Session 4: Gridding Considerations, Solution Basics, and Visualization

Eric Nielsen

http://fun3d.larc.nasa.gov

FUN3D Training Workshop July 27-28, 2010

1

Learning Goals

What we will cover

- Basic gridding requirements and formats
- Basic environment for running FUN3D
- Running FUN3D for typical steady-state RANS cases
 - Compressible transonic turbulent flow over a wing-body using a tetrahedral VGRID mesh
 - Turbulent flow over a NACA 0012 airfoil section
- Analysis of flowfield solution and solver behavior
- Things to watch out for
- Things to help diagnose problems
- Visualization co-processing overview

What we will not cover

- Other speed regimes
- Unsteady flows

Gridding Considerations

- FUN3D is a **node-based** discretization!
 - To get similar resolution when comparing with a cell-centered code, you must use a finer grid!
 - E.g., on a tetrahedral grid, the grid for FUN3D must be ~2 times finer on the surface, and ~6 times finer in the volume mesh to be fair
 - This is *critical* when comparing with cell-centered solvers!
- FUN3D integrates all of the way to the wall for turbulent flows
 - Wall function grids are not adequate
 - Goal is to place first grid point at y⁺=1
 - Base Δy on a flat plate estimate using your Reynolds number; can examine result in solver output and tweak as necessary
- Customers use all of the common grid generators VGRID, AFLR2/AFLR3/SolidMesh, ICEM, GridGen, etc.
- FUN3D also supports point-matched, multiblock structured grids through Plot3D file input
 - Subject to certain grid topologies:
 - Singularities treated i.e., hexes with collapsed faces converted to prisms
 - But hexes with 180° internal angles cause FUN3D discretization to break down (LSQ)
- FUN3D can convert tetrahedral VGRID meshes to mixed elements
- FUN3D can convert any mixed element grid into tetrahedra using '--make_tets'

Supported Grid Formats

Grid Format	Formatted	Unformatted	Supports mixed elements	v11.3 Solver loads directly	File extension(s)
FAST	X	Х		Х	.fgrid, .mapbc
VGRID (single or multisegment)		Х		Х	.cogsg, .bc, .mapbc
VGRID v4		Х	Х	Х	.gridu, .mapbc
AFLR3	х	X Also binary (stream)	Х	х	.ugrid/.r8.ugrid/.b8.ugrid, .mapbc
FUN2D	X			Х	.faces
Fieldview v2.4, v2.5, v3.0	х	Х	Х	Х	.fvgrid_fmt, .fvgrid_unf, .mapbc
NSU3D		Х	Х	Х	.mcell.unf, .mapbc
Point-matched, multiblock Plot3D	х	х	Structured Hexes	Eventually (Party capable)	.p3d, .nmf
Felisa	Х			Eventually (Party capable)	.gri, .fro, .bco
CGNS		Binary	Х	Eventually (Party capable)	.cgns

4

Nondimensionalization

- Notation: * indicates a dimensional variable, otherwise dimensionless; the reference flow state is **usually** free stream (" ∞ "), but need not be
- Define reference values:
 - $-L_{ref}^*$ = reference length of the physical problem (e.g. chord in ft)
 - $-L_{ref}$ = corresponding length in your grid (*dimensionless*)
 - $-\rho_{ref}$ = reference density (e.g. slug/ft³)
 - $-\mu_{ref}$ = reference molecular viscosity (e.g. slug/ft-s)
 - $-T_{ref}^*$ = reference temperature (e.g. °R, compressible only)
 - $-a_{ref}^{*}$ = reference sound speed (e.g. ft/s, compressible only)
 - $-U_{ref}^{*}$ = reference velocity (e.g. ft/s)
- Space and time are made dimensionless in FUN3D by:

$$-\vec{x} = \vec{x}^* / (L_{ref}^* / L_{ref}) \quad t = t^* a_{ref}^* / (L_{ref}^* / L_{ref}) \quad t = t^* U_{ref}^* / (L_{ref}^* / L_{ref})$$
(incompressible) (incompressible)

http://fun3d.larc.nasa.gov

Nondimensionalization (cont)

• For the *compressible-flow* equations the dimensionless variables are:

$$\begin{aligned} &-\vec{u} = \vec{u}^* / a_{ref}^* & \text{so } |\vec{u}|_{ref} = |\vec{u}|_{ref}^* / a_{ref}^* = M_{ref} \\ &-P = P^* / (\rho_{ref}^* a_{ref}^{*2}) \text{ so } P_{ref} = P_{ref}^* / (\rho_{ref}^* a_{ref}^{*2}) = 1 / \gamma \\ &-a = a^* / a_{ref}^* & \text{so } a_{ref} = 1 \\ &-T = T^* / T_{ref}^* & \text{so } T_{ref} = 1 \\ &-e = e^* / (\rho_{ref}^* a_{ref}^{*2}) \text{ so } e_{ref} = e_{ref}^* / (\rho_{ref}^* a_{ref}^{*2}) = 1 / (\gamma(\gamma - 1)) + M_{ref}^2 / 2 \\ &-\rho = \rho^* / \rho_{ref}^* & \text{so } \rho_{ref} = 1 \end{aligned}$$

- From the equation of state and the definition of sound speed:

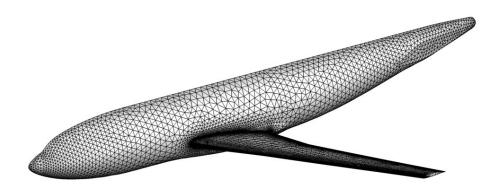
$$T = \gamma P / \rho = a^2$$

 The input Reynolds number in FUN3D is related to the Reynolds number of the physical problem by

reynolds_number = $\operatorname{Re}_{ref} / L_{ref}$ where $\operatorname{Re}_{ref} = \rho_{ref}^* U_{ref}^* L_{ref}^* / \mu_{ref}^*$ i.e. reynolds_number is a Reynolds number *per unit grid length*

http://fun3d.larc.nasa.gov

FUN3D Training Workshop July 27-28, 2010


6

Runtime Environment

- "Unlimit" your shell (also good idea to put this in any queue scripts):
 - csh: 'limit stacksize unlimited'
 - bash: 'ulimit -s unlimited -d unlimited -m unlimited'
- If unformatted, what "endianness" does your grid file have?
 - E.g., VGRID files are always big endian, regardless of platform
 - FUN3D must be set up with the corresponding endianness!
 - Either an environment variable or compile-time option, depending on what compiler you're using
 - I.e., Intel compiler can be controlled with an environment variable F_UFMTENDIAN = big
- Memory required by solver: *rough* rule of thumb is 3-3.5 GB per million points (not cells!)
 - Conversely, 200k-300k points per 1 GB of memory
 - Users generally partition into smaller domains than this anyways, but be aware of these numbers

- Go down into the Basics_Demos directory
 - 'cd Basics_Demos'
- Go down into the WingBody directory
 - 'cd WingBody'
- This directory contains a set of files for a typical tetrahedral VGRID mesh

- Edit the f6fx2b_trn.mapbc file and look at it
 - A good first step is to always examine/set the BC indices and family names
 - FUN3D understands VGRID-style BC indices; you may use either

Most Common FUN3D BC Indices (complete list on website)

BC Index (VGRID index)	Physical Boundary Condition
3000 (5)	Slip wall
4000 (4)	No-slip wall
5000 (3)	Characteristic inflow/outflow
6662 (1)	y-symmetry

- Edit the fun3d.nml file and take a look at it
- Consists of several Fortran namelists
 - Many other optional namelists not shown
 - See website, subsequent tutorials for namelists, variable values

```
&version_number
input_version = 2.2 Namelist version - leave alone
namelist_verbosity = "off" Cuts down on echos of input to screen
/
&project
project_rootname = "f6fx2b_trn" Project name for your files
case_title = "DPW-III DLR-F6FX2B Grid Mach 0.75 AOA 1deg REc 2.5M"
/ Case title for plotting files, etc
```



```
&governing_equations
    eqn_type = "cal_perf_compress" Use compressible, perfect gas physics
    viscous_terms = "turbulent" Use RANS equations
/
```

```
&reference_physical_properties
  temperature_units = "Rankine"
  mach_number = 0.75
  reynolds_number = 17705.40
  temperature = 580.0
  angle_of_attack = 1.00
  angle_of_yaw = 0.00
/
```

Temperature units Freestream Mach number Reynolds number Freestream temperature Freestream angle-of-attack Freestream sideslip angle

Setting the Reynolds Number Input

- Frequent cause of confusion, even for developers
- Need to know what characteristic length your Reynolds number is based on – mean aerodynamic chord, diameter, etc.
- Your input Reynolds number is based on the corresponding length of that "feature" in your computational grid
- Example: You want to simulate a Reynolds number of 2.5 million based on the MAC:
 - If the length of the MAC in your grid is 1.0 grid units, you would input Re=2500000 into FUN3D
 - If the length of the MAC in your grid is 141.2 grid units (perhaps these physically correspond to millimeters), you would input 2500000/141.2, or Re=17705.4 into FUN3D


```
&force moment integ properties
   area_reference =
                        72700.0 Reference area
   x_moment_length = 141.20 Length to normalize y-moments
                                                                   585.60 Length to normalize x- and z-moments
   y moment length =
                                                                    GRID
                         157.90 x-moment center
   x moment center =
                                                                   UNITS
                         0.0000 y-moment center
   y_moment_center =
                        -33.920 z-moment center
   z moment center =
&inviscid flux method
                                         No limiting on reconstruction
   flux limiter
                            = "none"
                                         No first-order iterations
   first_order_iterations = 0
                                         Use Roe's scheme for inviscid fluxes
   flux construction
                            = "roe"
&molecular viscous models
   prandtlnumber_molecular = 0.72 Prandtlnumber
```



```
&turbulent_diffusion_models
    turb_model = "sa"
/
```

Use Spalart-Allmaras one-equation model

```
&nonlinear_solver_parameters
```

time_accuracy = "steady"
pseudo_time_stepping = "on"
schedule_number = 2
schedule_iteration = 1 50
schedule_cfl = 10.0 200.0
schedule_cflturb = 1.0 30.0

```
"steady"
Perform steady-state integration
"on"
Use pseudo-time stepping
2
No. of steps defining CFL ramp; must=2
1 50
Starting and ending timesteps for CFL ramp
10.0 200.0
Min and max CFL for meanflow equations
1.0 30.0
```

```
/
```

```
&linear_solver_parameters
   meanflow_sweeps = 15
   turbulence_sweeps = 10
/
```

Number of sweeps through meanflow linear system Number of sweeps through turbulence linear system


```
&code run control
                                        Run 1000 time steps
                         = 1000
   steps
                                        Halt if density norm hits this (absolute measure)
   stopping_tolerance = 1.00E-12
                                        How often to write restart info, forces, etc.
   restart write freq = 500
                                        No prior solution to start from
   restart read
                         = "off"
&special_parameters
                                         Ignore viscous fluxes in VGRID
   large angle fix = "on"
                                         "sliver" cells (>178° face angle)
&raw grid
                                        Input grid format
   grid_format = "vgrid"
                                        Formatted grid?
   data format
                   = "unformatted"
   patch lumping = "none"
                                         How to lump raw boundary patches
```

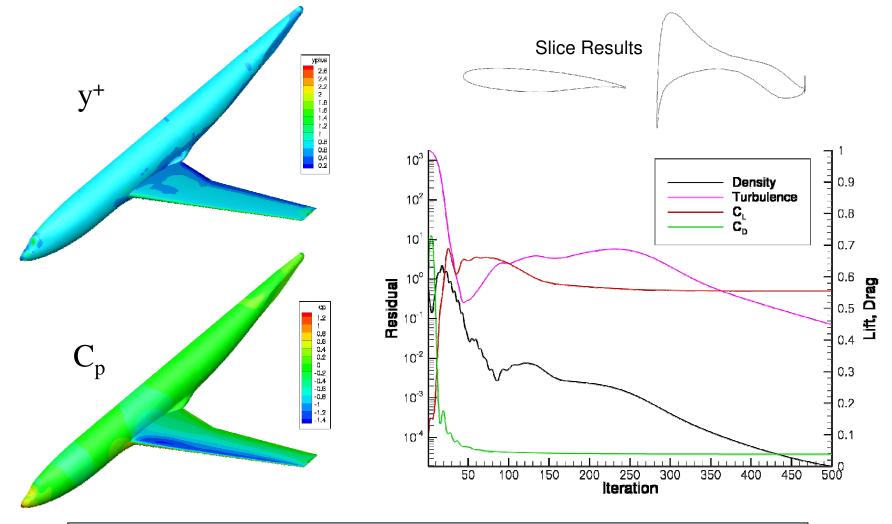

&boundary_output_variables							
primitive_variables	s = .false.	Do not plot the primitive variables					
ср	= .true.	Plot pressure coefficient					
yplus	= .true.	Plot y+					
uavg	= .true.	Plot averaged off-surface u-velocity					
vavg	= .true.	Plot averaged off-surface v-velocity					
wavg	= .true.	Plot averaged off-surface w-velocity					
cf_x	= .true.	Plot Cfx					
cf_y	= .true.	Plot Cfy					
cf_z	= .true.	Plot Cfz					
slen	= .true.	Plot distance function					
/							
&slice_data							
nslices =	= 1	Number of slices to perform					
<pre>slice_location(1) =</pre>	-160.	Location of slice					
/							

Extensive documentation on these and many other namelist input options available on the website

- We now have the boundary conditions and input deck set up to run FUN3D
- The execution we will perform here is based on the following command line: mpirun nodet_mpi --animation_freq -1 --slice_freq -1 > screen.output
 - Note command line options given to FUN3D:
 - --animation_freq -1 Write boundary visualization files after last time step
 - --slice_freq -1 Write slice visualization files after last time step
 - We will cover visualization specifics towards the end of this session
 - Many other command line options available
 - Obtain a list with '--help' or see the website for common user choices
 - Most are development-related
 - Command line options always trump fun3d.nml

- Execute the job with the specified command line (modify MPI input for your environment)
- Watch FUN3D's screen output using 'tail -f screen.output'
- The tail end of the screen output will look like this when FUN3D is complete:

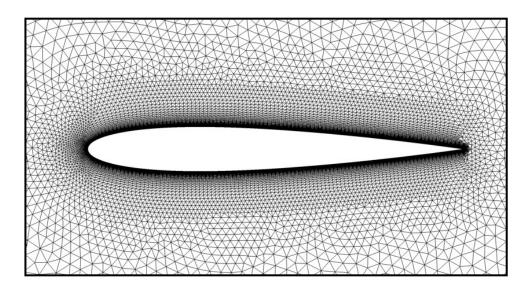
498	0.190568203044346E-04 0.28547E-02 0.728925753784098E-01 0.11568E+02 Lift 0.554840528943358E+00	0.46732E+04 -0.15204E+04	0.26710E+03				
499	0.189000809038698E-04 0.28125E-02 0.719437041073944E-01 0.11410E+02 Lift 0.554839375833070E+00	0.63496E+04 -0.38199E+04 0.46732E+04 -0.15204E+04	0.18712E+04 0.26710E+03				
500		0.63496E+04 -0.38199E+04 0.46732E+04 -0.15204E+04	0.18712E+04 0.26710E+03				
Writing Tecplot boundary file for time step 500							
Slicing global boundary data for time step 500							
Writing sectional force/moment data for time step 500							
Writing sliced global boundary data to tecplot file for time step 500							
	ng f6fx2b_trn.flow (version 11.000 Time for WREST 2.073100	000000000)	2				



- Let's look at some quick text-based solver output:
 - Bring up f6fx2b_trn.grid_info File containing basic mesh statistics
 - Bring up f6fx2b_trn.forces File containing force breakdowns and totals
- You will also see several other files that got created:

f6fx2b_trn_hist.datTecplot file with residual, force historiesf6fx2b_trn_tec_boundary.datTecplot file with requested quantities on boundariesf6fx2b_trn_slice.datTecplot file with requested quantities at slice locationf6fx2b_trn.flowSolver restart information

Congratulations, you just performed your first FUN3D solution!

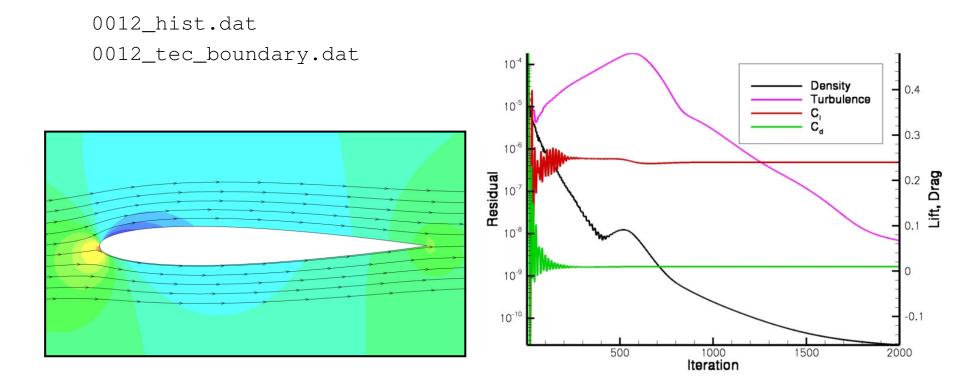


http://fun3d.larc.nasa.gov

FUN3D Training Workshop July 27-28, 2010

Demo Case #2: NACA 0012 Airfoil

- Let's do turbulent flow over a NACA 0012 airfoil
- Go up one level and down into the 0012 directory
 - 'cd ../0012'
- This directory contains a set of files for a typical FUN2D mesh



Demo Case #2: NACA 0012 Airfoil

- The execution we will perform here is based on the following command line: mpirun nodet_mpi --animation_freq -1 > screen.output
- Execute the job

0012.forces

• Have a look at the output, just like before:

FUN3D Training Workshop July 27-28, 2010

List of Key Input/Output Files

- Input
 - Grid files (prefixed with project, suffixes depend on grid format)
 - fun3d.nml
- Output
 - project.grid_info
 - project.forces
 - project_hist.dat
 - project.flow
- Optional output generated here
 - project_tec_boundary.dat (or .plt if using binary Tecplot libraries)
 - project_slice.dat (or .plt if using binary Tecplot libraries)

<u>Problem</u>

• Common complaint from VGRID meshes during initial preprocessing phase at front end of solver:

```
Checking volume-boundary connectivity...
stopping...unable to find common element for face
                                            1 of
boundary
            3
boundary nd array 46 17368 334315
node, locvc
               46******
node,locvc_type
               46
                   tet
                        tet tet
                                  tet
                                      tet
node, locvc
             node, locvc type 17368
                   tet
                        tet
                             tet
                                  tet
                                       tet
                                           tet
```

- This is due to a 15-year old VGRID bug that causes an incompatibility between the .cogsg and .bc files
 - Compile and run utils/repair_vgrid_mesh.f90 to generate a valid
 .bc file to replace your original one

Problem

 Common complaint from unformatted meshes during initial preprocessing phase at front end of solver:

```
Read/Distribute Grid.
forrtl: severe (67): input statement requires too much data, unit 16100,
file /misc/work14/user/FUN3D/project.cogsg
```

• Check the endian-ness of the grid and your environment/executables

<u>Problem</u>

- Unexpected termination, especially during preprocessing or first time step
 - Are your shell limits set?
 - Do you have enough local memory for what you are trying to run?

<u>Problem</u>

- Solver diverges or does not converge
 - Problem-dependent, very tough to give general advice here
 - Sometimes require first-order iterations (primarily for high speeds)
 - Sometimes require smaller CFL numbers
 - Sometimes require alternate flowfield initialization (not freestream) in some subregion of the domain: e.g., chamber of an internal jet
 - Perhaps your problem is simply unsteady

Problem

- Solver suddenly dies during otherwise seemingly healthy run
 - Sometimes useful to visualize solution just before failure
 - Is it a viscous case on a VGRID mesh? Try turning on large_angle_fix in fun3d.nml (viscous flux discretization goes haywire in sliver cells common to VGRID meshes)
 - Is it a turbulent flow on a mesh generated using AFLR3? Look for "eroded" boundary layer grids near geometric singularities – AFLR3 has trouble adding viscous layers near complex corners, etc

In General...

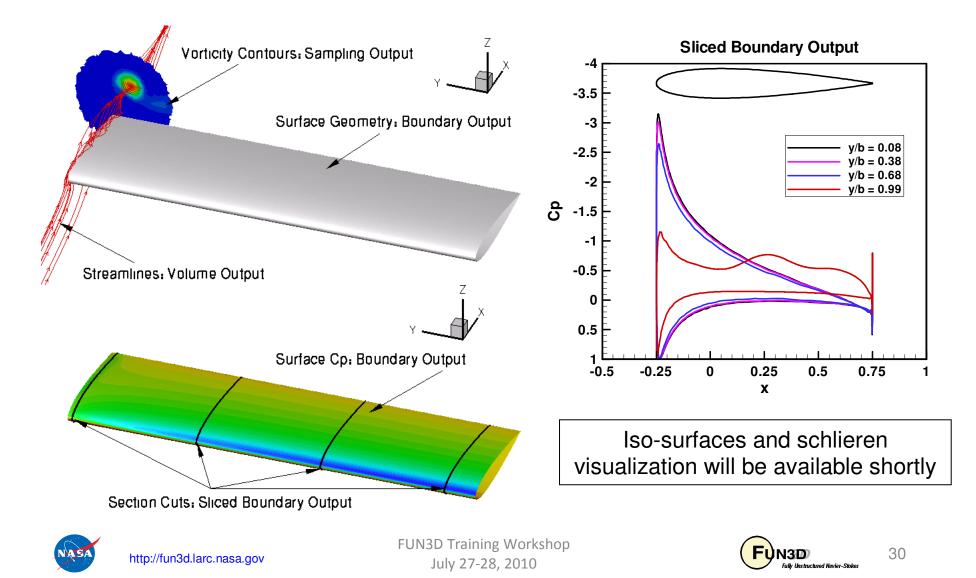
- Do not hesitate to send questions to fun3d-support@lists.nasa.gov; we are happy to try to diagnose problems
 - Please send as much information about the problem/inputs/environment that you can, as well as all screen output
 - In extreme cases, we may request your grid and attempt to run a case for you to track down the problem
 - If you cannot send us a case due to restrictions, size, etc., a generic/smaller representative case that behaves similarly can be useful
 - Check the website documentation for guidance

Visualization Learning Goals

- What this will teach you
 - Flow visualization output from v11.x
 - Output on boundary surfaces
 - Output on user-specified "sampling" surfaces within the volume
 - Output of full volume data
 - Output generated by "slicing" boundary data "sectional" output
- What you will not learn
 - Tecplot usage
- What should you already know
 - Basic flow solver operation and control

Setting

Background


- FUN3D v11.x effectively does away with the Party code for both pre- and post-processing
 - Post-processing with Party code was always done on single processor - slow and memory bound
 - Limited variable choice within a particular output option
 - Party supported both Tecplot and FieldView visualizers
- v11.x allows visualization data to be generated as the solver is running - "co-processing" - in parallel
 - User selectable output variables from a fairly extensive list
 - User selectable output boundaries
- Compatibility
 - Only Tecplot is supported at this time
- Status
 - Hope to support FieldView visualizer in the future

Selected Co-Processing Output Examples

• A few of the possibilities for co-processed output - all generated at one time

- All of the "co-processing" visualization output requires similar command line options to activate:
 - Boundary surface output: --animation_freq +/-N
 - Sampling surface output: --sampling_freq +/-N
 - Volume output: --volume_animation_freq +/-N
 - Sliced boundary surface output: --slice_freq +/-N
 - In all cases, N = 0, 1, 2, 3, ...
 - N = 0 generates no output
 - N < 0 generates output only at the *end* of the run typically used for steady-state cases. The actual value of N (other than 0) is ignored
 - N > 0 generates output every Nth time step typically used to generate animation for unsteady flows; can also be used to observe how a steady flow converges

- Customizable output variables (except sliced boundary data):
 - Most variables are the same between the boundary surface, sampling and volume output options; boundary surface has a few extra
 - See website for lists of all available variables
 - Default variables always include x, y, z, and the "primitive" flow variables u, v, w, and p (plus density if compressible)
 - Several "shortcut" variables: e.g. primitive_variables = rho, u, v, w, p
 - Must explicitly turn off the default variables if you don't want them (e.g. primitive_variables = .false.)
 - Variable selection for each co-processing option done with a different namelist to allow "mix and match"
 - --animation_freq --> &boundary_output_variables
 - --volume_animation_freq --> &volume_output_variables
 - --sampling_freq --> &sampling_output_variables

• For boundary surface output, default is all solid boundaries in 3D and one y=const. plane in 2D; alternate output boundaries are selected with (e.g.)

```
&boundary_output_variables
number_of_boundaries = 3
boundary_list = `3,5,9' ! blanks OK as delimiter too: `3 5 9'
! dashes OK as delimiter too: `3-9'
/
```

- If you already have a converged solution and don't want to advance the solution any further, can do a "pass through" run:
 - set steps = 0 in &code_run_control Of fun3d.nml
 - You must have a restart file ([project].flow)
 - Run the solver with the appropriate CLO's and namelist input to get desired output
 - [project].flow will remain unaltered after completion

- Sampling output requires additional data to describe the desired sampling surface(s)
 - Specified in namelist &sampling_parameters in fun3d.nml
 - Surfaces may be planes, quadrilaterals or circles of arbitrary orientation, or may be spheres or boxes
 - See website for complete info
- Sliced boundary surface output requires additional data to describe the desired slice section(s)
 - Specified in namelist &slice_data in fun3d.nml
 - Always / only outputs x, y, z, Cp, Cfx, Cfy, Cfz
 - User specifies which (solid) boundaries to slice, and where
 - See website for complete info

- Output files will be ASCII, unless you have configured FUN3D against the Tecplot library (exception: sliced boundary data is always ASCII)
 - ASCII files have .dat extension
 - Binary files have .plt extension smaller files; load into Tecplot faster
 - Boundary output file naming convention (T = time step counter):
 - [project]_tec_boundary_timestepT.dat if N>0
 - [project]_tec_boundary_.dat if N < 0
 - Volume output file naming convention (note: 1 file per processor P)
 - [project]_partP_tec_volume_timestepT.dat if N > 0
 - [project]_partP_tec_volume_.dat if N < 0
 - Sampling output file naming convention (one file per sampling geometry G):
 - [project]_tec_sampling_geomG_timestepT.dat if N > 0
 - [project]_tec_sampling_geomG_.dat if N < 0

Troubleshooting/FAQ

- When linked to the Tecplot library archive an error occurs:
 - Err: (TECEND111) File 1 is being closed without writing connectivity data. Zone 46 was defined with a Classic FE zone type but TECNOD111() was not called.
 - If this is from a Tecplot2008 installation, likely due to the fact that the original archive from Tecplot had an error - get an updated version from Tecplot
- I can see what look like ragged dark lines on sampling surfaces and volume data
 - Duplicate information at partition boundaries is not removed; if surface is not completely opaque, double plotting locally doubles the opaqueness (duplicate info *is* removed from boundary surface output)
 - Turn off transparency in Tecplot (seems on by default in Tecplot2009)

What We Learned

- Basic gridding requirements and file formats
- Runtime environment
- How to set up boundary conditions for the grid and a very basic FUN3D input deck fun3d.nml
- How to run a tetrahedral RANS solution for a wing-body VGRID mesh
 - How to monitor convergence of the solution
 - Visualizing the solution
- How to perform a 2D airfoil solution using a FUN2D grid
- Some unhealthy things to watch for and possible remedies
- Overview of visualization co-processing

Have fun and don't hesitate to send questions our way! fun3d-support@lists.nasa.gov

