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Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementa-

tion of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are

cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state

adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated

rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the

implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single-

andmultipoint optimizations for the rotorcraft figure ofmerit function are shown for varying blade collective angles.

Design trends are shown to remain consistent as the grid is refined.

Nomenclature

C = Aerodynamic coefficient
CQ = Rotor torque coefficient
CT = Rotor thrust coefficient
D = Vector of design variables
E = Total energy per unit volume, modulus of elasticity
�Fi, �Fv = Inviscid and viscous flux tensors
FM = Rotorcraft figure of merit function
f = Objective function
g = Real-valued function
h = Step size
�I = Identity tensor
i =

�������
�1
p

i, j, k = Indices
K = Elasticity coefficient matrix
KS = Kreisselmeier–Steinhauser
k = Thermal conductivity
L = Lagrangian function
M = Mach number
m = Number of constraint function components
mp = Multipoint quantity
N = Number of composite objective functions
n̂ = Outward-pointing normal vector
n = Number of objective function components
p = Pressure, exponent
Q = Vector of conserved variables
R = Spatial residual vector
r = Position vector
S = Source term vector
S = Control volume surface area
surf = Surface quantity
T = Temperature
t = Time
ui = Cartesian directional displacements
u, v, w = Cartesian components of velocity

V = Volume of control volume
X = Vector of grid coordinates
x = Independent variable
xi = Cartesian coordinate directions
�, ! = Weights
�" = Strain tensor
� = Spanwise station
� = Blade collective setting
�f = Flowfield adjoint variable
�g = Grid adjoint variable
�, � = Lamé constants
� = Density, KS multiplier
�� = Viscous stress tensor
� = Poisson’s ratio
� = Angular velocity vector
� = Target quantity, optimal quantity

Introduction

A PPLICATION of high-fidelity computational fluid dynamics
(CFD) has become commonplace in the fixed-wing aerospace

community. Software packages that solve the Euler equations and
Reynolds-averaged Navier–Stokes equations on both structured and
unstructured grids are now used routinely in the analysis and design
of new configurations. Moreover, as algorithms and computer hard-
ware have continued tomature, the use of formal design optimization
techniques coupled with CFD methods has become viable for large-
scale problems in aerospace design.

The application of high-fidelity CFD tools to the analysis and
design of full rotorcraft configurations is considerably more chal-
lenging. Such flowfields are inherently unsteady, frequently involve
fluid velocities that range from quiescent to transonic flow, and
typically require the simulation of complex aerodynamic and aero-
structural interactions between dynamic vehicle components. Recent
literature suggests that the use of high-fidelity CFD methods in this
regime is growing, but the computational cost that is required to
capture the necessary spatial and temporal scales of a typical rotor-
craft flowfield remains considerable [1–9].

In thefield of gradient-based design, adjointmethods are known to
provide an extremely efficient means for computing sensitivity
information. The cost of such methods is equivalent to the expense
that is associated with solving the analysis problem and is inde-
pendent of the number of design variables. Adjoint methods can also
be used to perform mathematically rigorous mesh adaptation and
error estimation. Significant success has been reported for the
application of these techniques to steady problems; for example, see
[10–13] and the efforts cited in [14].
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In general, optimization and mesh adaptation for large-scale
rotorcraft flows using adjoint methods require a time-dependent
implementation of the equations. Considerable effort by a number of
research groups is being focused in this area, and examples of the use
of such approaches have recently emerged [15–17]. Despite the
algorithmic efficiency, however, the computational cost of these
general time-dependent approaches can be considerable, and the
application of such methods to practical problems of engineering
interest may remain prohibitively expensive for some time.

The goal of the current work is to develop, implement, and
demonstrate a new adjoint-based design capability for rotor configur-
ations for which the analysis problem may be cast as a steady
problem in a noninertial reference frame. This approach permits the
use of an existing steady-state adjoint formulation with minor
modifications to perform sensitivity analyses. The resulting formula-
tion is valid for isolated rigid rotors in hover or where the freestream
velocity is aligned with the axis of rotation.

Flow Equations

The governing equations for the flowfield are the compressible,
perfect gas Reynolds-averaged Navier–Stokes equations written in a
reference frame that is rotating with a constant angular velocity�:

@�QV�
@t

�
I
@V

� �Fi � �Fv� � n̂ dS� S (1)

where Q is the vector of volume-averaged conserved variables
Q� ��; �u; �v; �w; E	T , n̂ is an outward-pointing unit normal, and
V is the control volume bounded by the surface @V. The inviscid and
viscous flux tensors are given by
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The source term S represents a Coriolis effect that results from the
rotating frame of reference:

S �
0

���� 
 u�
0

2
4

3
5 (4)

Here, u is the absolute velocity vector u� �u; v; w	, r is the position
vector relative to the axis of rotation, and �� is theviscous stress tensor.
The equations are closed with the perfect gas equation of state and an
appropriate turbulence model for the eddy viscosity. For rotorcraft
simulations, the formulation that is described here is applicable to
rigid rotor geometries in either a hover or ascending/descending
flight condition, where the freestream velocity vector is parallel to the
angular velocity vector�.

References [18–21] describe the flow solver that is used in the
current work. The code can be used to perform aerodynamic simula-
tions across the speed range, and an extensive list of options and
solution mechanisms is available for spatial and temporal discretiza-
tions on general static or dynamic mixed-element unstructured
meshes that may or may not contain overset grid topologies.

In the current study, the spatial discretization uses a finite-volume
approach in which the dependent variables are stored at the vertices
of single-block tetrahedral meshes. Inviscid fluxes at cell interfaces
are computed by using the upwind scheme of Roe [22], and viscous
fluxes are formed by using an approach that is equivalent to a central-
difference Galerkin procedure. The eddy viscosity is modeled by
using the one-equation approach of Spalart and Allmaras [23] with
the source termmodification proposed by Dacles-Mariani et al. [24].
For the steady-state flows (relative to the noninertial reference frame)

that are described in this study, temporal discretization is performed
by using a backward-Euler schemewith local time stepping. Scalable
parallelization is achieved through domain decomposition and
message-passing communication.

An approximate solution of the linear system of equations that is
formedwithin each time step is obtained through several iterations of
a multicolor Gauss–Seidel point-iterative scheme. The turbulence
model is integrated all the way to the wall without the use of wall
functions. The turbulence model is solved separately from the mean
flow equations at each time step with a time integration and a linear
system solution scheme that is identical to that employed for the
mean flow equations.

Grid Equations

To deform the interior of the computational mesh as the surface
grid evolves during a shape-optimization procedure, the mesh is
assumed to obey the linear elasticity equations of solid mechanics.
These relations can be written as
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�
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is the strain tensor, ui is the displacement vector in each of the
Cartesian coordinate directions xi, and � and � are material pro-
perties of the elastic medium. The quantities � and � are related to
Young’s modulus E and Poisson’s ratio � through the following:

�� �E

�1� ���1 � 2�� (7)

and

�� E

2�1� �� (8)

The system is closed with the specification of two of the four
parameters �, �, E, and �. In the current implementation, E is taken
as inversely proportional to the distance from the nearest solid
boundary, while Poisson’s ratio is taken uniformly as zero. This
approach forces cells that are near boundaries to move in a nearly
rigid fashion, while cells that are far from the boundaries are allowed
to deform more freely. The system of equations is solved using
GMRES [25] with either a point-implicit or ILU(0) preconditioning
technique as described in [21,26].

Discrete Adjoint Equations

To derive the discrete adjoint equations, a compact notation is
introduced for the governing equations that are outlined above. The
spatial residual vectorR of Eq. (1) is defined as

R �
I
@V

� �Fi � �Fv� � n̂ dS � S (9)

Furthermore, the linear system of equations given by Eq. (5) can be
written as

KX �Xsurf (10)

where K is the elasticity coefficient matrix that results from the
discretization of Eq. (5),X is the vector of the grid-point coordinates,
and Xsurf is the vector of known surface grid-point coordinates,
complemented by zeros for all interior coordinates.

With the approach that was taken in [11], a Lagrangian function
can be defined as follows:
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L�D;Q;X;�f;�g� � f�D;Q;X� ��T
fR�D;Q;X�

��T
g�KX �Xsurf� (11)

where D represents a vector of design variables, f is an objective
function, and �f and �g are the adjoint variables that multiply the
residuals of the flow and the grid equations. In this manner, the
governing equations may be viewed as constraints.

Differentiating Eq. (11)with respect toD and equating the @Q=@D
and @X=@D coefficients to zero yields the discrete adjoint equations
for the flowfield and grid, respectively:�
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The remainder of the terms in the linearized Lagrangian can be
grouped to form an expression for the final sensitivity vector:
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�
(14)

Equations (12) and (13) provide an efficient means for determining
discretely consistent sensitivity information. The expense that is
associated with solving these equations is independent of D and is
similar to that of the governing equations. After the solutions for�f

and �g have been determined, then the desired sensitivities may be
calculated using Eq. (14), for which the computational cost is
negligible.

A discrete adjoint implementation has been developed in
[11,17,20,26,27] for the flow solution method that is described
above. The flowfield adjoint equations are solved in an exact dual
manner, which ultimately guarantees an asymptotic convergence rate
that is identical to the primal problem and costate variables that are
discretely adjoint at every iteration of the solution process. The grid
adjoint equations are solved by using GMRES in a manner that is
identical to the method used for Eq. (5). To accommodate the
noninertial reference frame introduced in the current study, minor
modifications have been made to include the effects of the mesh
speeds and the Coriolis terms.

Design Methodology

Design Variables

The implementation that is described in [11] is sufficiently general
such that the user is able to employ a geometric parameterization
scheme of choice, provided that the associated linearizations
required by the adjoint method described above are also available.
For the current study, the grid parameterization scheme that is
described in [28] is used. This approach can be used to define very
general shape parameterizations of existing grids by using a set of
aircraft-centric design variables, such as camber, thickness, shear,
twist, and planform parameters, at various locations on the geometry.
The user also has the freedom to directly associate two or more
design variables to create more general parameters. In the current
work, this option is used to link several piecewise twist variables
across the span of a rotor blade to create a single twist variable that is
used to prescribe the blade collective setting �. In the event that
multiple bodies of the same shape are to be designed, as in the case of
rotor geometries, the implementation allows a single set of design
variables to be used to simultaneously define such bodies. In this
manner, the geometry of each body remains consistent throughout
the course of the design.

Objective and Constraint Functions

The implementation that is described in [11] permits multiple
objective functions fi and explicit constraints cj of the following

form, each containing a summation of ni and mj individual com-
ponents, respectively:

fi �
Xni
k�1

!k�Ck � C�k �pk (15)

and

cj �
Xmj
k�1

!k�Ck � C�k �pk (16)

Here, !k represents a user-defined weighting factor, Ck is an
aerodynamic coefficient such as total drag or the pressure or viscous
contributions to such quantities, and pk is a user-defined exponent.
The � superscript indicates a user-defined target value of Ck.
Furthermore, the usermay specify the boundaries in the grid towhich
each component function applies.

Design Points and Optimization Strategies

The current implementation supports an arbitrary number of user-
specified design points at which objective and constraint functions
may be posed. Each design point may be characterized by a variation
of basic flowfield quantities such as the Mach number, or a more
general characteristic such as the computational grid that is appro-
priate for each individual design point. In the current study, each
blade collective setting � requires a different grid and, therefore,
represents a different design point.

To perform multipoint optimization, three methods are con-
sidered. The first two approaches are unconstrained formulations for
which individual objective functions fi are posed at each design
point, from which an overall composite objective function fmp is
constructed. The third approach is a constrained formulation.

The first method that is used to form the composite objective
function fmp defines a linear combination of fi:

fmp � �1f1 � �2f2 � �3f3 � . . .� �NfN (17)

where N is the total number of design points and �i is a constant
weighting factor that is applied to each individual fi. In the current
study, all values of �i are chosen to be 1.0.

The second approach that is used to define fmp is based on the
technique described in [29,30]. In this approach, the objective
functions fi from each design point are combined by using the
Kreisselmeier–Steinhauser function to form fmp as

fmp � fmax �
1

�
ln
�XN
i�1

e��fi�fmax�
�

(18)

The quantityfmax is defined as themaximumvalue over allfi, and the
value � is a user-defined constant that is taken to be 20.0 [30].
Although not considered here, this approach also has the added
benefit of being able to convert constrained optimization problems
into unconstrained problems by including explicit constraints in the
formulation of Eq. (18).

The third multipoint formulation that is considered is based on a
constrained formulation. In this approach, the objective function to
be minimized is defined at a single design point, while the objective
functions that are defined at the other design points are instead treated
as explicit constraints on the optimization problem.

The multipoint approaches that are used here are commonly used
to obtain point solutions to multi-objective optimization problems
via scalarization of the multiple objectives. The difficulty is that out
of the range of many possible solutions only one is obtained by
setting some parameters heuristically and externally, for example the
weights of the composite scalar objective. Because the current focus
is the interaction of adjoint methods with design optimization, in
principle the simple strategies that are adopted here suffice, but the
related areas of robust and multi-objective design are extensive and
active. The investigation of more sophisticated optimization
strategies is relegated to future work.
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For unconstrained problems, the optimization package that is
described in [31] is used tominimize the specified objective function.
In these cases, the optimizer is allowed to perform up to 20 design
cycles or 30 function evaluations, whichever occurs first. The
optimization algorithm considers the design converged and exits if it
believes the following stopping tolerance is met:

f � f�
jfj � 1 
 10�5 (19)

where f� is the objective function value at the optimal solution to the
design problem and is not known a priori.

The package that is outlined in [32] is used for problems in which
explicit constraints are present. The optimization algorithm is
allowed to perform a maximum of 20 design cycles, and considers
the design converged and exits if it believes the current objective
function matches the value at the optimal solution to four significant
digits. Constraints are considered satisfied if their values do not
exceed the specified bounds by 0.5% of the bound value. The design
at the initial choice of D is not required to satisfy the constraints; if
needed, the optimizer attempts to locate a feasible starting point on
its own.

Test Case

Demonstration optimizations are computed by using the three-
bladed tilt rotor aeroacoustics model (TRAM) described in [33,34]
and shown in Fig. 1. The optimizations are performed for a hover
condition that corresponds to collective settings of �� 10, 12, and
14


. The tip Mach number is 0.62, and the Reynolds number is 2.1

million, based on the blade tip chord. The mesh that is used for the
design studies contains 5,048,727 nodes and 29,802,252 tetrahedral
elements and is designed for the �� 14
 setting. Grids for the
�� 10 and 12
 settings are obtained through elastic deformations of
the baseline mesh. The surface grid for one of the blades is shown in
Fig. 2. All of the grids have been generated with the approach that is
outlined in [35]. The blade trailing edges are blunt.

The figure of merit computed at each of the collective settings
using the baseline grid described above is shown as open symbols in
Fig. 3. The computed values are roughly 5–10% lower than the
experimental data provided in [33,34], with improved correlation at
higher thrust levels. To evaluate the effects of grid refinement, a fine
grid consisting of 12,662,080 nodes and 87,491,279 tetrahedra has
also been generated. The results from this refined grid are included as
solid symbols in Fig. 3. The agreement with the experimental data is
improved, and the trend with thrust coefficient is similar. The normal
force variation with radial location for both grids is shown in Fig. 4.
The agreement with experimental data at the inboard stations is
reasonable, with larger deviations occurring near the blade tip. Grid
refinement shows minor differences inboard with increased loading
at the blade tip. These results are consistent with a previous study
performed using the current solver [36] as well as results from a
widely used structured-grid solver reported in [37]. Turbulence
modeling, transition, and the extent to which the tip vortices are
resolved have been shown to impact such comparisons with experi-
mental data [36–38]; however, these effects are not investigated in the
current study.

A geometric parameterization has been developed for the baseline
blade geometry, as shown in Fig. 5. The approach yields a total of 44
active design variables, including 20 variables to control the blade
thickness and 24 variables to control the blade camber. The root
section of each blade is held fixed. Bounds on the design variables
have been initially chosen with the intent to prevent nonphysical

Fig. 1 Surface geometry for TRAM rotor.

Fig. 2 Typical blade surface grid used for design computations.
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Fig. 3 Figure of merit for the baseline geometry.
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Fig. 4 Spanwise loading for the baseline geometry.
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Fig. 5 Design variable and radial blade locations.
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surface shapes; further constraints on the minimum thickness are
described in a later section. The parameterization also allows for
blade planform variations, as well as localized twist and shearing
deformations. While these parameters are not active design variables
in the current study, the piecewise twist variables along each blade
have been combined to yield a single twist parameter used to set the
blade collective pitch as described earlier.

For each design point, a single objective or constraint function is
used, where !� 1, p� 2, and C is defined as the square of the
commonly used rotorcraft figure of merit function, which is
composed of the rotor thrust and torque coefficients:

C� FM2 � C3
T

2C2
Q

(20)

The square has been introduced to avoid the appearance of a square
root of a negative thrust value in the linearized form of the objective
function. In all cases, the value of C� is chosen to be 2.0, which is
considerably larger than both the baseline value at each of the
collective settings examined here and the theoretical maximumvalue
of 1.0.

All computations have been performed using 75 3.0-GHz dual-
core Pentium IV processors with gigabit ethernet connections. A
typical design cycle requires a single function and gradient
evaluation for the current value of D. A function evaluation in this
context consists of an evaluation of the surface parameterization for
each blade, a solution of Eq. (5) to deform the interior of the mesh
according to the current surface grid, and a solution of the flow
equations, Eq. (1). Using the adjoint approach that is outlined above,
a gradient evaluation requires a solution of the flowfield adjoint
equations, Eq. (12); a solution of the mesh adjoint equations,
Eq. (13); an evaluation of the linearized surface parameterization for
each blade; and, finally, an evaluation of the gradient expression that
is given by Eq. (14). This combined procedure for obtaining a single
function and gradient vector for a given collective setting � takes
approximately 2.5 wall-clock hours with the use of the stated
hardware. The convergence criteria that are used for each of the
solvers has a direct impact on this efficiency. Finally, the time that is
required to solve Eqs. (1) and (12) tends to decrease toward the end of
an optimization as the design converges and the solution restarts
become more effective.

Accuracy of Implementation

To verify that a discretely consistent implementation of Eqs. (12–
14) has been achieved, the results are compared with those that are
obtained with an independent approach based on the use of complex
variables. This technique was originally suggested in [39,40], and
was first applied to aNavier–Stokes solver in [41]. In this approach, a
Taylor series with a complex step size ih is used to derive an
expression for the first derivative of a real-valued function g�x�:

g0�x� � Im�g�x� ih�	
h

�O�h2� (21)

The primary advantage of this approach is that true second-order
accuracymay be obtained by selecting step sizes without concern for
the subtractive cancellation error that is typically present in real-
valued divided differences. This capability can be immediately
recovered at any time for the baseline solvers that are used in this
study through the use of an automated scripting procedure as outlined
in [42].

A coarse mesh that consists of 144,924 nodes and 848,068
tetrahedral elements is used to demonstrate the accuracy of the
implementation for fully turbulent flow at the stated test conditions
and a collective setting of �� 14
. Sensitivity derivatives of the
figure of merit with respect to several shape parameters located at the
midspan location of each blade are computed with the discrete
adjoint implementation. The results are compared with values that
were obtained with the complex-variable method, where a step size
of h� 1 
 10�30 was chosen. All equation sets are converged to
machine precision by using 16 processors; the results are shown in

Table 1. The sensitivity derivatives that are computed with the two
methods are in excellent agreement.

Results

Single-Point Designs

The first set of results is a single-point design at each of the chosen
blade collective settings. The history for the figure ofmerit during the
course of each design is shown in Fig. 6. For each collective setting,
the figure of merit increases quickly during the early portion of the
optimization, after which further gains are minimal. The initial and
final figures of merit for each� are listed in Table 2. Improvements
range from 4 to just under 8%, with smaller improvements at the
higher collective settings. An expanded view of the resulting blade
shape for each design is shown in Fig. 7, where the blades have each
been rotated to the �� 14
 setting for comparison purposes. The
design changes are similar at each collective setting: the camber has
been increased across the majority of the span, while the thickness
has been reduced. Of particular interest is the blade trailing edge,
where each design has reduced the blade thickness to a numerically
valid but physically infeasible dimension. Where the thickness is
fixed at the blade tip, the optimization has increased the camber for
the �� 10
 setting and decreased it for the other two collectives,
most notably for the �� 14
 setting. Spanwise twist variations
might achieve an effect similar to that of the local camber modifi-
cations, although that has not been pursued here.

Single-Point Designs with Thickness Constraints

In an effort to achieve a more practical blade design in the trailing-
edge region, the previous set of test cases was repeated. However,
constraints were placed on the thickness variables to enforce the
original blade thickness as a lower bound. The results with this
approach are shown in Figs. 8 and 9. As before, the figure ofmerit for
each collective setting increases rapidly during the initial portion of
the optimization. Examination of the blade cross sections shows that

Table 1 Comparison of figure of merit sensitivity

derivatives obtained by using adjoint and complex-

variable approaches, where A denotes adjoint result
and C denotes complex-variable result

Design variable @�FM�=@D
Twist A: 0.000396489658597

C: 0.000396489658593
Thickness A: 0.002169495035056

C: 0.002169495035076
Camber A: 0.004203140874745

C: 0.004203140874793
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Fig. 6 Figure of merit histories for optimizations with no thickness

constraints included.
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the thickness of the baseline airfoil shape has been maintained as a
lower bound. Differences between the designs at the various
collective settings can be readily seen at the �� 0:40 station and at
the blade tip. Table 3 shows the figure of merit results for each
collective setting. The improvements are less than those observed for
the cases inwhich blade thinningwas allowed and range from almost
3 to 5.6%, with the largest improvements again taking place at the
lower collective settings.

Multipoint Designs

To evaluate the implementation for multipoint optimization
problems, designs were performed by using the three strategies that
were outlined earlier. For the approach that involved explicit
constraints, the objective function was defined at the �� 14


setting; the functions that were defined at the other two collective
settings served as constraints. The lower bounds that were placed on
these constraints correspond to the minimum figures of merit of 0.71

Table 2 Figure of merit before and after single-point designs

with no thickness constraints

� Initial FM Final FM � FM Percent change

10
 0.693 0.748 0.055 7.9%
12
 0.718 0.758 0.040 5.6%
14
 0.730 0.761 0.031 4.3%

Baseline
Θ=10° Design
Θ=12° Design
Θ=14° Design

Tip

η=0.80
η=0.20

η=0.40

η=0.60

Fig. 7 Blade cross sections at various radial stations before and after

optimization with no thickness constraints included. The vertical scale
has been exaggerated and all blades have been rotated to the �� 14�

collective setting for comparison.
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Fig. 8 Figure of merit histories for optimizations with thickness

constraints included.

Baseline
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Θ=12° Design
Θ=14° Design

Tip
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Fig. 9 Blade cross sections at various radial stations before and after

optimization with thickness constraints included. The vertical scale has
been exaggerated and all blades have been rotated to the �� 14�

collective setting for comparison.
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Fig. 10 Figure of merit histories for multipoint optimization based on

linear combination of objective functions given by Eq. (17).

Table 3 Figure of merit before and after single-point designs

with thickness constraints included

� Initial FM Final FM � FM Percent change

10
 0.693 0.732 0.039 5.6%
12
 0.718 0.747 0.029 4.0%
14
 0.730 0.751 0.021 2.9%
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and 0.73 at the�� 10 and 12
 settings, respectively. These choices
represent moderate increases over the baseline figure of merit at each
� based on the single-point design results. Note that because these
constraints are not satisfied by the initial blade geometries in this
approach, the optimization procedure must locate the feasible region
during the course of the design. Theminimum thickness constraint is
also enforced for each of the three multipoint approaches.

The convergence history for the approaches based onEqs. (17) and
(18) are shown in Figs. 10 and 11, respectively. The results for the
two approaches are comparable for the figure of merit at each�. The
final values, which are given in Tables 4 and 5, are also similar,
although they are slightly higher for the approach based on the linear
combination of individual objectives.

The convergence for the constrained approach is shown in Fig. 12.
The blade design satisfies the constraints at�� 10 and 12
 after the
first design cycle, and the overall convergence for each collective
setting is similar to the previous cases. However, note that for this
particular case the optimization procedure was terminated early
because of queue limitations on the computational platform. The
procedure could be restarted if desired, but this was not pursued here.
Table 6 shows that the final blade design with this approach yields
figure of merit values that are comparable to those of the other
multipoint approaches.
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Fig. 11 Figure of merit histories for multipoint optimization based on

KS function given by Eq. (18).

Table 4 Figure of merit before and after multipoint

optimization based on linear combination of objective

functions given by Eq. (17). Values in parentheses
represent results on refined grid

� Initial FM Final FM � FM Percent change

10
 0.693
(0.734)

0.737
(0.776)

0.044
(0.042)

6.3%
(5.7%)

12
 0.718
(0.758)

0.748
(0.785)

0.030
(0.027)

4.2%
(3.6%)

14
 0.730
(0.768)

0.752
(0.787)

0.022
(0.019)

3.0%
(2.5%)

Table 5 Figure of merit before and after multipoint
optimization based on KS function given by Eq. (18).

Values in parentheses represent results on refined grid

� Initial FM Final FM � FM Percent change

10
 0.693
(0.734)

0.732
(0.772)

0.039
(0.038)

5.6%
(5.2%)

12
 0.718
(0.758)

0.744
(0.783)

0.026
(0.025)

3.6%
(3.3%)

14
 0.730
(0.768)

0.748
(0.785)

0.018
(0.017)

2.5%
(2.2%)
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Fig. 12 Figure of merit histories for multipoint optimization based on

explicitly constrained approach (arrows indicate feasible side of

constraints).

Table 6 Figure of merit before and after multipoint
optimization based on explicitly constrained approach.

Values in parentheses represent results on refined grid

� Initial FM Final FM � FM Percent change

10
 0.693
(0.734)

0.735
(0.773)

0.042
(0.039)

6.1%
(5.3%)

12
 0.718
(0.758)

0.748
(0.784)

0.030
(0.026)

4.2%
(3.4%)

14
 0.730
(0.768)

0.752
(0.788)

0.022
(0.020)

3.0%
(2.6%)

Baseline
Linear Combination
KS Function
Explicit Constraints

Tip

η=0.80
η=0.20

η=0.40

η=0.60

Fig. 13 Blade cross sections at various radial stations before and after
multipoint optimization using the three different strategies considered.

The vertical scale has been exaggerated and all blades have been rotated

to the �� 14� collective setting for comparison.
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Although the final figures ofmerit that were obtained through each
of the multipoint methods are similar, the differences in the
optimized blade geometries are striking, as shown in Fig. 13. An
investigation of the off-design performance for each blade geometry
and the introduction of multidisciplinary interactions into the design
process are logical next steps but are beyond the scope of the current
work.

To investigate the effects of grid refinement, each of the final
geometries produced by the multipoint optimizations has been
evaluated using the refined mesh described earlier. This mesh has
been parameterized in amanner consistent with the baseline grid, and
the final values of the design variables established through optimi-
zation have been applied. A single fine grid analysis is performed for
each geometry and collective setting to evaluate the resulting figures
of merit. The results for the fine grid are included in parentheses in
Tables 4–6 beneath thevalues for the baseline grid and are also shown
graphically alongside the baseline grid results in Fig. 14. Although
the magnitude of the design improvements varies slightly with grid
density, the fine grid results show similar trends in all cases as
compared with the baseline mesh. Spanwise loading distributions
before and after optimization using the baseline and fine meshes are
also included in Figs. 15 and 16, respectively. In all cases, the
optimized geometries showan increased loading across the span. The
linear combination and explicitly constrained approaches yield the
largest increases in spanwise loading; the approach based on the KS
function achieves slightly less.

Conclusions

A discrete adjoint-based methodology for performing design
optimization of isolated rotor problems that appear as steady flows in
a noninertial reference frame has been developed and implemented.
The accuracy of the linearization has been established by comparing
the results with an independent approach that is based on the use of
complex variables. A series of single- and multipoint designs at
several blade collective settings showed improvements in the figure
of merit function for both unconstrained and constrained problem
formulations.

Numerical experiments showed the need to constrain trailing-edge
thicknesses during the course of a design to prevent physically
unrealizable geometries. Multipoint algorithms based on a linear
combination of objective functions as well as an explicitly con-
strained approach were shown to yield the largest improvements at
each design point. The use of a Kreisselmeier–Steinhauser function
was also successful in treatingmultipoint problems, but yieldedmore
modest improvements. Evaluation of the final optimized geometries
on afinermesh showed consistent trends in terms offigure ofmerit as
well as spanwise loading distributions.

Ongoing efforts are focused on a general time-dependent adjoint-
based optimization capability for rotorcraft, as well as for other
aerospace configurations that are characterized by unsteady flow-
fields. The efficiency of such an implementation should be compared
with that of the present approach, as well as with other techniques
such as time-periodic formulations.
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