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•Factorizable upwind schemes:
the triangular -unstructured grid formulation

David Sidilkover*
ICASE, NASA Langley Research Center, Hampton, VA 23681

Eric J. Nielsen1"
NASA Langley Research Center, Hampton, VA 23681

The upwind factorizable schemes for the equations of fluid was introduced recently.
They facilitate achieving the Textbook Multigrid Efficiency (TME) and are expected also
to result in the solvers of unparalleled robustness. The approach itself is very general.
Therefore, it may well become a general framework for the large-scale Computational
Fluid Dynamics. In this paper we outline the triangular grid formulation of the factor-
izable schemes. The derivation is based on the fact that the factorizable schemes can
be expressed entirely using vector notation, without explicitly mentioning a particular
coordinate frame. We describe the resulting discrete scheme in detail and present some
computational results verifying the basic properties of the scheme/solver.

Introduction
This work is a part of effort going on at NASA

Langley for several years towards constructing a new
generation of the flow solvers (see, for instance Thomas
et alH, Roberts et al2). The key idea, that was sug-
gested by Brandt,3 is to use a special relaxation that
recognizes the mixed character of a system of PDEs.
Then each sub-factor of the system can be treated in
different (optimal for it) way. It is well-known that
the Euler equations "consist" of two different factors:
advection and full-potential operators. The advection
part can be treated very efficiently, say, by the march-
ing relaxation. The full-potential operator is of the
elliptic type in the subsonic regime. Therefore, it can
be treated very efficiently by multigrid. In the su-
personic regime it becomes hyperbolic: wave equation
with respect to the flow direction. For Mach number
substantially larger than one, the entire system can
be solved efficiently by marching. Nearly sonic speed
regime can be dealt with by multigrid, but requires
some special care.

Solvers based on such a special (Distributive) relax-
ation were constructed initially for incompressible flow
and were based on the staggered grid discretizations.
The optimal multigrid efficiency was demonstrated
Brandt and Yavneh.4 Staggered-grid discretizations
exist also for the compressible flow equations/How-
ever, they all are limited to the subsonic regime, since
they have no shock-capturing capabilities. The stan-
dard shock-capturing schemes, on the other hand, are
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not factorizable, i.e. they do not reflect the mixed
character of the PDEs (see Sidilkover5). Therefore, it
is not possible to construct a relaxation of Distributive
type that can be used with these schemes.

Clearly, there is a need for discretizations that are
both factorizable and have shock-capturing capabili-
ties. A factorizable upwind scheme was constructed in
Sidilkover6 for the case of Cartesian grids. A detailed
description of its extension to the case of structured
body-fitted grids is given in Sidilkover et al.7 A set of
numerical results was presented in Roberts et al.8

The purpose of this paper is to present a> construc-
tion of a factorizable scheme on triangular unstruc-
tured grids.

Euler equations and their properties
The non-conservative quasilinear formulation of the

compressible Euler equations in three dimensions can
be written using vector notation as follows

pu-
pc2V

= 0
= 0,

(la)
(Ib)
(Icj

where s denotes the entropy and

(2)

u is the velocity vector, the pressure p is given by

the speed of sound

c =

(3)

(4)
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In this section we recall some of the basic properties
of the equations (1). It is sufficient for the purpose
of the analysis to assume constancy of the coefficients.
It is known that this system of equations is of the
mixed type: it consists of the advection and the Full-
Potential factors. This can be made obvious by intro-
ducing the new set of variables.

Recall that a vector field can be decomposed into
solenoidal and irrotational parts

= V x (5)

where </> is the potential and $ is the streamfunction.
The pressure gradient is related to the gradient of the
potential as follows

dp = — pu • Vd<j> (6)

Substituting the new variables <j> and ^ into the pres-
sure equation we obtain the Full-Potential equation

p[c2V2 — (u • V)2]</> = 0 (7)

Note, that all the terms involving the streamfunction
cancel out.

Performing the variable substitution in the momen-
tum equations gives

pu • V(V x •$) = 0 (8)

Note, that all the terms involving the potential vari-
able cancel out.

Introducing a new variable - vorticity

(9)

(10)

and applying operator Vx to (8), we obtain

pu - Vfi = 0

This verifies indeed that the Euler system is of the
mixed type. The advection factor is represented by
the equations for entropy (la) and vorticity (10). The
full-potential factor is given by (7). It also makes it
clear that (for the linear constant coefficients case) the
momentum equations (Ib) drive the solenoidal part of
the solution, while the irrotational part of the solution
is subject solely to the pressure equation (Ic).

In a general nonlinear case (away from singularities,
like shocks and contact discontinuities) there is a weak
coupling between different factors due to the so-called
subprincipal terms. This coupling can be neglected
for the purpose of the construction of a fast solver (see
Brandt3). Therefore, the latter can rely entirely on
the analysis of the linear case.

Preparations for the scheme
construction

When constructing a discrete approximation to the
Euler equations, the central scheme can serve a ba-
sic building block. However, it is crucial to include

a certain artificial dissipation in the discretization for
stability reasons. One of the additional problems than
becomes how to compensate for the loss of accuracy
due to the artificial dissipation. Various ways to deal
with this issue received an extensive coverage in the
literature. Constructing a factorizable scheme implies
resolving this issue in a very specific way.

PDA analysis
The First Differential Approximation (PDA) (or the

modified equations) corresponding to a certain discrete
scheme is the PDEs augmented by the leading error
terms.

We shall start our analysis with formulating the
PDA for the factorizable genuinely multidimensional
scheme. The observation made in regarding the gen-
uinely multidimensional upwind scheme introduced in
Sidilkover9 was that a part of the artificial dissipa-
tion present in the discrete momentum equations (in
subsonic case) is proportional to the gradient of the
residual of the pressure equation. The artificial dissi-
pation of the pressure equation is proportional to the
divergence of the residuals of the momentum equa-
tions. A vector formulation of the entire scheme (on
the Cartesian grids) is given in Sidilkover.10

The fact that the entire scheme can be expressed
using the vector notation appeared to be very instru-
mental for the purpose of extending the factorizable
to the structured body-fitted grids (See Sidilkover et
al7 and Roberts et al8). It is of very important for the
purpose of this paper too.

The PDA of a factorizable scheme for the Euler
equations is given by the following

qs = 0 (lla)

VD

= 0 (lib)

Vp)

= 0 (lie)

pqu + Vp- —V(pe2 V - u + u • Vp) - VD
Zi C

p<? V • u + M • Vp - -|-eV • (pu • Vw +

The term VD in the momentum equations plays an
important role when the operator q is discretized us-
ing an advection scheme of a certain type to maintain
the second order accuracy and fact or iz ability of the
whole Euler scheme. This special type of the advection
scheme allows to upgrade the accuracy of the advec-
tion factor to the second order without affecting the
discrete full-potential part. For now we omit the term
VD and consider q to correspond to the standard first
order accurate advection scheme.

A factorizable scheme corresponding to the PDA as
given by (11) is stable for subsonic case only. The
scheme can be extended so it will be valid for tran-
sonic/supersonic regime by a simple modification: in-
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troduction of a cut-off parameter on the terms involv-
ing pressure in the artificial dissipation

= 0(12a)

pqu + Vp- ^7—V(/>c2V -5+ -«• Vp)-
2 C K

= 0(12b)

/?c2 V • M + ff • Vp - ~-cV • (/off • Vw.+ «

where

*; = max(l,M2)

= 0,(12c)

(13)

We shall demonstrate the fact or iz ability property of
PDA corresponding to the new scheme. Introduce the
auxiliary variables - potential <f> and streamfunction if?
and substitute the following expressions for the vari-
ables u,p

(14a)

(14b)

(15)

dp = -p(u • V - ——cV^d^
£

into (11). Introducing the vorticity variable

2 c
and applying the V x operator to the momentum equa-
tions we obtain

pU'Vti = Q. (16)

Note, that, as well as in the PDE case, all the terms
involving the potential variable canceled out. Substi-
tuting the auxiliary variables into the pressure equa-
tion, it is easy to verify that all the terms involving
the streamfunction cancel.

We can summarize that due to the specific form of
the artificial dissipation, the PDA (11) of the discrete
scheme is fact or iz able - it reflects the mixed character
of the original system of PDEs.

Special discrete operators
We consider the two-dimensional case from now on.

When discretizing the derivatives, a special care needs
to be taken of what kind of discrete operators are used
in order to preserve the factoriz ability property at the
discrete level.

Note, that when demonstrating the factoriz ability
property of the scheme's PDA (11) we used the facts
of the following type

(17)

In order to obtain the factorizable discrete scheme,
we need to introduce some finite differences that pos-
sess the property analogous to (17). Such finite differ-
ences were introduced for the case of structured grids
in.6

We have to find such differences for the case of
triangular grids (see Figl), where ( x , y ) is a local
(non-orthogonal) frame. We shall illustrate this on
a simple example. Consider approximating the par-
tial derivative dxx - Assuming that we have at our
disposal the "compact" stencil that involves 7 points:
0,1,2,3,4,5,6, there is only one way of doing it,
namely by d£ defined as follows

(18)

Differences defined in such a way do not have the
property (17). We can conclude that using the com-
pact stencil 7-point stencil only there is no way to
achieve this property. We know from6 that the 9-point
box structured grid stencil is sufficient for this pur-
pose. There are several ways to augment the compact
7-point stencil to the 9-point one in the current trian-
gular grid context. It is clear that the 7-point stencil,
therefore, needs to be augmented. We can do it by
adding to it 6 more nodes: 7, 8, 9,10,11,12. The par-
tial derivative dxx can then be approximated by a wide
difference

dh =uxx
(19)

The derivatives dyy, dx, dy can be approximated in the
analogous way. It is easy to verify that such differences
possess the property (17).

Structure of some artificial dissipation terms
The central part of the scheme is the constructed

in the standard way. The artificial dissipation terms
corresponding to the advection scheme are evaluated
in the standard fashion as well. A special care needs
to be taken of the other artificial dissipation terms.

Recall, that the artificial dissipation terms in the
momentum equations (lib) that are subject to the
gradient operator are the residual of the pressure equa-
tion. Denote them

Rp = pc2V Vp (20)

and the expression subject to the action of the diver-
gence operator in the pressure equation (He) is the
residual of the momentum equations

Rm = Vp (21)
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Fig. 1 Computational grid segment and a control volume.

Constructing the discrete scheme
Our goal now is to derive a discretization of a con-

servation law (scalar and a system). For this purpose
we need to evaluate the numerical fluxes through each
of the faces of the dual-median cell (see Fig.l).

Global and local coordinate frames

(22)

where (a^/3%) and (o^,/?^) are the unit vectors in
the direction of the £ and 17 coordinate axes respec-
tively. The relationship between the Cartesian and
contravariant velocity components is described as fol-
lows

(23)

(24)

or

The Jacobian of this coordinate rotation

J = det H = otP — Par

Fig. 2 Nodes used for evaluating the flux through
a face of dual-median cell.

(25)
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The inverse of the Hessian H

J\ -

Euler system
Integrating the Euler equations in the conservative

(26) form over the control-volume (dual-median cell) and
applying the Green's theorem, we obtain

It is convenient to use the scaled contravariant velocity
components

U = Ju — u
V = Jv = — -h

(27)

Th relationship between the Cartesian and covariant
velocity components is givejn by the following

or

U =
V = + v (29)

The covariant and covariant velocities are related as
follows

(30)

ffT rr _
H *~

The total velocity squared

Iffp = u2 + v2 = m + vv
Scalar advection

Consider a scalar advection equation

st + usx + vsy = 0.

(32)

(33)

The discrete equation to solve for s at point 0 is ob-
tained by balancing fluxes through the surface of the
dual median cell (see Fig.l)

Nd

(34)
*'=!•

where h^ is the length of the corresponding face and
the numerical flux

where de stands for a divided difference

(35)

(36)

The discrete equation to solve for s at point 0 is ob-
tained by substituting numerical fluxes evaluated by
analogy to (35) on all the faces of the dual-median cell
and substituting them into the flux-balance equation
.(34).

F • ndl = 0, (37)

where dC is the control volume's boundary n is a unit
vector normal to the boundary and

\

I
pu

u*
puv

pv
puv

pv2 + p (38)

(E+p)v

A conservative discretization of the Euler system can
be written in the following form

Nd

•£[^].- = 0. (39)
t=i

The numerical flux through a face can be represented
as a sum of central and the artificial dissipation parts

The central portion of the flux is given by

(40)

(41)

where now n = (fl^—ar)) is a unit vector normal to
the face. The rest of this section is dedicated to the
question of deriving the diffusive portion of the numer-
ical fluxes.

We would like to emphasize that it is fairly simple
to implement the new discretization within the exist-
ing control-volume computer codes. It requires only
the new numerical flux routine. Such a routine can be
written in several simple steps, starting from the stan-
dard upwind scheme and performing the modifications
gradually.

The standard upwind scheme
The first step is to rewrite the standard upwind for

the subsonic case without explicit mention of the char-
acteristic variables, etc. The scheme is given by the
following numerical flux

\u\dhs
(42)

The derivation presumes that these fluxes correspond
to the local orthogonal coordinate frame associated
with the cell-face. Therefore, the momentum equa-
tions diffusive fluxes can be rotated to the global co-
ordinate frame (a?, y) by in the following way

(48)^ '
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The obtain diffusive fluxes correspond to the quasi-
linear nonconservative formulation of the Euler equa-
tions. The need to be transformed, therefore, to the
form appropriate for the conservative discretization

pd = (44)

where

Af =

1
u
v

0 0
1 0
0 1
u v

1/c*
u/c3

v/c2

(45)

A modified scheme
As an intermediate step towards constructing the

factorizable scheme we can consider the following case:

hh P\u\d%v
+

(46)

The main difference from the standard scheme is that
the momentum equations diffusive fluxes (the second
and third components) are now attributed to the mo-
mentum equations in the covariant directions (£ and
77). Therefore, the transformation back to the global
orthogonal frame takes the following form

h
h (47)

This change is necessary towards eventually obtaining
the approximation for the gradient operator term in

Another intermediate step

= --hf (48)

The coefficient in front of the pressure difference in
the fourth component constitutes the change from the
previous case. It is necessary in order arrive later to
the approximation of the divergence term

The factorizable scheme
Now we shall incorporate the correction (mixed

derivative) terms into the scheme, so that some of
the terms in the artificial dissipation can be viewed as
residuals of the momentum and the pressure equations
and, therefore, are second order small. The latter mod-
ification together with introducing the wide differences
that possess the commutativity properties results in a

factorizable scheme. Implementation of all these steps
can be done in several steps as well, testing the routine
after each modification.

We start from re-interpreting of some standard no-
tions. A standard "narrow" divided difference can be
defined also as

h _
"t ~~ 5012 _l_ 5023

Define a "wide divided difference"
Qh __ /2g012^012 i 25*023^023

(49)

+ s182df2
i £293^93 i g034^034\ /

(25012 I 2S023 H- S^61 + S182 -h S293 + 5034)
(50)

Similarly, we can define d^ and d%. Adding the some
specific /^-derivative terms (all the differences used here
are narrow) to the artificial dissipation of the pressure
equation obtain the residual of the momentum equa-
tion in the direction normal to the cell face

R =
(51)

We also add some //-derivative terms to the artificial
dissipation of the momentum equation in £ direction
to obtain the residual of the pressure equation. All
the differences used here are wide. The notation (IR
for the residual) reflects this fact

(52)

The artificial dissipation then takes the following form

f =

(53)

The need for rescaling the artificial dissipation in order
to avoid the quasi-ellipticity of the full-potential fac-
tors approximation for the low-speed flow regions was
established in.6 The scaling parameters 0-m,<7p serve
this purpose. In the conducted preliminary numerical
test (see next section) they were taken to be 1. The
parameter / was taken to be equal to h%.

There remains a need to introduce some modifica-
tions into the central part of the scheme. It is neces-
sary for factorizability that the pressure gradient term
in the momentum equations is approximated by dif-
ferences. Using wide differences to approximate the
pressure advection operator in the pressure equation
is not necessary for factorizability but is still benefi-
cial since it results in a better form of the discrete
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Fig. 3 The computational grid.

Fig. 4 Solution: density contours.

full-potential factor. These modifications can be in-
troduced in a very simple way using a trick by Tom
Roberts: adding certain terms to the artificial dissipa-
tion. Introduce the following undivided difference

.£2930293..

(54)

The artificial dissipation terms are then augmented
as follows

/4
(55)

Returning to the global Cartesian coordinate frame

\-l /2

/3
(56)

and converting to the conservative form
pd _ (57)

This describes the scheme that was used in the pre-
liminary numerical experiment reported below.

Preliminary numerical results
The work on implementing the new scheme within

the FUN2D11 code has just began. Our very first aim
is just to implement the numerical fluxes and to verify
the correctness of the residual evaluation.

The testcase presented is a subsonic flow (Mach =
.2) in a channel with a bump. The grid consists of
1375 nodes (see Fig.3). A second order version of the
new scheme was used. The contour plots of density
are presented in Fig.4. We also present for compar-
ison in Fig.5 density contours of the solution to the
same problem using the standard second order scheme
with limiters switched off. order upwind scheme. The
solution obtained using the new scheme is at least as
accurate as the one using the standard scheme.

Fig. 5 Solution obtained using the second order
upwind scheme: density contours.
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