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ACCURACY ANALYSIS FOR MIXED-ELEMENT FINITE-VOLUME
DISCRETIZATION SCHEMES

Boris Diskin∗ and James L. Thomas†

ABSTRACT

A new computational analysis tool, downscaling (DS) test, has been introduced and applied
for studying the convergence rates of truncation and discretization errors of finite-volume dis-
cretization (FVD) schemes on general unstructured grids. The study corrects a misconception
that the discretization accuracy of FVD schemes on irregular grids is directly linked to con-
vergence of truncation errors. The DS test is a general, efficient, accurate, and practical tool,
enabling straightforward extension of verification and validation to general unstructured grid
formulations. It also allows separate analysis of the interior, boundaries, and singularities that
could be useful even in structured-grid settings. There are several new findings arising from the
use of the DS test analysis. It was shown that the discretization accuracy of a common node-
centered FVD scheme, known to be second-order accurate for inviscid equations on triangular
grids, degenerates to first order for certain mixed-element grids. Alternative node-centered
schemes have been presented and demonstrated to provide second and third order accuracies
on general mixed-element grids. The local accuracy deterioration at intersections of tangency
and inflow/outflow boundaries has been demonstrated using the DS tests tailored to examin-
ing the local behavior of the boundary conditions. The discretization-error order reduction
within inviscid stagnation regions has been demonstrated. The accuracy deterioration is local,
affecting mainly the velocity components, but applies to any order scheme.

1 INTRODUCTION

There is an increasing reliance on computational simulations in aircraft design practices, supple-
menting traditional analytic and experimental approaches. Verification and validation methodolo-
gies [15] are being developed to ensure the correct applicability of these approaches in practi-
cal applications. Verification methodologies for structured grids, e.g., [12], are relatively well-
developed in comparison to unstructured grids, especially grids containing mixed elements or
grids derived through agglomeration techniques. The summary of the latest of three Drag Predic-
tion Workshops [9] illustrates the problems associated with assessing errors in practical complex-
geometry/complex-physics applications.

Finite-volume discretization (FVD) methods are widely used in computations on unstructured
grids. However, the methods for analyzing accuracy of FVD schemes on practical grids are not well
established. Issues related to accuracy of unstructured FVD methods have recently been addressed
in several publications [11, 13, 14]. In this paper, we introduce a practical method for evaluating the
accuracy of finite-volume discretization (FVD) schemes defined on general unstructured meshes.
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In a two-dimensional (2D) domain, the considered primal meshes are composed of triangular
and quadrilateral cells. The FVD schemes are derived from the integral form of a conservation law

∮

Γ

(F · n̂) dΓ =

∫∫

Ω

(f − S) dΩ, (1)

where f is a forcing function independent of the solution, S is a solution-dependent source func-
tion, Ω is a control volume with boundary Γ, n̂ is the outward unit normal vector, and F is the flux
vector. The general FVD approach requires partitioning the domain into a set of non-overlapping
control volumes and implementing numerically equation (1) over each control volume. The focus
of this paper is node-centered FVD schemes, where solution values are stored at the mesh nodes;
however, the proposed analysis techniques can be straightforwardly applied to cell-centered FVD
schemes.

P0P0

P4P3

P2

P1

Figure 1: Median-dual partition for node-centered finite-volume discretizations. P0 − P4 denote
grid nodes.

For 2D node-centered FVD schemes, a median-dual partition can be constructed by connecting
the centriods of the primal-mesh cells with the midpoints of the surrounding edges (Figure 1).
These non-overlapping control volumes cover the entire computational domain and compose a
mesh that is dual to the primal mesh.

The discrete solution is represented as a piecewise polynomial function; the polynomials are
defined within either primal or dual cells. The discretization is applied at a sequence of refined
grids satisfying the consistent refinement property. The property requires the maximum distance
across primal and dual cells to decrease consistently with increase of the total number of grid
points, N. In particular, the maximum distance should tend to zero as N−1/2 in 2D computations.

The main accuracy measure of any FVD scheme is the discretization error, Ed, defined as the
difference between the exact continuous solution, Q, to the differential conservation law

∇F = f − S (2)

and the exact discrete solution, Qh, of the discretized equations (1)

Ed = Q−Qh. (3)

A common approach to evaluate the accuracy of a FVD scheme is to monitor the convergence
of truncation errors. Truncation error, Et, measures the accuracy of the discrete approximation
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to the differential equations (2) and is defined as the residual obtained after substituting the exact
solution Q into the normalized discrete equations (1),

Et =
1

|Ω|





∫∫

Ω

(

fh − Sh (Q)
)

dΩ −
∮

Γ

(

Fh (Q) · n̂
)

dΓ



 , (4)

where Fh is a reconstruction of the flux F at the boundary Γ, |Ω| is the measure of the control
volume,

|Ω| =

∫∫

Ω

dΩ, (5)

fh and Sh are, respectively, approximations of the forcing function f and the source function S
on Ω, and the integrals are computed according to some quadrature formulas. Convergence of
truncation errors has been applied as a FVD accuracy measure on both structured (regular) and
unstructured (irregular) grids [5, 17]. On structured grids, this approach is well justified, as the
truncation error converges as O(hp) on sequences of consistently refined grids, where h is a char-
acteristic meshsize and p is the design discretization-accuracy order of the method. However,
the truncation-error convergence is often misleading for unstructured grids. Several studies, e.g.,
[11, 17], noted that 2nd-order convergence of truncation errors for some commonly used node-
centered FVD schemes can be achieved only on grids with a certain degree of geometric regular-
ity. Examples in subsequent sections show that such degradation of truncation-error convergence
does not necessarily imply a lower-order convergence of discretization errors; the design-order
discretization-error convergence can be achieved even when truncation errors exhibit a lower-order
convergence or, in some cases, do not converge at all.

Although the convergence of unstructured-grid truncation errors is not identical to the discre-
tization-error convergence, it still can be monitored to indicate if the design order of the dis-
cretization accuracy can be achieved. On a sequence of truly unstructured grids satisfying the
consistent refinement property, the convergence order of truncation errors is typically less than the
discretization-error convergence order by 1 for inviscid equations and by 2 for viscous equations.

The main computational tool introduced in this paper for evaluating accuracy of discretization
schemes is a downscaling (DS) test. Performed for a known exact or manufactured solution, the
test consists of a series of inexpensive computational experiments that account for local properties
of the studied scheme; it is designed to provide estimates for the convergence orders of the dis-
cretization and truncation errors by comparing errors obtained on different scales. The DS test is
a very general technique that can be applied to arbitrary grids and geometries. It can be tailored to
study the discretization accuracy in the interior, at the boundary, and/or in vicinity of singularities.
Analysis methods predicting the performance of DS tests have also been developed; examples are
shown in Sections 4 and 5. While the computations presented in this paper are one- and two-
dimensional, the analysis techniques and conclusions are fully expendable and have already been
successfully applied in the three dimensions.

The material in this paper is organized as follows. Section 2 describes the construction and
application of DS tests for general FVD schemes on unstructured grids. Section 3 introduces
analytical methods for predicting convergence of discretization and truncation errors in a DS test.
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Section 4 includes one-dimensional examples providing insights into convergence of the discretiza-
tion and truncation errors on irregular grids. Section 5 analyzes convergence for several sets of
2D equations and FVD schemes and corroborates the analysis with numerical tests performed on
randomly-split triangular, randomly-perturbed quadrilateral, and random mixed-element grids. In
addition, the effects of flow singularities are analyzed; one-order deterioration of the discretiza-
tion accuracy is observed and explained for inviscid stagnation flows. The concluding Section 6
summarizes the demonstrated computational and analytical results and discusses computational
issues related to implementation of the improved-accuracy FVD schemes. The paper has four ap-
pendixes: Appendix A shows the computational complexity of extending the improved-accuracy
FVD schemes to three dimensions; Appendix B illustrates an accuracy degeneration occurring on
mixed-element grids for a common FVD scheme, known to be 2nd-order accurate on general tri-
angular grids; Appendix C reports on studies of the discretization errors generated at non-smooth
interfaces on mixed-element grids composed of triangular and rectangular cells. Appendix D in-
vestigates discrepancies between the computational results presented in this paper and the results
reported in [11].

2 DOWNSCALING (DS) TEST

The purpose of the downscaling (DS) test is to predict the discretization and truncation-error con-
vergence orders in computations performed on general unstructured mixed-element grids satisfying
the consistent refinement property. To apply a DS test, one first chooses a (manufactured) solu-
tion defined on the given computational domain. The associated forcing functions are found by
substituting this solution into the continuous governing equations and boundary conditions.

The DS test requires numerical computations on a sequence of contracted domains zooming
toward a focal point within the original computational domain (Figure 2). The choice of the focal-
point location can be varied to study a typical interior discretization, a boundary discretization, or a
specific singularity. Because the number of points in the DS-test domains is held (approximately)
fixed, one can study solutions on grids with characteristic meshsizes much smaller than those of
practical computations with a globally-refined grid sequence.

There are at least two possible strategies for grid generation on these contracted domains: (1)
The first strategy is termed “scaled grid“; with this strategy, the first (coarsest) computational do-
main is defined as a subdomain of the investigated global mesh containing the focal point; other
(finer) domains and their mesh patterns are derived by scaling down this first domain (e.g., repeat-
edly multiplying all the distances from the focal point by a given factor, say, 1/2 or 1/4). (2) An
independent grid can be generated on each domain, assuming that the consistent refinement prop-
erty is satisfied, i.e., the maximum distance across a grid cell is scaled down with the same rate as
the diameter of the contracted domains.

The “scaled-grid“ approach (sketch (a) in Figure 2) is especially useful for studying interior
discretizations and straight boundaries. It is impractical to implement it for studies near a general
(discretely defined) curvilinear boundary because the physical boundary shape should be preserved
on each grid in the DS sequence (sketch (c) in Figure 2). In the DS test, the studied FVD scheme
is supplemented with a set of boundary conditions at the interface between the interior and the
DS domain; overspecification from the known manufactured solution is a possible choice. The
freedom to choose the focal point, the shape of domains, and the type of boundary conditions
greatly simplifies DS testing. In studying accuracy of discrete boundary conditions, i.e., when
the focal point is at the physical boundary, the physical conditions are implemented at the studied
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(a) Scaled grid (b) Independent grid generation (c) Accounting for curved phys-
ical boundary

Figure 2: DS test: illustration of computational domains for studying the interior and general
boundary. Black bullets mark the focal points; white squares mark the interface between the
interior and the DS-test domain.

boundary surface; overspecification can be applied at the interface between the interior and the DS
domain (see sketches in Figure 2).

The DS test evaluates local truncation and discretization-error convergence orders by compar-
ing errors obtained in computations on different scales. The DS convergence of truncation errors
is a precise indication of the truncation-error convergence (in the L∞-norm) observed in global
grid-refinement computations, as long as the DS test samples all representative regions. Global
convergence in integral norms, e.g., L1-norm, may be higher order because these norms are less
sensitive to fluctuations occurring locally.

On grids with an increased regularity, the DS test may overestimate convergence of the dis-
cretization errors. Some global error accumulation can occur on such grids; because of its local
nature and overspecified interface boundary conditions, the DS test is incapable to account for
the global error accumulation. Our experience shows that on truly unstructured multidimensional
grids, errors produced locally dominate globally accumulated errors, and the discretization-error
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estimates obtained in a DS test become sharp.

3 ANALYSIS OF DS-TEST DISCRETIZATION AND TRUNCATION ERRORS

In this section, we describe an analytical approach to estimating the convergence orders of the dis-
cretization and truncation errors observed in DS tests on general unstructured grids. The analysis
provides conservative estimates; typically on regular grids, the truncation-error convergence rates
are higher because of local error cancellations.

The discrete conservation-law equations are
∮

Γ

(

Fh
(

Qh
)

· n̂
)

dΓ =

∫∫

Ω

(

fh − Sh
(

Qh
))

dΩ, (6)

where the flux reconstruction Fh and the source approximation Sh depend on the node-centered
discrete solution, Qh; outward normal n̂, the discrete force function f h, and all integrals are ap-
proximated with certain accuracy by predefined methods. Assuming the discretization error to be
small comparing to the exact solution, Q, (|Ed| << |Q|), the discretization error can be evaluated
as

Ed ≈ J−1(Q)R(Q), (7)

where R (Q) and J (Q) are the residual and the Jacobian of the discrete conservation law, respec-
tively;

R(Q) = 1
|Γ|

[

−
∮

Γ

(

Fh (Q) · n̂
)

dΓ +
∫∫

Ω

(

fh − Sh (Q)
)

dΩ

]

,

J (Q) = ∂
∂Q

(

1
|Γ|

[

∮

Γ

(

Fh (Q) · n̂
)

dΓ +
∫∫

Ω

Sh (Q) dΩ

])

,
(8)

|Γ| = |Ω|(d−1)/d = hd−1 is the measure of the control-volume boundary, where d is the space
dimension and h is a characteristic diameter of the control volumes. Note, that in distinction from
(4), R(Q) is the residual of an integral conservation law and as such is normalized with |Γ|, not
|Ω|. The truncation error relates to R(Q) as

Et =
R(Q)

h
. (9)

For general systems of nonlinear equations, the asymptotic order, mJ , of J−1(Q) = O(hmJ )
can be predicted by analyzing an equivalent linear operator, E(Q), that is derived from the J(Q)
operator (8) by formally replacing all spatial derivative operators contributing to the Jacobian with
O(1/hk) terms, where k is the differentiation order. With this approach, terms like

∮

Γ

(g(Q)nx) dΓ

are replaced with g(Q)O(hd−1) and terms like
∫∫

Ω

g(Q) dΩ are replaced with g(Q)O(hd) ; here

g(Q) is a functional of the (manufactured) solution and/or its derivatives and nx is the x-directional
component of the outward normal n̂. We will refer to these replacements as equivalent substitu-
tions. After equivalent substitutions, E(Q) can be inverted to estimate the order of J−1(Q). For
basic fluid equations, this analytical evaluation can be performed with relative ease, as shown in
subsequent examples. For more complicated equations, the DS test can be expanded to evaluate
J−1(Q) numerically.
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A scalar (nonlinear) equation is called non-degenerated for a given manufactured solution, if
the coefficients of the leading terms in the equation linearized around this solution do not all vanish.
For FVD schemes discretizing non-degenerated scalar conservation laws with zero source function
S, a simple rule for evaluating the asymptotic order of J−1(Q) = O(hmJ ) is

mJ = (order of solution differentiation in F). (10)

The asymptotic order of the discretization error also depends on theR(Q) approximation order,
mR, R(Q) = O(hmR). There are four main contributors determining the accuracy of R(Q):
(1) flux reconstruction, (2) control-volume boundary approximation, (3) flux integration, and (4)
source and forcing term integration. Note that the contributors (1)-(3) have also been identified in
[14]. A pth-order accuracy for R(Q) (mR = p) can be achieved, if the following four sufficient
accuracy conditions are satisfied. The conditions are formulated in terms of the maximal degree
of a polynomial, for which the considered approximation provides the precise outcome.

1. Flux reconstruction accuracy The flux Fh should be reconstructed precisely at the control-
volume boundaries for an analytical flux F represented by polynomials of the (p− 1)th degree.

2. Control-volume boundary accuracy The integral of the outward normal to the boundary
should be computed precisely for each boundary segment represented as a (p − 1)th-order curve,
i.e., its (piecewise) parametric formulation with respect to the curve length involves only polyno-
mials of the (p − 1)th degree. In many practical cases, the control volumes in the interior have
piecewise linear boundaries, so this contributor plays an important role only near the physical
boundaries of the computational domain, where the imposed geometry must be approximated.

3. Flux integration accuracy The flux integration method should be exact for fluxes represented
as polynomials of the (p − 1)th degree. Note that this condition relates to the accuracy of the
integration scheme, and assumes no reconstruction errors. In particular, in 1D FVD schemes,
this condition is satisfied for all polynomials because each of the two control-volume boundaries
collapse to a single point. In multiple dimensions, one should distinguish between the global
and local integration accuracies. The global pth-order integration accuracy is achieved when the
numerical integration of polynomials of (p − 1)th degree over the entire closed control-volume
boundary is exact, i.e., provides the same result as the analytical integration. To achieve the local
integration accuracy of pth order, the (p − 1)th degree polynomials should be integrated exactly
over each segment of the boundary. Local accuracy is more strict and implies global accuracy of
the same order or higher; global pth-order flux integration accuracy is sufficient. For many FVD
schemes, local and global flux integration accuracies are the same, however, one commonly used
FVD scheme discussed in Section 5.2.2 relies on an economic integration strategy that capitalizes
on the global integration accuracy order exceeding the order of the local integration accuracy.

4. Source and forcing term integration accuracy The integral over the control volume should
be computed precisely for the integrated function represented by a polynomial of the (p − 2)th

degree.
Each of these sufficient accuracy conditions can be evaluated separately and independently.

Note: (1) the flux reconstruction and flux integration conditions recover the steps given in [4] for
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linear and quadratic schemes on unstructured meshes; (2) these conditions are conservative (not
necessary) because higher-order approximation toR (Q) can be achieved due to error cancellation,
especially, on regular (structured) grids. For conservation laws, with J−1(Q) = O(hmJ ) and
R (Q) = O(hmR), the truncation and discretization errors are evaluated as

Et = O(hmR−1) and Ed = O(hmR+mJ ). (11)

The following chart summarizes relations between error convergence orders predicted by analytical
estimates (11), observed in DS tests, and observed in global grid-refinement computations. The
analytical estimates (11) predict error convergence observed in DS tests; the estimates are con-
servative because they do not account for possible error cancellation occurring on regular grids.
The DS test is designed to predict the convergence orders observed in global computations. The
tests provide exact estimates for truncation error convergence, but do not account for possible
discretization-error accumulation. On truly unstructured multidimensional grids, both the esti-
mates (11) and the DS-test estimates proved to be sharp.

Analysis estimates • conservative for discretization errors
Et = O(hmR−1) and Ed = O(hmR+mJ ) • conservative for truncation errors

⇓
DS-test • optimistic for discretization errors
estimates • exact for truncation errors

⇓
Grid-refinement computations

4 ONE-DIMENSIONAL EXAMPLES

For one-dimensional (1D) equations, sufficient conditions for control-volume boundary accuracy
and for flux-integration accuracy (conditions 2 and 3 in Section 3) are automatically satisfied. For
simplicity, the examples considered in this section do not have source terms and the forcing term
is integrated analytically, so mR is fully determined by the accuracy of the flux reconstruction.

4.1 Discretization grids

A 1D discretization grid is defined as a combination of the primal and dual nodes. The solution
values are located at the primal nodes; the fluxes are located at the dual nodes. For node-centered
discretizations, a natural strategy is to place the primal mesh first and, then, use this mesh as a
reference for placing dual control volumes.

The 1D node-centered discretization grids employed in this section are designed to study effects
of grid irregularities and are described as follows. The first and the last of the N + 1 primal nodes,
xi, i = 0, 1, . . . , N , are always located at the ends of the computational interval; the interior nodes
can be distributed either uniformly or randomly. Either distribution retains the nodal ordering
and ensures that the maximal distance between the neighboring nodes is O(1/N). Let si, i =
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0, 1, . . . , (N + 1) denote the flux locations. The first and the last fluxes are also located at the ends
of the interval; the location of an interior flux, si, is always between the primal nodes xi−1 and
xi and initially defined as either a biased or an unbiased average; then, the dual node si may be
randomly perturbed.

(a) Uniform primal mesh; unperturbed unbiased dual mesh

(b) Uniform primal mesh; perturbed unbiased dual mesh

(c) Random primal mesh; unperturbed unbiased dual mesh

Figure 3: Examples of one-dimensional discretization grids: black bullets denote primal mesh
nodes, vertical tic-marks denote dual mesh nodes

Specifically, on an interval x ∈ [a, b], the primal nodes are distributed according to

x0 = a; xi = a+ (i + ri)
b− a

N
, i = 1, . . . , (N − 1); xN = b; (12)

where ri is either zero (uniform primal mesh) or a random number −0.4 ≤ ri ≤ 0.4 (random
primal mesh). The dual-mesh nodes are computed accordingly as

s0 = a; si = xi−1 + di (xi − xi−1) , i = 1, . . . , N ; sN+1 = b; (13)

where di = 0.5 corresponds to an unbiased unperturbed dual mesh; di = 0.7 corresponds to a
biased unperturbed dual mesh; and di = 0.5 + rs

i or di = 0.7 + rs
i correspond to unbiased and

biased perturbed dual meshes, respectively; here rs
i is a random number −0.25 ≤ rs

i ≤ 0.25.
Grid examples are shown in Figure 3. Note, that multidimensional median-dual partition can be
characterized as a combination of a random primal mesh and an unbiased, perturbed dual mesh.

The global computations in this section refer to tests performed on the interval x ∈ [0, 1] using
a sequence of grids with the total number of grid nodes increasing asN = 23, 24, . . . , 214. The DS
test is performed on a sequence of the intervals [0.5 − l, 0.5 + l], where l = 2−1, 2−2, . . . , 2−10

is a scaling factor; the random grids on each scale are generated independently; the number of grid
nodes at each scale is fixed, N = 16.

4.2 Convection equation

In the first example concerned with a constant-coefficient convection equation, we illustrate appli-
cations of the DS test to predict the accuracy of unstructured FVD schemes. The equation

∂xU = f(x), U(0) = U0 (14)
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(a) DS test
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(b) Grid-refinement computations

Figure 4: Convergence of discretization and truncation errors for the constant-coefficient convec-
tion equation. The tests are performed with random primal meshes and unbiased unperturbed dual
meshes.

is satisfied with the exact solution U = sin (x) , f = cos (x). This is a constant-coefficient
equation and, therefore, non-degenerated. FVD equations are formed as follows

Fsi+1
− Fsi

= sin(si+1) − sin(si), i = 0, . . . , N. (15)

The fluxes, Fsi
, approximate solution values at the dual nodes, si, and are computed by fully-

upwind extrapolations from the primal nodes (except for the first interior dual node) as

Fs0
= U0,

Fs1
= (s1−x0)U1+(x1−s1)U0

x1−x0
,

Fsi
= (si−xi−2)Ui−1−(si−xi−1)Ui−2

xi−1−xi−2
, i = 2, . . . , N + 1

(16)

where Ui is a discrete approximation to U(xi). These inviscid fluxes do not include solution deriva-
tives and thus, according to (10), J−1(Q) = O(1) in all cases. All fluxes (16) are 2nd-order accu-
rate and, thus, R (Q) = O(h2). The analysis predicts the discretization error Ed = O(h2) and the
truncation error Et = O(h).

Figure 4 shows convergence rates obtained in grid-refinement and DS computations on irreg-
ular discretization grids involving random primal meshes and unbiased unperturbed dual meshes.
The convergence history of the L∞ and L1 norms of truncation and discretization errors observed
in the global computations confirms the sharp estimates obtained in the DS test. The analysis cor-
rectly predicts 2nd-order convergence of discretization errors and 1st-order convergence of trunca-
tion errors.

Table 1 summarizes discretization and truncation error convergence rates observed in compu-
tations with 1D node-centered FVD schemes. Although not shown, similar convergence rates are
observed for cell-centered FVD schemes. The results reveal two important trends valid for gen-
eral non-degenerated inviscid equations: (1) grid irregularity strongly affects the truncation-error
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Table 1: Convergence of discretization and truncation errors of node-centered FVD schemes for
the constant-coefficient convection equation.

Primal Dual DS test Grid-refinement computations
Mesh Mesh Discr. Error Trunc. Error Discr. Error Trunc. Error

Uniform Unbiased, O(h2) O(h2) O(h2) O(h2)
Unperturbed

Uniform Biased, O(h2) O(h2) O(h2) O(h2)
Unperturbed

Uniform Unbiased O(h2) O(h) O(h2) O(h)
Perturbed

Uniform Biased O(h2) O(h) O(h2) O(h)
Perturbed

Random Unbiased, O(h2) O(h) O(h2) O(h)
Unperturbed

Random Biased, O(h2) O(h) O(h2) O(h)
Unperturbed

Random Unbiased, O(h2) O(h) O(h2) O(h)
Perturbed

Random Biased, O(h2) O(h) O(h2) O(h)
Perturbed

convergence, but has no effect on convergence of the discretization errors; (2) bias does not affect
convergence rates. The analysis estimates are sharp for discretization errors on all grids and for
truncation errors on all “randomized” grids. The convergence of truncation errors on uniform un-
perturbed grids is 2nd order because of error cancellations occurring on these regular grids. The
DS-test convergence rates are precise indicators of the rates observed in global computations.

4.3 Diffusion equation

The second set of one-dimensional tests illustrates the application of the DS analysis methodology
to the diffusion equation or, more generally, to any FVD scheme, in which fluxes include solution
derivatives. The non-degenerated constant-coefficient diffusion equation

∂xxU = f(x), U(0) = Ū0, U(1) = Ū1, (17)

is defined on the interval x ∈ [0, 1], with the exact solution U = sin(x), f = − sin(x). FVD
equations are formed as

Fsi+1
− Fsi

= cos(si+1) − cos(si), i = 1, . . . , N ; U0 = Ū0; UN = Ū1. (18)

Fluxes approximating the solution derivative are defined as

Fsi
=
Ui − Ui−1

xi − xi−1
, i = 1, . . . , N, (19)

where Ui is a discrete approximation to U(xi). Dirichlet boundary conditions are enforced. Ac-
cording to (10), J−1(Q) = O(h).
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Table 2: Convergence of discretization and truncation errors of node-centered FVD schemes for
the diffusion equation.

Primal Dual DS test Grid-refinement computations
Mesh Mesh Discr. Error Trunc. Error Discr. Error Trunc. Error

Uniform Unbiased, O(h4) O(h2) O(h2) O(h2)
Unperturbed

Uniform Biased, O(h3) O(h) O(h) O(h)
Unperturbed

Uniform Unbiased, O(h2) O(1) O(h2) O(1)
Perturbed

Uniform Biased, O(h2) O(1) O(h) O(1)
Perturbed

Random Unbiased, O(h3) O(h) O(h2) O(h)
Unperturbed

Random Biased, O(h2) O(1) O(h) O(1)
Unperturbed

Random Unbiased, O(h2) O(1) O(h2) O(1)
Perturbed

Random Biased, O(h2) O(1) O(h) O(1)
Perturbed

The placement of dual nodes (flux locations) significantly affects the error convergence. For
unbiased, unperturbed dual meshes, the fluxes are approximated with the 2nd-order accuracy, thus,
providing R(Q) = O(h2). For such FVD schemes, the analysis predicts the discretization error
Ed = O(h3) and the truncation errorEt = O(h). For either perturbed or biased dual meshes,R(Q)
is approximated with the 1st-order accuracy, and the corresponding estimates are Ed = O(h2) and
Et = O(1).

Table 2 summarizes the discretization and truncation error convergence rates observed for 1D
node-centered FVD schemes. The two main observations about grid-refined convergence rates of
discretization errors are (1) local “random” grid irregularities do not affect the discretization-error
convergence and (2) grid bias leads to one-order convergence deterioration.

The analytical estimates for the DS-test convergence rates are sharp for all grid types except
uniform-primal/unperturbed-dual type; the convergence rates on these grids are faster because of
local error cancellation. The DS tests accurately predict convergence orders of grid-refinement
truncation errors. The discretization-error convergence order is predicted well for the unbiased
perturbed dual meshes, but overestimated in other cases. The reason for this overestimation is the
error accumulation occurring in grid-refinement computations for all dual meshes except the un-
biased perturbed type. Note that the latter type is representative of multidimensional median-dual
partitions. Based on experience to date, in multidimensional computations on general unstructured
grids, the estimates obtained in DS tests are sharp as shown in following sections.
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5 TWO-DIMENSIONAL COMPUTATIONS

5.1 Poisson equation

x

y

-1 -0.5 0 0.5 1

1

1.5

2

Figure 5: A typical mixed-element unstructured grid generated with random splitting and random
perturbation of the underlying quadrilateral grid.

As a two-dimensional scalar example, we solve the Poisson equation,

∆U = f, (20)

with Dirichlet boundary conditions, on a series of primal mixed-element grids composed of trian-
gles and quadrangles. Each grid is formed from an underlying structured quadrilateral grid (Fig-
ure 5). In terms of a polar, (r, θ), coordinate system, the grid extent is defined as θ ∈ [π/6, π/3]
in the circumferential direction and r ∈ [1, 2.2] in the radial direction. The decision to split (or
not to split) each structured quadrangle into triangles is determined randomly; approximately half
of the quadrilaterals are split. In addition, the interior grid points are perturbed from their orig-
inal position by random shifts in the range [−

√
2/6,

√
2/6] of the local mesh size in the radial

direction.
The exact solution and forcing term are taken as U = [(sin(πx))2 + (sin(πy))2]/2, f =

−2π2[1− (cos(πx))2− (cos(πy))2]. In the FVD scheme, the solution is represented as a piecewise
polynomial function, with polynomials defined at the primal cells; the conservation law

∮

Γ

∇U · n̂ dΓ =

∫∫

Ω

fdΩ (21)

is enforced on node-centered control volumes constructed by the median-dual partition.
With reference to Figure 6, the integral flux through the dual faces adjacent to the edge [P0, P4]

is computed as
∫

ABC

∇U · n̂ dΓ = ∇UR · nR + ∇UL · nL, (22)

where nR and nL are directed areas of the corresponding dual faces. The gradient is reconstructed
separately at each dual face as follows.
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Figure 6: Illustration of gradient reconstruction for viscous terms on mixed grids with median-dual
partition.

For the triangular element contribution, the gradient is determined from a Green-Gauss evalu-
ation at the primal-grid element,

∇UL = ∇U014. (23)

The gradient overbar denotes a gradient evaluated by the Green-Gauss formula on the primal cell
identified by the point subscripts. With fully-triangular elements, the formulation is equivalent to
a Galerkin finite element scheme with a linear basis function [2, 3]. For the quadrilateral element
contribution, the gradient is evaluated as

∇UR = ∇U0234 +

[

U4 − U0

|r4 − r0|
− ∇U0234 · e04

]

e04, (24)

where ri is the coordinate vector of node Pi and

e04 =
r4 − r0

|r4 − r0|
(25)

is the unit vector aligned with the edge [P0, P4]. Note that for grids with dual faces perpendicular
to the edges, the edge-gradient is the only contributor. This approach to the gradient reconstruction
is used to decrease the scheme susceptibility to odd-even decoupling [7, 8]. In all cases, the linear
solution reconstruction leads to the 1st-order flux (gradient) reconstruction accuracy.

The asymptotic order of J−1(Q), computed according to (10), is mJ = 1. The volume integral
of the forcing term in (21) is evaluated as the value at the node multiplied by the dual volume.
Overall, R(Q) = O(h). The analysis predicts the discretization error Ed = O(h2) and the trunca-
tion error Et = O(1).

The sequences of globally refined grids are generated with 2n+3 + 1 points in both the radial
and circumferential directions, where n = 0, 1, 2, 3, 4. The sequences of DS grids are generated
from a grid with 17 points in both the nominal radial and circumferential directions and downscaled
about the center of the domain by a factor 2−s, where s = 0, 2, 4, 6, 8. The grid topology remains
unchanged.

The L1 norms of truncation and discretization errors are shown in Figure 7 versus an equivalent
mesh size parameter, taken as the L1 norm of the square root of the dual volume. Although not
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(b) Grid refinement computations

Figure 7: Convergence of the discretization and truncation errors for the Poisson equation solved
on irregular mixed-element unstructured grids.

shown, error convergence rates in the L∞ norm are the same as the L1-norm rates. The analysis
predicts the DS-test error convergence rate precisely. In grid-refinement computations, the trunca-
tion errors remain O(1) and the discretization errors converge with 2nd-order, precisely predicted
by the DS test. The reason for the O(1) convergence of truncation errors is grid irregularity stem-
ming from the perturbation to the grid points and the usage of mixed grids. Both references [11]
and [17] interpret O(1) convergence of truncation errors on irregular grids as indication that the
corresponding discrete solutions do not approximate the continuous ones; this example clearly
shows that this is not the case.

Although not shown, with no perturbations and with meshes composed of either regular tri-
angles alone or regular quadrangles alone, both the truncation errors and the discretization errors
converge with 2nd order in grid-refinement and DS-test computations.

5.2 Incompressible Euler equations

In this section we consider incompressible inviscid equations. The source function S is assumed
to be zero. Inviscid fluxes for conservation of mass and momentum are defined as

F = f ī + ḡj =





βu
u2 + p
uv



 ī +





βv
uv

v2 + p



 j̄, (26)

where the vector of unknowns, Q = [u, v, p], includes the Cartesian velocities and the pressure; β
is an artificial compressibility parameter introduced as in [2] and taken as β = 1 here.

The median-dual partition is applied. At each dual control volume, a polynomial solution ap-
proximation is constructed. The approximation is required to coincide with the discrete solution
value at the central node P0; the polynomial coefficients are determined through a least-square pro-
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cedure involving neighboring nodes, i.e., nodes linked by an edge to the central node P0. If the set
of neighboring nodes is insufficient to determine, uniquely and stably, the polynomial coefficients,
the set may be expanded to involve neighbors of neighbors. Three node-centered FVD schemes
are considered: an edge-reconstruction scheme and two face-reconstruction schemes.

5.2.1 Equivalent linear operator

The Jacobian of
∮

Γ

(F · n̂) dΓ is a 3 × 3 matrix

∮

Γ





nx ny 0
2unx + vny uny nx

vnx unx + 2vny ny



 dΓ (27)

operating on the vector δQ = [δu, δv, δp]T . After equivalent substitutions, the equivalent linear
operator, E(Q), becomes

E(Q) =





O(1) O(1) 0
uO(1) + vO(1) uO(1) O(1)

vO(1) uO(1) + vO(1) O(1)



 . (28)

If u2+v2 > ε > 0 everywhere in the computational domain, i.e., the equations are non-degenerated,
the inverse of E(Q) is a full matrix

J−1(Q) ∼ E−1(Q) =





O(1) O(1) O(1)
O(1) O(1) O(1)
O(1) O(1) O(1)



 . (29)

In a general situation, the asymptotic order of J−1(Q) can be different for different equations,
but for non-degenerated inviscid equations, the asymptotic order is mJ = 0 for all three equations.
The effect of degeneration on convergence of the discretization errors is considered subsequently
in Section 5.3. In the course of Section 5.2, we assume non-degenerated equations implying non-
vanishing velocity components of the (manufactured) solution.

5.2.2 Edge-reconstruction scheme

This FVD scheme is commonly used in unstructured computations [2, 3, 7, 8, 11]. By construc-
tion, the dual boundaries are piecewise linear and, therefore, in the interior and next to straight
boundaries, the outward normal n̂ approximation contributes no error to R(Q). The numerical
upwind flux at the edge midpoint is approximated according to the Roe scheme [2, 16],

(

Fh · n̂
)

=
1

2
[(F0 · n̂) + (F1 · n̂)] − 1

2

∣

∣A(Q̄)
∣

∣ (Q1 − Q0), (30)

where, Q0 and Q1 are the “left” and “right” solution reconstructions at the edge midpoint derived
from the linear approximations at the control volumes centered at P0 and P1, respectively (see
Figure 8); F0 and F1 are the corresponding “left” and “right” numerical fluxes; n̂ is the unit vector
aligned with the combined-directed-area vector n = nL + nR, where nL and nR are outward
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Figure 8: Illustration for edge-reconstruction flux integration scheme in the interior.

normal (directed-area) vectors of the left and right segments, respectively, with their amplitudes
equal to the corresponding segment lengths;

∣

∣A(Q̄)
∣

∣ is the Roe’s approximate Riemann solver
matrix computed for Q̄ = 1

2
(Q1 + Q0). With a linear solution approximation at each control

volume, this is a 2nd-order accurate flux reconstruction.
The flux integration over the two segments of the control-volume boundary linked at the edge

midpoint is approximated by multiplying Fh computed at the edge midpoint with the amplitude
of the combined-directed-area vector, |n|. According to the definition introduced in the sufficient
flux-integration accuracy condition (condition 3 in Section 3), this computationally efficient in-
tegration scheme provides 1st-order local integration accuracy. On general triangular grids, the
global integration accuracy has been shown to be 2nd order [2, 3, 4], providing the exact integra-
tion for the conservation laws with linear fluxes. The edge-reconstruction scheme exhibits similar
(1st-order local and 2nd-order global) flux integration accuracy on rectangular grids. On general
(irregular) quadrilateral and mixed-element grids, the global flux integration accuracy deteriorates
to 1st order. Examples confirming the integration accuracy deterioration on grids composed of
quadrilateral and triangular elements are shown in Appendix B

The forcing term integration over the control volume is approximated as the node value multi-
plied by the volume |Ω|. This approximation is precise for the integral of a constant (zeroth-order
polynomial) forcing term. The overall approximation accuracy for R(Q) is R(Q) = O(h2) on
triangular grids and R(Q) = O(h) on general quadrilateral and mixed-element grids, leading to
estimates of Ed = O(h2) and Et = O(h) for triangular grids and Ed = O(h) and Et = O(1) for
general grids.

For the edge-reconstruction discretization, the boundary is approximated as a piecewise straight
line connecting the grid nodes located at the physical boundary. The control volume around a
boundary node, P0, (see Figure 9) is closed with the boundary segments [PB, P0] and [P0, PC ].
The straight-line approximation [P0, P2] provides a 2nd-order accuracy to the curved boundary
segments connecting nodes P0 and P2. However, the approximation [P0, PB] provides only a 1st-
order accuracy for the P̂0, PF part of the curved boundary segment. The flux reconstruction and
integration over the segments [PA, PE] and [PE, PD] are the same as for the interior edges. The
integral fluxes through segments [PA, PB] and [PD, PC] are approximated by the numerical fluxes
(30) evaluated at points PB and PC using the directed areas n1 and n4, respectively. The linear
solution approximation at control volumes ensures 2nd-order flux reconstruction accuracy.
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Figure 9: Illustration for edge-reconstruction flux integration scheme near the boundary.

Boundary conditions are enforced weakly through the boundary fluxes. The inflow boundary
conditions are implemented by evaluating velocity contributions to the boundary flux from pre-
scribed conditions; the outflow boundary conditions are implemented analogously by evaluating
pressure boundary-flux contributions from prescribed conditions.

The integral flux through the boundary segment [PB, P0] located within a triangular cell is
computed as

(

Fh
[PB ,P0] · n2

)

, where n2 is the directed area of [PB, P0], and Fh
[PB ,P0] is evaluated

at P̄ = 5/6P0 + 1/6P2. The solution components prescribed in the boundary conditions, e.g.,
zero normal velocity components at tangency, both velocities at inflow, or the pressure at outflow,
are specified at P̄ from the known exact solution; other components are interpolated to P̄ from
the endpoints of the segment [P2, P0]. The integral flux through the boundary segment [PC , P0]
located within a quadrilateral cell is computed similarly,

(

Fh
[PC ,P0] · n3

)

, but Fh
[PC ,P0] is evalu-

ated at the node P0. The integration scheme provides 1st-order local accuracy for integrated fluxes
through [PB, P0] and [P0, PC]. On general triangular grids, the interpolation coefficients 5/6 and
1/6 lead to cancellation of 1st-order errors, providing zero residuals for conservation laws with lin-
ear fluxes and, thus, supporting the global 2nd-order flux integration accuracy [3]. The integration
procedure described for boundary segments within a quadrilateral cell leads to the 2nd-order global
flux integration accuracy on rectangular cells. The accuracy deteriorates to 1st order for irregular
quadrilateral cells and for nodes at the interfaces separating general triangular and quadrilateral
cells. The overall approximation accuracy for R(Q) computed at the boundary is consistent with
the accuracy of the interior FVD scheme, 2nd order for triangular and rectangular grids and 1st

order for general irregular grids.
Reliance on error cancellation in providing design-order discretization accuracy may lead to

some counterintuitive phenomena. In particular, improving the accuracy of boundary conditions
in a way that is not compatible with the flux computations through interior segments can upset
the error cancellation balance and, in fact, worsen approximation accuracy of R(Q), at least, lo-
cally. In some cases, this local imbalance is compensated by contributions from other boundary
segments. The imbalance is especially prominent at the corners where the boundary segments
represent different types (e.g., tangency and inflow) of boundaries.
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At the tangency boundary, the mass fluxes and velocity contributions to the momentum fluxes
are explicitly set to zero. For control volumes at general curved tangency boundaries, the tangency
condition is enforced over the straight segments, rather than over the physical curved boundary.
The error introduced by this approach can be considered as a flux reconstruction error introduced
by enforcing zero velocity over non-tangency boundary segments. As estimated analytically and
confirmed numerically in Section 5.2.4, the error is O(h) for each segment of the tangency bound-
ary. Reference [10] investigates an alternative approach, in which other types of boundary condi-
tions are enforced over the straight boundary segments approximating a curved tangency boundary.

5.2.3 Face-reconstruction schemes

In this section, we describe two face-reconstruction FVD schemes that employ the median-dual
partition and provide 2nd and 3rd order accuracies on general mixed grids. Similar to the edge-
reconstruction scheme, the linear and quadratic polynomials are defined at dual control volumes
and coincide with the solutions at the grid nodes. The polynomial coefficients are defined in a least-
square procedure involving solutions at the neighboring nodes. In the interior, piecewise straight
dual boundaries imply a precise representation for n̂. The schemes described are quite similar to
the scheme described by Delanaye and Liu [6] for cell-centered discretizations. As noted therein
and shown in Appendix A, the operation counts significantly favor the cell-centered approach for
flux integration in three dimensions.

The distinguishing feature of these face-reconstruction schemes is the flux integration proce-
dures ensuring the designed local integration accuracy. Extension of 2nd-order accuracy to mixed
grids can be achieved with linear polynomials, a modified straight-segment tangency boundary
approximation (see Figure 11 and discussion in Section 5.2.4), and a flux integration scheme pro-
viding local 2nd-order accuracy. Accuracy of 3rd order requires quadratic polynomials for flux
reconstruction, quadratic fit to the curved tangency boundary, an integration scheme with local
3rd-order accuracy, and a 2nd-order accurate scheme for integrating source and force terms.

In the implemented 2D version, a polynomial flux is defined at each segment of the dual
control-volume boundary and used in (30). The “left” and “right” solutions, Q0 and Q1, are repre-
sented by the basic polynomials defined at the adjacent control volumes; numerical fluxes, F0 and
F1, are analytically computed as products of the corresponding basic polynomials. The dissipation
matrix,

∣

∣A(Q̄)
∣

∣, is computed for Q̄, defined as the average of Q0 and Q1 evaluated at the segment
midpoint. The polynomial flux at this segment is defined according to (30), where all terms, beside
∣

∣A(Q̄)
∣

∣, are polynomials. The scheme with linear polynomials provides 2nd-order accurate flux
reconstruction; fluxes reconstructed with quadratic polynomials are 3rd-order accurate.

The inner product of the polynomial flux vector and the outward unit normal vector is integrated
over the segment with a numerical Gauss-Legendre quadrature formula employing 1 point for the
linear face-reconstruction scheme, and 2 points for the quadratic face-reconstruction scheme. As
a convenient debugging tool, one can add one Gaussian point to have total of 2 and 3 points,
respectively, per integration segment. With these improved accuracy integrations, the FVD method
should provide zero residuals for linear and quadratic manufactured solutions.

The forcing term integration method for the linear face-reconstruction scheme is the same as
for the edge-reconstruction scheme, providing sufficient accuracy for 2nd-order approximation of
R(Q). For quadratic face-reconstruction scheme, a linear (or piecewise linear) approximation to
the forcing term is constructed and integrated at each control volume providing a 3rd-order accurate
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approximation to 1
|Γ|

∫∫

Ω

f dΩ. The overall approximation accuracy for R(Q) is 2nd order for the

linear polynomials and the 3rd order for quadratic polynomials and does not deteriorate for general
unstructured grids. The predictions for the error convergence rates are Ed = O(h2), Et = O(h)
for the linear polynomials and Ed = O(h3), Et = O(h2) for the quadratic polynomials.

The boundary conditions for the face-reconstruction discretizations are enforced weakly, through
boundary fluxes. At inflow and outflow, the computational domain is bounded by a piecewise
straight boundary; the solution components are either specified from the exact solution (the ve-
locity is specified at inflow and the pressure is specified at outflow) or represented by the polyno-
mial approximation defined at the adjacent control volume. At tangency, the 2nd-order accuracy
can still be achieved with enforcing tangency over piecewise linear segments. (See discussion in
Section 5.2.4.) For the 3rd-order accuracy, the physical boundary should be approximated quadrat-
ically. In a general case, where the analytical shape of the boundary is unknown, the boundary
should be represented as a piecewise polynomial curve providing the required accuracy for the
boundary shape.

5.2.4 Numerical tests for non-degenerated flows

Numerical tests presented in this section are performed for 2D inviscid incompressible flows
around a cylinder of unit radius centered in the origin. The flow is described by the conserva-
tive equations (1) with zero source and forcing terms and fluxes defined in (26). The analytical
solution for this problem is known

U = U∞ + 2 sin2 θ−1
r2 + ∂yψ,

V = V∞ + 2 sin θ cos θ
r2 − ∂xψ,

P = P∞ − U2+V 2

2
,

(31)

where (r, θ) are the polar coordinates r2 = x2 + y2, tan θ = y/x, and ψ = −C ln(r) is the
stream function with C being a constant characterizing the flow circulation. In the course of this
section, the free stream at the infinity is characterized by U∞ = 1, V∞ = 0, P∞ = 1.5, and the
zero circulation (C = 0) is assumed.

Interior inflow/outflow domains The first set of tests is performed on a computational domain
shifted away from the surface of the cylinder: 1.5 ≤ r ≤ 4, 2π/3 ≤ θ ≤ 4π/3. Seven formu-
lations are studied: the edge-reconstruction FVD scheme on randomly-split triangular, randomly-
perturbed quadrilateral, and random mixed-element grids; and face-reconstruction FVD schemes
on randomly-perturbed quadrilateral and random mixed-element grids. Examples of unstructured
grids derived from an underlying structured grid are shown in Figure 10. For triangular and mixed-
element grids, randomization is introduced through random splitting (or not splitting) of struc-
tured quadrilateral cells. Each cell has equal probabilities to introduce either of the two diagonal
choices or, for mixed-element grids, no diagonals. For randomly-perturbed quadrilateral grids,
structured interior nodes are perturbed from their original position by random shifts in the range
[−

√
2/6,

√
2/6] of the local mesh size in both the radial and circumferential directions.

For each formulation, grid refinement and DS tests are performed. In grid refinements, the
underlined structured grid is refined by doubling the number of intervals in the radial and angular
directions. In the DS test, the coarsest 9× 9 grid is scaled down around the point r = 2.75, θ = π
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(c) Random mixed-element grid

Figure 10: Typical triangular and mixed-element unstructured grids defined on a computational
domain shifted away from the surface of the cylinder.

by multiplying all angular and radial deviations from this point by a factor of 0.5. Randomization
is introduced independently on each scale. The inflow boundary conditions are enforced at the
boundary corresponding to the external radius; outflow conditions are enforced at all other bound-
aries. Table 3 summarizes the convergence of discretization and truncation errors observed in these
tests. Note that the convergence orders are the same in all norms and for all variables and equations.
The results confirm analysis predictions and capabilities of the DS test to provide sharp estimates
for error convergence in grid refinement computations. The convergence rates observed for the
edge-reconstruction scheme on random triangular and random quadrilateral grids are consistent
with the results reported in [1]. Although not shown, we have implemented a central version of
the edge-reconstruction scheme, where fluxes at the edge midpoints are defined as averages of the
solutions in the neighboring nodes. The observed convergence rates were identical with the rates
shown in Table 3. The results contradict to [11], where zeroth-order convergence of discretization
errors on random quadrilateral grids was reported for a central scheme for a constant-coefficient
convection equation. Appendix D provides an in-depth investigation of this discrepancy.

Tangency boundary For the edge-reconstruction FVD scheme on triangular grids, local accu-
racy deterioration occurs if a curved tangency boundary is approximated by straight segments
linking primal-mesh nodes located at the physical boundary. Sketch (a) of Figure 11 illustrates
this approximation: the straight segments [P2, P0] and [P0, P4] approximate a curved boundary, the
points PB and PC are the segments’ midpoints, and the arrow indicates the local flow velocity. For
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Table 3: Convergence of discretization and truncation errors for various unstructured grid formu-
lation of the 2D inviscid incompressible equations on an inflow/outflow computational domain.

Formulation DS test Grid-refinement
computations

Discr. Err. Trunc. Err. Discr. Err. Trunc. Err.
Edge-reconstruction,
randomly-split triangular grid O(h2) O(h) O(h2) O(h)

Edge-reconstruction,
randomly-perturbed quadrilateral grid O(h) O(1) O(h) O(1)

Edge-reconstruction,
random mixed-element grid O(h) O(1) O(h) O(1)

Linear face-reconstruction,
randomly-perturbed quadrilateral grid O(h2) O(h) O(h2) O(h)

Linear face-reconstruction,
random mixed-element grid O(h2) O(h) O(h2) O(h)

Quadratic face-reconstruction,
randomly-perturbed quadrilateral grid O(h3) O(h2) O(h3) O(h2)

Quadratic face-reconstruction,
random mixed-element grid O(h3) O(h2) O(h3) O(h2)

P0
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P1

P4

PC

PPB

(a) Basic median-dual approximation for the edge-
reconstruction scheme

P

P2

P1

P4

PC

PB

P0

(b) Modified approximation for the linear face-
reconstruction scheme

Figure 11: Straight-segment approximations to curved tangency boundary.

the edge-reconstruction scheme, discrete tangency is enforced over the straight segments [P0, PB]
and [P0, PC ]. The exact continuous solution satisfies the tangency condition at the actual curved
boundary, not at the straight boundary segments. If evaluated with the exact solution, one boundary
segment would appear as inflow, while the other would appear as outflow.
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To assess the error introduced by implementing zero velocities over the straight boundary seg-
ments, consider the segment [PB, P0] that contributes to the control volume centered at P0. An
overspecified version of the boundary conditions, in which the exact velocities are reconstructed at
P̄ = 5/6P0 + 1/6P2, would complement the interior edge-reconstruction formulation to provide a
2nd-order accurate solution. Thus, the difference between this overspecified boundary flux and the
weak tangency boundary condition can be considered as a velocity reconstruction error. In partic-
ular, for the mass conservation law, the leading contribution to R(Q) from the segment [P0, PB]
can be estimated as

R[PB ,P0] = V̄ · n̄ = O(h), (32)
where

V̄ = 5
6
V0 + 1

6
V2 = 1

2
(V0 + V2) +O(h),

n̄ = 1
2
(n̂0 + n̂2) +O(h2).

and
(V0 + V2) · (n̂0 + n̂2) = O(h2),

Here, V̄ is the velocity vector reconstructed at P̄ and n̄ is the outward unit normal corresponding
to [P0, PB], V0, n̂0, V2, n̂2, are the exact velocities and unit normals at the grid nodes P0 and P2,
respectively, satisfying (V0 · n̂0) = (V2 · n̂2) = 0, and h is the characteristic meshsize. The 1st-
order accuracy in R(Q) leads to local 1st-order accurate discretization errors. The reason for the
residual contribution,R[PB ,P0], to be O(h) is the 1st-order difference between V̄ and (V0 +V2)/2.
Similar O(h) contributions appear in momentum-conservation equations.

X
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Figure 12: Random triangular grid around the top of the cylinder.

To illustrate the effect of a straight-segment approximation to a curved tangency boundary,
a sequence of random triangular grids is generated at the top of the cylinder (1 ≤ r ≤ 2.2,
π/3 ≤ θ ≤ 2π/3) and used in computations with the edge-reconstruction FVD scheme; a grid
example is shown in Figure 12. Figure 13 illustrates convergence of the L1 norm of truncation
and discretization errors in grid-refinement and DS tests performed with edge-reconstruction FVD
scheme. Two DS tests are performed, each with the focal point at the top surface of the cylin-
der. The first DS test uses overspecification at all boundaries except the interior tangency nodes.

23



(a) DS test: interior tangency boundary conditions (b) DS test: inflow/tangency boundary conditions
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Figure 13: Convergence of the L1 norm of truncation and discretization errors observed in DS
and grid-refinement tests for the edge-reconstruction FVD scheme. The tests are performed on
randomly-split triangular grids at the top of the unit cylinder. The open square symbols in the
sketches denote overspecified interface nodes for the DS tests.

The second DS test replaces the overspecification along one boundary with the physical inflow
boundary condition (see sketches in Figure 13).

For the interior-tangency nodes, there are two tangency segments; the errors at these segments
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contribute to R(Q) with opposite signs and, at least partially, compensate each other. Because of
this compensation, the accuracy deterioration does not affect interior-tangency nodes on the grids
with (nearly) uniform boundary node distributions. The 2nd-order convergence of discretization
errors and the 1st-order convergence of truncation errors demonstrated in the interior-tangency DS
test confirm this conclusion. However, in the corners or/and at the interfaces between clusters of
boundary nodes with different topology/spacing, the compensation does not occur. The accuracy
deterioration is clearly observed in the DS test performed with the inflow/tangency boundary con-
ditions. The convergence of the L1 norms of the errors in the grid-refinement test is the same as
convergence shown in the interior-tangency DS test and is not affected by local accuracy deteri-
oration in the corners; although not shown, the grid-refinement convergence of the L∞ norm of
errors is similar to the convergence demonstrated in the DS test with the inflow/tangency bound-
ary conditions. A similar accuracy deterioration can occur on mixed-element grids at non-smooth
interfaces between clusters of triangles and quadrilaterals; examples are shown in Appendix C.
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(a) DS test: basic approximation
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(c) DS test: modified approximation

Figure 14: Convergence of the L1 norm of truncation and discretization errors observed in DS tests
for the linear face-reconstruction FVD scheme with two types of straight-segment approximation
to the curved tangency boundary.

The linear face-reconstruction scheme possesses the flexibility to recover the 2nd-order accu-
racy with a straight-segment tangency boundary approximation. Two required modifications are
illustrated in the sketch (b) of Figure 11: (1) the points PB and PC are moved to the boundary,
and (2) the fluxes are reconstructed at the midpoints of the straight boundary segments, e.g., at
P̄ = 1/2PB + 1/2P0. Figure 14 shows convergence of the L1 norm of truncation and discretiza-
tion errors observed in DS tests for the linear face-reconstruction FVD scheme with two types
of straight-segment approximation to the curved tangency boundary: the basic median-dual ap-
proximation and the modified approximation. The tests are performed in the setting similar to
the inflow/tangency boundary conditions used with the edge-reconstruction scheme. The results
confirm that, with modifications (1) and (2), the 2nd-order convergence can be achieved with lin-
ear polynomials and a straight-segment approximation to the curved tangency boundary. Slower
convergence observed with the basic median-dual cells indicates that both modifications are essen-
tial. Although not shown, with the quadratic face-reconstruction scheme and a quadratic fit to the
curved tangency boundary, discretization errors converge with the 3rd order.
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5.3 Discretization error deterioration at stagnation

Local discretization accuracy deterioration may occur in the vicinity of stagnation or near other sin-
gularities in degenerated equations. To explain this phenomenon, we consider a one-dimensional
symmetry-line nonlinear convection equation

uux = f (33)

linearized around the leading-edge stagnation solution for the flat-plate geometry (u = −x)

−x∂h
xδ

u − δu = g, δu(−1) = δinflow, (34)

where ∂h
x is a discrete derivative approximation; the same equation describes the tangency flow

in the vicinity of the trailing-edge stagnation. The solution of (34) represents the discretization
error, δu. The right-hand side g is O(hp) small for pth-order discretizations and represents possible
residual perturbations; the inflow condition, δu = 0 defined at x = −1, may also contain an
δinflow = O(hp) error. The general solution of the initial-value problem (13) on the interval x ∈
[0, 1] is given by

δu = δu
specific(x) +

δu
specific(−1) − δinflow

x
, (35)

where δu
specific(x) is a specific solution of the equation (34). The function δu

specific(x) and the constant
δinflow are both O(hp) small. However, the discretization error δu grows as O(1/x) in the vicinity
of stagnation (x = 0) and locally becomes O(hp−1).

Analysis of the equivalent linear operator performed for the inviscid equations is also capa-
ble of detecting the discretization-error deterioration. In the vicinity of stagnation, both velocity
components become O(h) small and the equivalent operator becomes

E(Q) =





O(1) O(1) 0
O(h) O(h) O(1)
O(h) O(h) O(1)



 , (36)

cf. (28). Thus,

J−1(Q) ∼ E−1(Q) = O
(

h−1
)





O(h) O(1) O(1)
O(h) O(1) O(1)
O(h2) O(h) O(h)



 . (37)

For the velocity discretization errors, the asymptotic order of J−1(Q) becomes mJ = −1, but
for the discretization error in pressure, the asymptotic order remains the same as in the interior,
mJ = 0, implying different orders of convergence for different variables at stagnation. To retain
uniformly the same discretization-error convergence for all variables, one has to approximate the
momentum conservation equations at stagnation with higher order than in the interior. Another
curious observation is that the mass conservation law can be approximated with a lower accuracy
order without inflicting discretization-error deterioration.

Discretization accuracy deterioration in the vicinity of stagnation is a universal phenomenon
and expected for any discretization of the inviscid flow equations. In simulations, the stagnation
accuracy deterioration is rarely noticed and seldom correctly attributed because its effect is mostly
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visible far downstream of stagnation. At stagnation, the solution and all its derivatives are very
small; therefore, in spite of increased relative discretization error, the absolute value of the local
error, which is proportional to some derivative of the solution, does not exceed a typical error away
from stagnation. Also, the effect disappears in the presence of the diffusion terms that prevent
equation degeneration at stagnation. The discretization error generated at stagnation tends to be
amplified by accelerated flow convecting the error downstream. For leading-edge stagnation, this
stagnation-generated error is convected downstream along the tangency boundary, affects very
few points, and is almost not observable in integral norms, such as L1 and L2 norms, but can be
clearly detected in the L∞ norm. At the trailing-edge stagnation, the generated discretization error
is convected into the interior affecting more points. This may explain the difficulties observed in
solution of the trailing edge flow problems, even for relatively benign geometries such as flat-plate,
cylinder, or parabola.

In order to see the loss of accuracy more clearly, the DS test at stagnation needs to be adjusted
to evaluate the relative discretization error, defined as |Ed| / |Q|, where, for computing the relative
discretization error in the velocities, |Q|vel = max

(√
u2 + v2

)

and, for the relative discretization
error in the pressure, |Q|p = max (p). At stagnation, |Q|vel = O(h) and |Q|p = O(1).

Table 4: Convergence of discretization and truncation errors for various unstructured grid formu-
lations of the 2D inviscid incompressible equations at the aft of the unit cylinder. A single entry of
α in the table indicates it refers to all the variables (u, v, p).

Formulation Error convergence at trailing-edge stagnation, O (hα)
DS test Grid-refinement computations

Relative Trunc. Discr. Error Trunc.
Discr. Error Error L1 norm L∞ norm Error

Edge-reconstruction, u, v : α = 1 α = 1 1 < α < 2 α = 1 α = 1
randomly-split triangular grid p : α = 2

Edge-reconstruction, u, v : α = 0 α = 0 0 < α < 1 α = 0 α = 0
random mixed-element grid p : α = 1

Linear face-reconstruction, u, v : α = 1 α = 1 1 < α < 2 u, v : α = 1 α = 1
random mixed-element grid p : α = 2 p : 1 < α < 2

Quadratic face-reconstruction, u, v : α = 2 α = 2 2 < α < 3 α = 2 α = 2
random mixed-element grid p : α = 3

Table 4 summarizes the error convergence orders observed in computations at the aft of the
unit cylinder. Each global grid is formed from an underlying structured quadrilateral grid spanning
120 degrees in θ (centered about the most downstream point on the cylinder surface) with extent
1 ≤ r ≤ 2.2 in the radial direction; the grids are generated with 2n+3 + 1 points in both the
radial and circumferential directions, where n = 0, 1, 2, 3, 4. The structured quadrilaterals are
split randomly into a fully-triangular grid or a mixed-element grid, as discussed previously. The
DS test is generated by grid-scaling the coarsest grid with the focal point at the most downstream
point on the cylinder. The DS test is sharp in predicting convergence order of truncation errors
and the L∞ norm of discretization errors in the grid-refinement computations. The integral L1

norm of the discretization error is less sensitive because the locally increased relative discretization

27



error in velocities has the strongest influence on the solution along the streamline coming from the
stagnation; areas away from this streamline are affected much less. Note also that a clear distinction
between convergence of relative discretization errors in the velocities and pressure predicted by
(37) is observed only in the DS tests; in the global grid refinement computations, the nonlinear
interactions slow the convergence of discretization error in pressure, although, the pressure errors
remain much smaller than the velocity discretization errors on the same grids.

6 DISCUSSION

A new computational analysis tool, downscaling (DS) test, has been introduced and applied for
studying the convergence rates of truncation and discretization errors for general unstructured-grid
finite-volume discretization (FVD) schemes. The study corrects a misconception that the dis-
cretization accuracy of FVD methods on irregular grids is directly linked to convergence of trunca-
tion errors. The DS test is a general, efficient, accurate and practical tool, enabling straightforward
verification and validation of general unstructured-grid formulations. It also allows separate analy-
sis of the interior, boundaries, and singularities that could be useful even in structured-grid settings.

There are several new findings arising from the use of the DS-test analysis. It was shown
that the discretization accuracy of a common node-centered edge-reconstruction FVD scheme,
known to be 2nd-order accurate for inviscid equations on triangular grids, degenerates to 1st order
for mixed grids. Alternative node-centered face-reconstruction schemes have been presented and
demonstrated to provide 2nd and 3rd order accuracies on mixed grids. Appendixes B and C re-
port on generation and propagation of discretization errors at typical interfaces between triangular
and quadrilateral cells. A method improving the discretization accuracy at general non-smooth
mixed-element interfaces has been suggested. The local accuracy deterioration at intersections of
tangency and inflow/outflow boundaries has been demonstrated using DS tests tailored to exam-
ine the local behavior of the boundary conditions. The discretization-error order reduction within
inviscid stagnation regions has been demonstrated. The accuracy deterioration is local, affecting
mainly the velocity components, but applies to any order scheme. The result is somewhat surpris-
ing because the solution is so simple but analysis of the Jacobian operator along the stagnation
streamline has provided insight into the phenomena.

In 2-D inviscid computations, the cost of computing residuals of the face-reconstruction dis-
cretizations is about twice as large as the cost of edge-reconstruction residuals because the face-
reconstruction discretizations require a solution of the approximate Riemann problem at each
control-volume segment (face); the edge-reconstruction discretization requires one Riemann so-
lution per two connecting segments. The cost increase in 3D computations for general tetrahedral
grids is much larger because multiple dual control-volume faces are adjacent to each primal-mesh
edge. As a possible dramatic cost reduction, one can evaluate the dissipation at the midpoints of
primal-mesh edges, in the same way as in the edge-reconstruction discretization, once for all adja-
cent dual segments/faces, while unsplit flux contributions are evaluated at the dual segments/faces.
Also, as shown in Appendix A, the cost of face-reconstruction FVD schemes on cell-centered grids
is much lower.

On typical 2-D unstructured grids, where most nodes have at least five neighbors, a typical
computational stencil for the quadratic face-reconstruction discretization has the same size as a
stencil for the linear face-reconstruction scheme. The memory requirements for the quadratic
discretization are about two times higher than for linear discretizations because a larger number of
coefficients is stored at each control volume.
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A CONTROL SURFACE COMPLEXITY IN THREE DIMENSIONS

The complexity associated with flux integration in three-dimensional cell-centered or node-centered
FVD schemes is estimated. The complexity is measured as the number of flux-reconstruction in-
stances required for one residual evaluation. Flux reconstructions are the main contributers to
the operation counts associated with flux integration; other aspects of the discretization, such
as determining the solution values or solution-gradient values require additional considerations.
Three types of primal meshes are considered: (1) fully-tetrahedral, (2) fully-prismatic, (3) fully-
hexahedral.

An underlying Cartesian grid is considered and split into the various elements. The splitting
into tetrahedra assumes each hexahedral defined by the grid is split into 5 tetrahedra with one of
the tetrahedra being completely interior to the hexahedral (i.e., its faces are not aligned with any of
the hexahedral faces – see Figure 15). Only interior discretizations are estimated; boundary effects
are neglected.

Figure 15: Splitting hexahedral into 5 tetrahedra

Table 5: Number of flux-reconstruction instances per equation for 3D FVD discretizations.

Elements Cell-centered Node-centered Node-centered
face-reconstruction edge-reconstruction face-reconstruction

Tetrahedral 4 (4) 12 120 (60)
Prismatic 8 (5) 8 72 (36)

Hexahedral 12 (6) 6 48 (24)

Table 5 shows complexity estimates for two node-centered and one cell-centered 3D FVD
schemes. Both node-centered discretizations assume a median-dual partition of the domain. In
such a partition, the constituent dual control volumes are bounded by generally non-planar dual
faces formed by connecting 3 types of points: (1) edge midpoints, (2) element-face centroids, and
(3) element centroids. The edge-reconstruction FVD scheme approximates integration over all
of the constituent dual faces surrounding an edge midpoint by evaluating flux at the edge mid-
point with directed area taken as the combined directed area. The face-reconstruction schemes
reconstruct fluxes at each of the constituent dual faces separately with local directed areas. For
the present estimation, we assume that each flux-reconstruction instance requires the same opera-
tion count, in particular, the approximate Riemann solver is applied at each reconstruction point.
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As mentioned previously, significant saving can be achieved, if the dissipation matrix is computed
once for all control surfaces surrounding an edge. The first node-centered scheme is a 3D version of
the edge-reconstruction FVD scheme discussed in Section 5.2.2; the second node-centered scheme
is an extension of the 2D linear face-reconstruction FVD scheme introduced in Section 5.2.3. The
cell-centered formulation uses integration scheme with one flux reconstruction per control face.

Two estimates of complexity are given. The first estimate assumes that any constituent quadri-
lateral face in the control surface is broken into two triangular faces. The second estimate (in
parentheses) assumes any constituent quadrilateral face is approximated as planar. The former
is required to ensure a precise (water-tight) definition of the control surface and can serve as a
measure of the complexity in integration of the physical flux terms. The latter can serve as an
estimate of the complexity associated with numerical dissipation terms, in which details of the
control-surface can be neglected.

The complexities of cell-centered and edge-reconstruction node-centered FVD schemes are
reasonably close. Unfortunately, as shown in this paper, the accuracy of the edge-reconstruction
FVD scheme degenerates to 1st order on general mixed-element grids. To maintain the 2nd-order
accuracy on general grids, one can employ the face-reconstruction node-centered scheme, but the
integration complexity of this formulation substantially exceeds the complexity of the cell-centered
FVD scheme. These results are in agreement with the observations made by Delanaye and Liu [6],
which led them to selection of a cell-centered discretization.

B INTEGRATION ACCURACY OF EDGE-RECONSTRUCTION SCHEME ON MIXED
GRIDS

It was shown earlier [2, 3, 4] that the edge-reconstruction scheme provides exact integration of
linear fluxes on general triangular grids because of one-to-one correspondence with a 2nd-order
accurate finite-element formulation. Examples in this section illustrate deterioration of the in-
tegration accuracy to 1st order on general mixed-element grids as well as on quadrilateral grids
consisting of irregular cells. In this section, quadrilateral cells are referenced as regular if they
approach a rectangular shape in the limit of grid refinement. A 2nd-order integration scheme is ex-
pected to provide exact integration over a control volume boundary for arbitrary linear fluxes; any
deviation from the exact value indicates accuracy deterioration. For illustration, we assume a linear
flux F = (U, V )T = (y, 0)T and the central vertex 0 to be located at the origin (x, y) = (0, 0).

The first example illustrates accuracy deterioration on general mixed-element grids. Figure 16
shows a grid composed of five cells, one square and four right triangles, and the corresponding
median-dual control volume with boundary Γ; all vertexes are located on a uniform Cartesian
mesh with meshsize h = 1.

The exact value of the contour integral is
∮

Γ

(F · n̂) dΓ = 0, (38)

where n̂ is the outward unit normal. With the edge-reconstruction scheme, the flux is evaluated at
the edge midpoints with the vertical coordinates y[01] = y[04] = 0, y[02] = y[03] = 0.5, y[06] = −0.5.
The discrete contour integral is computed as

−y[02]
1

3
+ y[03]

1

3
− y[06]

1

6
=

1

12
, (39)
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Figure 16: Illustration for edge-reconstruction flux integration scheme on mixed grids.

which differs from the exact value. The face-reconstruction schemes recover the exact value of the
contour integral.
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Figure 17: Illustration for edge-reconstruction flux integration scheme on perturbed quadrilateral
grids.

The second example shows accuracy deterioration on a quadrilateral grid containing irregular
cells. Figure 17 illustrates a quadrilateral grid with three squares and one trapezoid. All vertexes,
beside vertex 2, are located on a uniform Cartesian grid with meshsize h = 1. The short basis of
the trapezoid 0123 is two times shorter than the long one; the centroid of the trapezoid is located at
(x, y) = (−7/18,−4/9). The exact value of the contour integral is again zero; the approximation
provided by the edge-reconstruction scheme is 1/36. The face-reconstruction schemes recover
the exact value of the contour integral. Note that one common version of the edge-reconstruction
scheme, which uses the arithmetic average of the vertexes instead of the centroid as the primal-cell
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center, provides the exact answer for integration of the flux F = (y, 0)T for the geometry shown in
Figure 17, but deviates from the exact integration for F = (x, 0)T on the same grid.
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Figure 18: Example of a mixed-element grid with smooth interface.

The examples above show that the edge-reconstruction scheme provides 1st-order integration
accuracy on general unstructured grids; nevertheless, there are important practical cases where 2nd-
order accuracy can be recovered. For example, the edge-reconstruction scheme provides 2nd-order
integration accuracy on mixed-element grids that have clusters of general triangular cells, mapped
clusters of quadrilateral cells, and a smooth interface separating these clusters of primal cells.
Mapped clusters of quadrilateral cells are derived from uniform (possibly anisotropic) Cartesian
grids by smooth mapping. An example of a mapped cluster is a stretched bodyfitted (sub-)grid with
a stretching factor (i.e., the ratio of adjacent meshsizes) β = 1 +O(h), where h is a characteristic
distance across cells used in verification of the consistent refinement property. An interface is
considered smooth if the unit normal changes smoothly with the distance along the line separating
clusters of triangular and quadrilateral cells. An example of a mixed-element grid with a smooth
interface is shown in Figure 18; the bold line highlights the interface separating a mapped cluster
of regular quadrilaterals and a cluster of randomly-split triangles.

To provide insight into recovering the 2nd-order accuracy on grids with smooth interfaces,
we consider a grid consisting of four cells, two triangular and two rectangular, separated by a
straight-line interface; the grid and the corresponding dual control volume with the boundary Γ
are shown in Figure 19. The integral over the contour

∮

Γ

can be split into two contour integrals,
∮

ABCP0GH

and
∮

CDEFGP0

. Our goal is to show that there is an approximation to the integral over

the interface
∫

GP0C

that makes both normalized integrals, 1
|Γ|

∮

ABCP0GH

and 1
|Γ|

∮

CDEFGP0

, 2nd-order

accurate. Approximations to integrals over other segments are computed according to the edge-
reconstruction scheme.

The following derivation relies on the fact that the edge-reconstruction scheme provides the
2nd-order integration accuracy on general triangular grids and on regular quadrilateral grids as-
suming proper boundary closures, e.g., the boundary closures discussed in Section 5.2.2. Let us
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Figure 19: Illustration of a mixed-element grid with a smooth interface separting general triangles
and regular quadrilaterals

treat the interface between the triangular and rectangular cells as a boundary of the cluster of trian-
gular cells. This approach ensures 2nd-order accuracy in approximating 1

|Γ|

∮

CDEFGP0

F (P ), where

F (P ) is an arbitrary (piecewise smooth) function. Thus, the approximation to the interface integral
is computed as

∫

GP0C

F (P ) =
1

2

[

F (P̄01)|P0, P1| + F (P̄02)|P0, P2|
]

, (40)

where P̄01 = 5/6P0 + 1/6P1 and P̄02 = 5/6P0 + 1/6P2. To establish the 2nd-order accuracy for
1
|Γ|

∮

ABCP0GH

, we need to satisfy the following relation

1

|P1, P2|
(

F (P̄01)|P0, P1| + F (P̄02)|P0, P2|
)

= F (P0) +O(h2). (41)

Indeed, using the Taylor expansion,

F (P̄01)|P0, P1| + F (P̄02)|P0, P2|
|P1, P2|

= F (P0) + F ′(P0) (|P0, P1| − |P0, P2|) +O(h3), (42)

where F ′(P0) is the derivative of the function F (P ) along the interface. For mapped grids,
|P0, P1| − |P0, P2| = O(h2).

The 2nd-order integration accuracy can also be recovered on general mixed-element grids
with irregular quadrilaterals and non-smooth interfaces if a 2nd-order accurate face-reconstruction
scheme is employed for nodes surrounded only by quadrilateral cells, the edge-reconstruction
scheme is employed for nodes surrounded only by triangular cells, and a special conservative
interface scheme is derived for other nodes. One possible methodology for derivation of the in-
terface scheme requires introduction of auxiliary (hanging) nodes at the centers of edges (faces
in 3D) separating triangles and quadrilaterals; these nodes are used to divide triangles attached to
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Figure 20: Illustration of the interface scheme for transition between face-reconstruction scheme
on quadrilaterals and edge-reconstruction scheme on triangles.

the interface (see Figure 20). The control volumes around original nodes located at the interface
are constructed by uniting corresponding dual volumes from triangular and quadrilateral domains
(shaded volumes in Figure 20); volumes around auxiliary nodes are those from the triangular part
only.

For flux integration, the interface is treated as a boundary for the triangular part of the domain,
employing the integration techniques explained in Section 5.2.2. In particular, for integration of
the interface segments of the control-volume boundaries, the solution is reconstructed at the point
P̄ = 5/6P0 + 1/6P1, where P0 and P1 are the neighboring grid nodes located at the interface (see
Figure 20); for integration over the control-volume boundary segments attached to the interface
from the triangular side, the solution is reconstructed at the attachment point. All integrations over
control-volume boundary segments located within quadrilateral cells are performed according to a
2nd-order accurate face-reconstruction scheme. Note that on mixed-element grids, which include
quadrilateral cells only within clusters of mapped quadrilaterals, edge-reconstruction scheme can
also be used for nodes surrounded by quadrilaterals.

C EDGE-RECONSTRUCTION SCHEME: CONVERGENCE OF DISCRETIZATION ER-
RORS ON MIXED-ELEMENT GRIDS WITH NON-SMOOTH INTERFACES

In this appendix, we consider convergence of truncation and discretization errors of the edge-
reconstruction scheme for the conservation laws with fluxes (26) on mixed-element grids with
clusters of triangular and rectangular cells. As a result of integration accuracy degradation, dis-
cretization errors of 1st order are generated at non-smooth interfaces between triangular and rect-
angular cells; thus, the L∞ norms of truncation and discretization errors are expected to converge
with the zeroth and first orders, respectively. In many cases, the generated discretization errors
remain local, and integral (e.g., L1 or L2) norms of discretization errors converge faster than 1st or-
der. In problems with strong convection, however, the generated discretization errors can translate
downstream contaminating large portions of the computational domain and leading to a 1st-order
discretization-error convergence in all norms.
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Figure 21: A representative 65×65-node mixed-element grid with a non-smooth interface between
triangular and rectangular cells
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Figure 22: Convergence history for computations on grids with a non-smooth interface between
triangular and rectangular cells

To illustrate generation and propagation of discretization errors, we consider a square domain
with the side length of 1/64 centered at (x, y) = (−1.5, 0.4). The exact solution is the cylinder-
flow solution (31). The discretization grids are derived from regular triangular grids. The vertical
column, 6 meshsize wide, located one cell away from the inflow vertical boundary is divided
into 6 × 8 rectangles; the triangular cells in each other rectangle are replaced with rectangular
cells. A 65 × 65-node grid is shown in Figure 21. Edge-reconstruction scheme is applied. The
convergence history of the L∞ norms of truncation and discretization errors as well as L1 and L2
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(a) Pressure, P
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(b) Horizontal velocity, U

Figure 23: Discretization error profile on 129 × 129-node mixed-element grid with a non-smooth
interface between triangular and quadrilateral cells

norms of discretization errors is shown in Figure 22. As expected, the L∞ norms of truncation
and discretization errors converge with zeroth and first order, respectively. Convergence of integral
norms of discretization errors varies for different variables: the discretization errors in the velocity
components, U and V , exhibit a 1st-order convergence; the L2 norms of the discretization errors
in the pressure, P , converge faster than 1st order, but slower than 2nd order; convergence of the
L1 norms for the pressure errors is 2nd order. A detailed profile of discretization errors in U and
P shown in Figure 23 explains the observed variation in convergence rates. For all variables, 1st-
order discretization errors are generated at the corners where rectangular cells are surrounded by
triangles; however, the generated pressure errors remain local, while the errors in U propagate
downstream.

The sequence of mixed-element grids used in this example has been tuned to demonstrate 1st-
order discretization-error convergence in all norms; however, in practical computations on general
mixed-element grids, certain errors cancellations are quite common, and the integral norms of
discretization errors exhibit convergence rates that are between 1st and 2nd order. The next example
presents a mixed-element grid with substantial error cancellations.

Numerical tests with the same cylinder-flow solution (31) are performed on mixed-element
grids with a diagonal interface that is non-smooth everywhere. A representative grid and discretization-
error convergence history are shown in Figure 24. While not shown, the truncation errors converge
with zeroth order in the L∞ norm. Convergence of the L∞ norms of discretization errors is 1st

order, as expected. Convergence of the L2 norms of discretization errors approaches 2nd order.
Improved L2-norm convergence is explained by oscillations observed in the discretization errors
along the interface. The oscillations lead to error cancellations downstream of the interface. The
horizontal-velocity error profile is shown in Figure 25.

Note that the convergence results shown in Figure 24 contradict [11], where zeroth order con-
vergence for the L∞ norms of discretization errors and half-order convergence for the L2 norms
of discretization errors have been reported for a central edge-reconstruction scheme applied to a
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Figure 24: A representative grid and convergence rates on mixed-element grids with a diagonal
interface
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Figure 25: Discretization error profile for the horizontal velocity component, U , on 129×129-node
mixed-element grid with a diagonal interface

constant-coefficient convection problem on a similar mixed-element grid. A possible explanation
for this discrepancy is provided in Appendix D.

D EDGE-RECONSTRUCTION SCHEME ON PERTURBED QUADRILATERAL GRIDS

This section reports on investigation of the claim made in [11] that the edge-reconstruction scheme
for perturbed quadrilaterals is zeroth order.

The considered uniform quadrilateral grids are Cartesian grids (Figure 26 (a)) defined on the
domain x ∈ [0, 1] and y ∈ [0, 1]. For the perturbed quadrilateral grids, all grid points are perturbed
in both x and y directions by random shifts in the range [−0.1,+0.1] of the local mesh size (Fig-
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ure 26 (b)). The sequences of globally-refined grids are typically generated with 2n+3 + 1 points
in both directions, where n = 0, 1, 2, 3, 4, 5.
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(b) Perturbed grid.

Figure 26: Typical computational grid (shown with 24 points in each direction of underlying Carte-
sian mesh).

Following [11], the scalar convection equation is solved,

a
∂q

∂x
+ b

∂q

∂y
= f, (43)

where a and b are constants (taken as a = b = 1), q is the solution, and f is a forcing term. At
the inflow boundary, q is specified from the solution. At the outflow boundary, the boundary flux
is determined from the solution value at the nearest node point, referred to here as a weak closure
condition. This closure is approximately a first-order upwind differencing closure and is also that
advocated in [11].

The characteristic direction is defined as ξ = (ax + by)/c where c2 = a2 + b2. The cross-
characteristic direction is defined as η = (−bx+ ay)/c. There are four exact solutions considered:

q1 = sin(4πcξ); f1 = 4πc2 cos(4πcξ). (44)

q2 = c(ξ + ξ2/2); f2 = c2(1 + ξ). (45)

q3 = 0; f3 = 0. (46)

q4 = sin(πcη); f4 = 0. (47)
The first two solutions have variation in the characteristic direction; the third solution is trivial; the
fourth solution has variation in the cross-characteristic direction only.

38



The L1 norms of truncation and discretization errors are shown versus an effective meshsize
parameter, taken as the L1 norm of the square root of the dual volume. In the figures, the shaded
symbols denote truncation errors and the open symbols denote discretization errors; the errors of
the third solution are not shown.
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Figure 27: Errors in grid refinement for first-order upwind edge-reconstruction scheme.

The results for the first-order accurate upwind edge-reconstruction scheme are shown in Fig-
ure 27. The results are consistent with analysis provided in this paper. For the uniform grids,
both truncation errors and discretization errors show a first-order convergence. For the perturbed
grids, the truncation errors show one-order reduction in convergence but the discretization errors
remain first-order accurate. Variations of the magnitude of the discretization error norm between
the uniform and perturbed grids with the same number of points are very small.

The results for the second-order accurate upwind-biased (Fromm-type) edge-reconstruction
scheme are shown in Figure 28; this discretization uses the least-square gradient at a node to re-
construct the solution at the edge-midpoints. Again, the results are consistent with expectations.
For the uniform grids, both truncation errors and discretization errors show a second-order con-
vergence. For the perturbed grids, the truncation errors show no convergence, i.e., zeroth-order
convergence. On coarse grids, the discretization error convergence is better than first order. For
solutions q2 and q4, the discretization errors asymptote clearly to first-order accuracy on finer grids.

The results for the second-order accurate central edge-reconstruction scheme are shown in
Figure 29; this discretization reconstructs the solution by averaging the two nodal values on either
side of an edge. This scheme is susceptible to checkerboard instabilities and boundary conditions
are prominent in eliminating unstable modes. For the uniform grids, both truncation errors and
discretization errors show a second-order convergence. Although not shown, the discretization
errors exhibit a checkerboard pattern over the mesh.

For the perturbed grids, the truncation errors show no convergence, although we do not show
their variation. The variation of the discretization errors is shown for two grid sequences. The

39



Effective Mesh Size

E
rr

or

0.02 0.04 0.06 0.08 0.1

10-5

10-4

10-3

10-2

10-1

100

First Order Variation
Second Order Variation
L1:e1
L1:e2
L1:e4
L1:e1
L1:e2
L1:e4

Grey Symbols Truncation Error
Open Symbols Discretization Error

Uniform Cartesian Mesh
Dirichlet Inflow ; Weak Outflow

Fromm Scheme

(a) Uniform grid.

Effective Mesh Size

E
rr

or

0.02 0.04 0.06 0.08 0.1

10-4

10-3

10-2

10-1

100

First Order Variation
Second Order Variation
L1:e1
L1:e2
L1:e4
L1:e1
L1:e2
L1:e4

Grey Symbols Truncation Error
Open Symbols Discretization Error

Perturbed Cartesian Mesh
Dirichlet Inflow ; Weak Outflow

Fromm Scheme

(b) Perturbed grid.

Figure 28: Errors in grid refinement for second-order Fromm-type edge-reconstruction scheme.
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Figure 29: Errors in grid refinement for second-order central edge-reconstruction scheme.

discretization errors are quite erratic with grid refinement, as is typical of schemes with checker-
board instabilities. The discretization errors are converging but apparently at a rate slower than
first-order. The only point to be made for this central scheme is that it appears to be convergent
with grid refinement and not inconsistent as stated in [11].

Numerical results presented in this appendix show both the fully-upwind first-order edge-
reconstruction scheme and an upwind-biased Fromm-type edge-reconstruction scheme to have
first-order convergence of discretization errors on perturbed quadrilateral grids. These results are
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consistent with the analysis and the results reported in the main body of this paper and in [1]. For
the central edge-reconstruction scheme, the discretization errors are highly oscillatory spatially and
the convergence of discretization error norms is highly erratic. The convergence of the discretiza-
tion errors is apparently less than first order, but nonetheless the errors converge in all norms. The
erratic behavior of the discretization errors may have led to an incorrect conclusion in [11]. Other
discrepancies, such as zeroth order convergence of the L∞ norms of the discretization errors and
partial-order convergence of the L2 norms of the discretization errors reported in [11] for compu-
tations on mixed grids are also attributed to the erratic convergence characteristic for schemes with
checkerboard instabilities.
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