow-disturbance evolution for three

different Reynolds numbers (17 × 106, 24 × 106, and 30 × 106), with
and without DRE control, are shown in Figs. 9–11. In this case, only
the amplitudes of the target and control modes are shown. The target
modes were assigned three different amplitudes of 10−5, 10−4, and
10−3, qualitatively representing ultrapolished, polished, and painted
surfaces, respectively. The initial amplitudes of the control modes
were selected as 0 (i.e., no control), 0.005, 0.01, and 0.015. For
Rec � 17 × 106, additional computations with a control amplitude
of 0.02 were performed. The target-mode growth was progressively
delayed further downstream with increasing control amplitude in
all cases.
In the results shown in Figs. 9–11, the saturation amplitude of the

targetmode reached in excess of 0.5 (i.e., 50%). In the low-speed case

analyzed in [13], the fundamental mode saturated at only about 20%.
In that case, the amplitude was based on the ratio of the maximum
perturbation local velocity to the boundary-layer-edge velocity in the
inviscid streamline direction. If the freestream-velocity-based ampli-
tude of 50% in the present analysis is converted to the boundary-
layer-edge-velocity-based amplitude, the value drops to approx-
imately 40%, mainly because the boundary-layer-edge velocity is
larger than the freestream velocity. This conversion enables compar-
isons to be made between the two cases. In the present high-speed
case, the saturation amplitude is approximately twice as large as it
was in the low-speed case. If one assumes that transition will occur
when the disturbance amplitude exceeds some fixed amplitude,
say 0.25, then transition locations for the no control and control
(amplitude � 0.015) cases can be estimated from these results, and
are given in Table 2 for the three Reynolds numbers and the three
initial amplitudes of the target modes. Note that the actual value of
amplitude chosen is not particularly import for evaluating relative
changes in transition location as long as it is sufficiently large to

Fig. 9 NPSE results with and without control for Rec � 17 × 106.

Fig. 10 NPSE results with and without control for Rec � 24 × 106.

Fig. 11 NPSE results with and without control for Rec � 30 × 106.
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support secondary instabilities. It can be seen that, except for the
lowest Reynolds number and the highest initial amplitude of the
target mode, DRE control (using initial amplitude � 0.015) moves
transition location (X∕C) by 20–25%. The next section reports the
estimated transition locations based on the secondary-instability
analysis. Here, one should note that transition delay using an initial
amplitude of 0.015 for Rec � 17 × 106 is smaller than 20%. It
requires an initial amplitude of 0.02 to delay transition beyond20% in
this case (see Table 3). No attempt has been made to optimize the
resultswith respect to the control-modewavelength, and the results in
Tables 2 and 3 are likely to change if an optimization studywere to be
performed. However, it is felt that such a study would not add value
without including the critical step of boundary-layer receptivity to
DRE and surface roughness.

C. Secondary Instability of the Target and Control Modes

As the stationary crossflow-vortex amplitude increases, the
nonlinear interactions among the many harmonics of the disturbance
cause the crossflow vortex to reach large-amplitude quasi-saturated
state, which leads to the appearance of strong shear layers as can be
inferred from the results in Fig. 8a. The crossflow vortex is now
susceptible to secondary instability similar to that in the case of large-
amplitude Görtler vortices [34,35]. The secondary instability is
similar to the primary instability in that it is also an unstable perturba-
tion to some mean-flow state. The main difference is that, for a
primary-instability wave, the mean flow varies strongly in the wall-
normal direction only, but for a secondary-instability wave, the mean
flow also varies strongly in the spanwise direction; the streamwise

variation in both cases is considered to be weak. The mathematical
formulation of the former leads to an eigenvalue problem of a set of
ordinary differential equations depending on a single spatial variable,
whereas that of the latter gives rise to an eigenvalue problemof a set of
partial differential equations depending on two spatial variables.
For the particular problem of secondary instability of stationary

crossflow vortices, the mean flow varies strongly in the wall-normal
direction, and, owing to the infinite-swept assumption, is periodic in
the spanwise direction.Along the crossflow-vortex axis, themean flow
varies slowly, and, therefore, a parallel assumption can be made to
ignore the mean-flow changes so that an ansatz can be used to factor
out the oscillatory component of the secondary-instability wave in this
direction. However, a problem unique to this flow configuration is that
the direction of the crossflow-vortex axis is not orthogonal to the
spanwise direction. This somewhat complicates the mathematical
formulation. To get around this problem, a nonorthogonal coordinate
systemwas devised (see [36,37]) that properly enforces the periodicity
in the spanwise direction and the slow variation in the vortex-
axis direction, resulting in the correct chordwise (i.e., in x direction)
secondary-instability growth rate.
The secondary-instability code used in the current analyses has

been validated against solutions of NPSE and DNSs based on a mean
flow that is invariant along the vortex axis and a small initial ampli-
tude perturbation at inflow. The agreement was excellent.
In the numerical computations, fourth-order finite differences

were used in the wall-normal direction, and the Fourier spectral
method was used in the spanwise (periodic) direction with typically
121 and 32 points, respectively. Given that there are five equations in
this problem, the total number of degrees of freedom of the resulting
discretized system is 5 × 121 × 32 � 19; 360. Grid convergence is
confirmed by carrying out the eigenvalue computations using more
grid points in each direction for selected points in the parameter space
of the problem.
A typical secondary-instability N factor computation procedure

can be summarized (see [36,37] for details) as follows:
1) Using the Arnoldi method, a thorough temporal eigenvalue

search at a few selected streamwise stations was carried out to identify
the relevant secondary-instability modes and their frequency ranges.
2) A suitable representative subset of secondary-instability modes

was chosen to span the relevant frequency range. Each of these tem-
poral eigenvalueswas subject to iterations toward a spatial eigenvalue
by fixing the real part of the eigenvalue (complex frequency) and
changing the complex wave number until the imaginary part of the
frequency became smaller than a preset tolerance. The inverse
Rayleigh iteration method was employed in this step.
3) With each selected eigenvalue from the previous step as an

initial guess, the eigenvalue computations were marched both up-
stream and downstream in the chordwise direction to cover the entire
chordwise range of interest. Finally,N factors are computed from the
eigenvalues.
Secondary-instability computations were performed for the three

Reynolds numbers using the target-mode amplitude of 10−4. Various
control amplitudes between 0 and 0.015 were used. Figure 12 pres-
ents the secondary N factor results for the target and control modes.

Table 2 Effect of DRE-based control
(amplitude � 0.015) on delay in boundary-layer

transition based on final target-mode amplitude of 0.25

Rec × 10−6 Aini �X∕C�tr
�X∕C�tr with

control Increment, %

17 10−3 0.281 0.306 9
10−4 0.378 0.434 15
10−5 0.493 0.591 20

24 10−3 0.234 0.275 17
10−4 0.303 0.374 24
10−5 0.385 0.479 24

30 10−3 0.157 0.207 32
10−4 0.212 0.266 26
10−5 0.271 0.333 23

Table 3 DRE-based control for
Rec � 17 × 106, using initial amplitude of 0.02
and transition location estimated using final

target-mode amplitude of 0.25

Aini �X∕C�tr �X∕C�tr with control Increment, %

10−3 0.281 0.324 15
10−4 0.378 0.455 20
10−5 0.493 0.631 28

Fig. 12 SecondaryN factors for target-mode amplitude of 10−4.
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The secondary-instability N factors for the target mode rise very
sharply for all control amplitudes and Reynolds numbers. If the
secondary instability N � 9 is selected to indicate the onset of
transition, then the delay in boundary-layer transition because of the
DRE could be computed (Table 4). It can be seen that transition delay
is between 20 and 23% for the three Reynolds numbers. Because the
N factor curves are essentially parallel, the percent change in
transition will remain the same regardless of the value of theN factor
selected to indicate transition onset. It is also noted that transition
delay predicted by the secondary-instability analysis is much more
consistent for the three Reynolds numbers as compared to predictions
based on fixed amplitude in Table 2.
The secondaryN factors for the controlmodes are also presented in

Fig. 12. For the 1.7 × 107 Reynolds-number case, the maximum N
factors are approximately the same (just under 3) regardless of initial
amplitudes. For the 2.4 × 107 Reynolds-number case, the maximum
N factors are strongly dependent on the initial amplitudes, and the
largest of these reaches approximately 8.5. For the highest Reynolds-
number case of 3.0 × 107, the initial amplitude dependency of the
maximum N factors is strong, but the maximum N factor reached is
only approximately 3. This apparent lack of trend in the secondary-
instability N factors for the control mode should not come as a

surprise, because the Reynolds number is not the only parameter that
is different in these three cases. For the first two cases, the control-
mode wavelength is half that of the target mode, whereas for the last
case, the control-mode wavelength is only one-third that of the target
mode. Different control-modewavelengths may give rise to different
values of secondary N factors and may also influence the nonlinear
growth of the target modes as noted previously.
One of the potential problems of theDRE control is that, if toomuch

control is introduced, the control mode itself may lead to transition by
attaining large-enough amplitudes and, hence, becoming susceptible
to secondary instability [24]. The secondary-instability-analysis re-
sults presented previously in Fig. 12b for the 4 mm control mode with
an initial amplitude of 0.015 (the largest used for the control mode)
show that the maximum N factor of secondary instability reaches
approximately 8.5.A secondary-instability analysis usingNPSEneeds
to be performed to determine whether this instability will lead to
transition. To do this computation, the linear secondary-instability
mode for the most amplified frequency of 95 kHz at X∕C � 0.12 is
Fourier decomposed in the z direction into different nβ modes [see
Eq. (1)], and used as inflow conditions (along with the stationary
modes) for theNPSEanalysis. Three different initial amplitudes for the
secondary disturbances are used, namely, 10−6, 10−5, and 10−4. The
amplitude of the stationary control mode is fixed at 0.015.As shown in
Fig. 13, with the two smaller initial amplitudes, the secondary insta-
bility grows and dies without causing transition.With the third, higher
initial amplitude, the secondary-instability amplitudes exhibit some
oscillatory behavior; however, an examination of the rms contours of
the streamwise perturbation velocity shows no indication of the flow
breaking down to smaller scales. Thus, transition due to the control
mode is not expected in this case either.
The secondary-instability results presented herein suggest that the

DRE could delay stationary crossflow-induced transition by about

Table 4 Effect of DRE control (amplitude � 0.015)
on delay in boundary-layer transition based on secondary-

instability N factor of 9, for initial target-mode
amplitude of 10−4

Rec × 10−6 �X∕C�tr �X∕C�tr with control Increment, %

17 0.414 0.500 21
24 0.329 0.401 22
30 0.232 0.286 23

Fig. 13 Comparison of linear secondary-instability and NPSE (lines).
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20% for all three Reynolds numbers as compared to the no-control
swept-wing NLF case. The secondary-instability analysis also yielded
interesting results on the characteristics of secondary-instability
modes, but that discussion is deferred to a later section, as their charac-
teristics are not directly related to the main theme of the paper. The
question of DRE-based control in the presence of traveling crossflow
disturbances is considered first.

D. Effect of DRE on Traveling Crossflow Disturbances

It is well known that traveling disturbances grow much more than
the stationary ones, and, if excited at a sufficiently high amplitude,
would dominate laminar–turbulent transition in swept-wing flows.
Based on the experimental data of [38,39], it was argued in [40] that
transition is caused by stationary disturbances when Tu ∼ 0.02%,
and dominated by traveling instability waves when Tu ∼ 0.15%.
Because the turbulence level at aircraft flight altitudes is low, the in-
flight swept-wing transition is expected to be caused by surface-
roughness-induced stationary crossflow disturbances, which can
then be controlled using the DRE. By performing NPSE computa-
tions, it is shown here that the DRE could also delay the growth of
traveling crossflow disturbances if present in the boundary layer.
As noted earlier, the NPSE solution for a general nonlinearly

developing traveling crossflow wave of a fixed frequency f and
spanwise wave number β is given by Eq. (1). Resolving a general
nonlinear perturbation wave accurately requires many Fouriermodes
�m; n�, which makes the computation of traveling waves more time
consuming than that of stationary waves. However, if a nonlinear
perturbation develops from a single small-amplitudewave initialized
as Fourier mode (1, 1), the only harmonics that are nonlinearly
generated as the wave amplitude grows are those on the diagonal of
the �m; n� plane, that is, modes �n; n�; all other off-diagonal modes
for which m ≠ n are 0. Consequently, a coordinate transformation
can be made as follows:

Z � z − �2πf∕β�t (3)

that is, the new coordinate system travels spanwisewith the spanwise
phase speed of the perturbation. Upon substitution of Eq. (3) into
Eq. (1), one has

ϕ�x; y; Z� �
X
n

ϕ
⌢

�x; y; n� exp
�
i

Zx
x0

α0n�ξ� dξ� inβZ
�

(4)

Therefore, the problem now becomes one of stationary wave, re-
sulting in an order of magnitude speed up in computational turn-
around. For example, if a nonlinearly evolving traveling crossflow
vortex requires 48 spatial Fourier modes to resolve in a traveling
frame of reference, it will require 48 × 48 spatial and time Fourier
modes to resolve the wave in the fixed frame of reference, because

these Fourier modes now lie along the diagonal of �m; n� space, and
Eq. (1) must be used to represent the perturbation. The coordinate
transformation works best and results in the savings of memory and
time when only a single traveling crossflow vortex is initialized;
however, it also works in some specific cases, in which both
stationary and traveling crossflow vortices are present as exemplified
in the following case.
If a stationary mode of shorter wavelength is introduced to control

the travelingmode, then a transformation of the form given by Eq. (3)
will not result in a stationary flowfield. However, because the
maximum amplitude of the control mode remains relatively small,
fewer Fourier modes are required to accurately represent it. By
applying the transformation in Eq. (3), the traveling target mode
becomes stationary, and the stationary control mode becomes a
travelingmode. A larger number ofmodes are used in n to resolve the
target mode, whereas fewer modes are used in m, mainly for the
control mode. Equation (1) will be used in this case, with m much
smaller than n.
Using the preceding approach, NPSE computations were per-

formed for Rec � 24 × 106, for which the linearly most unstable
traveling crossflow-instability mode has a frequency of approx-
imately 1 kHz and a spanwise wavelength of 12 mm (the target
mode). The stationary control mode has a spanwise wavelength of
4 mm (one-third of the target mode). The NPSE computation is
carried out in the spanwise traveling coordinate system as explained
previously; the targetmode becomes stationary, and the controlmode
appears to have a frequency of −3 kHz. It can be seen in Fig. 14 that
the linear N factors of the 12 mm target mode and the 4 mm control
mode computed in the stationary frame and the traveling frame gave
rise to the same results in each case. Thus, the switch froma stationary
frame to a traveling frame does not alter the stability properties of the
perturbations being analyzed.
In the control case in which both stationary and traveling modes

were present, the coordinate transformation also helped save re-
sources. Suppose the computation was carried out in the fixed frame,
then the harmonics generated by the target mode alone would align
themselves along the diagonal of the �m; n� space, whereas those
generated by the control mode alone would lie along the vertical axis
�0; n�. Again, assuming that 48 modes are required to resolve the
target mode, 48 × 48 spatial and time Fourier modes must be
included in the computation. By using themoving frame of reference,
the target-mode harmonics are transferred to the vertical axis �0; n�
with n < 49 and the control-mode harmonics, being initialized at (1,
3) in this case, now lie along �m; 3m�. As mentioned earlier, the
control mode has a moderate amplitude, and, therefore, just five
Fourier modes are sufficient to resolve it (i.e., m < 6); therefore, the
total number of Fourier modes required is 48 × 5. There are, of
course, nonzero off-diagonal Fourier modes in the �m; n� space that
are generated via interactions of the control and target modes.
However, in the chordwise range in which the control mode domi-

Fig. 14 Effect of coordinate transformation Eq. (3) on traveling and stationary modes.
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nates, the target-mode amplitude is small, and the off-diagonalmodes
are of secondary importance.
Nonlinear computations for a 12 mm, 1 kHz traveling crossflow

wave are first carried out in the absence of control. The evolution of
the fundamental harmonic and themean-flow correction are shown in
Fig. 15a. For comparison, the same figure also shows the results of
independent calculations pertaining to the evolution of the most
amplified stationarymodewith awavelength of 8mm.The number of
Fourier modes used for the traveling-mode computation is 48, that is,
m � 0 and −49 < n < 49, because it is done in the moving frame.
[For presentation purposes, the fundamental traveling mode is still
referred to as mode (1, 1) as if it were obtained in a stationary frame.]
The initial amplitudes for both the stationary and traveling modes are
10−4, and these computations are done independent of each other. It
should be noted that the initial amplitude of the travelingmodewould
realistically be much lower, and it is only the higher subsequent
growth that would help make the traveling mode more relevant.
Consistent with the linear theory, the traveling wave has a larger
growth rate as an examination of the amplitude-curve slopes will
reveal. Interestingly, however, it is the stationary wave that reaches
higher maximum amplitude than the traveling wave, approximately
50% for the former and less than 30% for the latter. The amplitudes of
the mean-flow-correction components for both the stationary and
traveling cases reach approximately 20%. The faster initial growth of
the travelingwave also drives faster growth of its harmonics, enabling
nonlinear effects to set in faster, causing the travelingwave to saturate
earlier, and, hence, a smaller maximum amplitude results.
The effects of control are analyzed by using 5 Fourier modes inm

and 48 Fourier modes in n. The 12 mm, 1 kHz target-mode initial

amplitude is fixed at 10−4, and three different amplitudes of the 4mm
control mode are used, namely, 0.005, 0.01, and 0.015. Figure 15b
shows that, with increasing control amplitude, the rise of the target-
mode amplitude is progressively delayed and its peak amplitude is
also reduced, indicating that this control mechanism is very effective.
This is consistent with the suggestion made in [41], based on a single
low-Reynolds-number computation, that DRE control may also be
applicable to traveling crossflow modes.
Figure 16 shows the mean velocity profiles at three selected

streamwise stations in the presence of both the traveling target mode
at the fixed amplitude (10−4) and the stationary control mode at two
amplitudes (0 and 0.015) (i.e., the case studied in Fig. 15b). The
distortions to these profiles are chiefly caused by the control mode,
because the target-mode amplitude is very small at these selected
stations. The velocity profiles in the inviscid streamline direction
show somevelocity deficit near the boundary-layer edge,which gives
rise to secondary instability (Fig. 13). The crossflow profiles show
reduced maximum amplitude with increasing control, as noted
previously for other configurations in [23,42], and this may be the
main reason for the reduced target-mode growth.
Because freestream turbulence level in flight is low, it is reasonable

to expect a much smaller initial amplitude of traveling disturbances
than the surface-roughness-induced stationary crossflow disturb-
ances. Therefore, another computation was performed using the
initial amplitude of 10−6 for the traveling mode. The results are
presented inFig. 17a,which shows that theDREprovides an effective
control of the traveling waves. The results are compared with the
stationary target mode with wavelength of 8 mm and higher initial
amplitude of 10−4 in Fig. 17b. The initial amplitude of the control

Fig. 15 Effect of control on traveling crossflow vortices.

Fig. 16 Mean-flow-velocity profiles with and without control mode.
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mode is the same (0.015) in the two cases. Without any control, the
traveling-crossflow-wave amplitude is already larger than that of
the stationary wave at approximately 20% chord, even though the
former’s initial amplitude is 100 times smaller than that of the latter.
With control, both stationary and traveling waves are suppressed.
One should note that the two results are independently generated (i.e.,
stationary target mode only or traveling target mode only). There
would, in fact, be interactions between the stationary and traveling
modes if both were present simultaneously (cf. [12]). These inter-
actions are difficult to track in the NPSE construct. Because both
the stationary and traveling target modes reach large amplitudes
and require a significant number of Fourier modes to resolve, no
coordinate transformation will result in significant savings of com-
putational resources.

E. Secondary-Instability Characteristics

In Sec. III.C, the secondary-instability analysis of stationary
crossflow disturbances was performed to determine the effectiveness
ofDRE in controlling crossflow-induced transition. It was shown that
the delay of transition in the presence of controlmode is caused by the
delay in the secondary-instability growth of the target mode. The
analysis also yielded interesting results about the characteristics of
secondary-instability modes, which are described here for both the
target and control modes.

Fig. 17 Effect of control on traveling crossflow vortices.

Fig. 18 Secondary-instability N factors for target and control modes for Rec � 24 × 106.

Fig. 19 Growth-rate spectra of secondary-instability modes shown in
Fig. 18a; X∕C � 0.3856.
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Figure 18 shows the N factor curves for the secondary-instability
modes of various frequencies for the primary target and control
wavelengths. Four significant secondary-instability modes are found
for the target mode with initial amplitude of 10−4, whereas three are
found for the control mode with initial amplitude of 0.015. In each
case, the most amplified mode is designated as mode 1, followed by
mode 2, etc. The secondary instability of crossflow vortices was
classified in [13] into two main categories (i.e., the y modes and z
modes). The former is associated with the strong shear layer created
by the velocity gradient in the wall-normal direction, and the latter

with that in the spanwise direction. For the results shown in Fig. 18,
mode 1 is a zmode for the target and a ymode for the control, that is,
the two types of modes correlate, respectively, with the spanwise
shear and wall-normal shear induced by the primary crossflow
vortex. In the low-speed experiment of [43], z mode of secondary
instability was detected.
The various secondary-instability-mode growth rates for the target

mode are plotted in Fig. 19 as a function of frequency at a fixed
streamwise station X∕C � 0.3856. This location is a short distance
downstream of the station where the secondary instabilities begin to
amplify, and, hence, the growth-rate magnitudes are still moderate at
this location. The peak-growth frequency is approximately 65 kHz
for mode 1. Here, mode 1 is a z mode, mode 2 a ymode, mode 3 a z
mode, and mode 4 a ymode. The corresponding eigenfunctions near
their respective peaks are plotted in Fig. 20, with the faint white lines
representing the underlying stationary crossflow vortex.
Similarly, the secondary-instability-mode growth rates for the

control mode are plotted in Fig. 21 as a function of frequency at
X∕C � 0.126. The peak frequency is found to be approximately
90 kHz for mode 1, a ymode. The corresponding eigenfunctions are
shown in Fig. 22.

IV. Conclusions

A computational analysis has been performed for a laminar-
flow test article designed to demonstrate DRE technology at flight
Reynolds numbers of relevance to transport aircraft. The Mach
number and sweep angle used in the analysis are 0.75 and 34.6 deg,
respectively. Computations are performed using NPSEs and
secondary-instability analysis for chord Reynolds numbers of
17 × 106, 24 × 106, and 30 × 106.
Various simplifying assumptions have been made in this study for

extending swept-wing NLF using the DREs. The infinite-swept

Fig. 20 Chordwise-velocity eigenfunctions for the four modes corresponding to Fig. 19.

Fig. 22 Chordwise-velocity eigenfunctions for the three modes corresponding to Fig. 21.

Fig. 21 Growth-rate spectra of secondary-instability modes shown in
Fig. 18b; X∕C � 0.126.

12 AIAA Early Edition / MALIK ETAL.

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
3,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
36

37
 



airfoil assumption does not adequately represent the flowfield on the
glove, as the fully 3-Dboundary layer on the glove ismuch less unsta-
ble than the infinite-swept case. In addition, the sameCp distribution
is chosen for the three flight Reynolds numbers; therefore, the results
reported and conclusions drawn are specific to the selected Cp
distribution. The initial amplitudes of the target and control modes,
and the associated mode shapes are arbitrarily chosen. For example,
linear eigenmode was used to initialize the calculation, but it is not
known how far downstream of the DRE such a mode shape develops
and what is the relation of its amplitude to the height and shape of the
roughness. Similarly, the initial target-mode amplitudes are related to
the specific surface finish, but these amplitudes were assumed in this
study. Because of these assumptions, conclusions drawn from the
present results can be characterized as qualitative at best. Definitive
conclusions can only be drawn when the initial modal amplitudes are
available from a careful receptivity analysis for a given surface finish
and DRE roughness height, shape, and location.
The computations performed in this study have demonstrated that

crossflow-induced transition can be delayed if the control mode of a
givenwavelength and amplitude is introduced.One of the goals of the
flight experiment was to demonstrate that DREs can delay transition
by 50%, which does not seem to be fully supported by these compu-
tations. The present computations show that DREs could delay
transition by about 20% for the pressure distribution and flight
Reynolds numbers used in the study. These results are based on the
secondary-instability analysis of the mean flow in the presence of
stationary crossflow disturbances. Several high-frequency secon-
dary-instability modes are present for the target- and control-mode
wavelengths. The most unstable secondary-instability mode is a z
mode for the target, but a y mode in case of the smaller-wavelength
control mode.
Computations were also performed to study the effect of DRE on

traveling crossflow disturbances. The wavelength of the most
amplified traveling disturbance (the target mode) was 12mm, and the
stationary control mode had awavelength of 4mm. The same control
mode was used to delay the growth of the stationary target mode of
wavelength 8 mm. It is shown that DRE with the 4 mm wavelength
suppresses the growth of the traveling mode of frequency 1 kHz
as well.
In summary, the following conclusions can be drawn from this

analysis:
1) DREs could delay crossflow-induced transition by about 20% at

Reynolds number in the range of 17 × 106 to 30 × 106.
2) In addition to the stationary crossflow disturbances, DREs are

found to suppress the growth ofmost amplified traveling disturbances.
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