
1

Initial Implementation of VG Source Terms in FUN3D
Background

• Spent ~3 days on the implementation at a user’s recent request –
seems to be working, but have not spent significant time evaluating its
use

• Looking for users to try, provide feedback

• Implementation based on these references:

• Bender, E.E., Anderson, B.H., and Yagle, P.J., “Vortex Generator
Modeling for Navier-Stokes Codes,” 3rd Joint ASME/JSME Fluids
Engineering Conference, San Francisco, CA, 1999.

• Waithe, K., “Source Term Model for Vortex Generator Vanes in a
Navier-Stokes Computer Code,” AIAA 2004-1236, January 2004.

• Jirasek, A., “A Vortex Generator Model and its Application to Flow
Control,” AIAA 2004-4965, August 2004.

2

Initial Implementation of VG Source Terms in FUN3D
Details

• Will be available in v12.2

• Only intended for static grid computations currently

• Implementation supports as many vortex generators as user desires
(up to 1000)

• Through the new &vortex_generator namelist, user provides the
number of VG’s, the model calibration constant, and the following
values for each VG:

• Planform area

• Height

• Approximate locations of two points on the surface defining the
base of the VG

• Intended boundary patches each of these points should be
associated to during projection

• Optional: have FUN3D reverse the orientations of the assumed t
and n unit vectors

• Implemented for all element types

• Source terms are treated fully implicit

3

Initial Implementation of VG Source Terms in FUN3D
Sample Namelist

• Used f6fx2b_0.1 VGRID mesh available on DPW-3 website (5.6M
nodes)

• Free-handed a rough VG for testing, using the following namelist

&vortex_generator

number_of_vgs = 1

calibration_constant = 100.

planform_area(1) = 12.0

height(1) = 2.5

boundary_patch1(1) = 31

point1_xcoord(1) = 176.1

point1_ycoord(1) = -319.59

point1_zcoord(1) = 32.40

boundary_patch2(1) = 31

point2_xcoord(1) = 181.50

point2_ycoord(1) = -322.30

point2_zcoord(1) = 33.06

reverse_t(1) = .false.

reverse_n(1) = .false.

/

4

Initial Implementation of VG Source Terms in FUN3D
Setup Process

• After setting up the namelist, do a single cycle with the CLO
‘—animation_freq -1’ and look at the provided data for the VG’s

• Load in f6fx2b_0.1_tec_boundary.dat

• Then load in f6fx2b_vg_geometry.dat on top of it, which contains
the geometries FUN3D constructed for each of your VG’s

5

Initial Implementation of VG Source Terms in FUN3D
Setup Process

• Now verify that the unit vectors for the source term formulation are
oriented as intended

• Load in f6fx2b_vg_vectors.dat on top of everything so far – this contains the unit
vectors b, t, and n that will be used for the formulation in the references

• The b vector is uniquely defined by the local boundary orientation

• However, the directions of t and n are guessed by FUN3D based on the freestream
direction – they may be backwards if the local flow direction is substantially different.
Use the namelist inputs to flip these two vectors as needed.

6

Initial Implementation of VG Source Terms in FUN3D
Setup Process

• Finally, if desired, load in f6fx2b_vg_source_locations.dat – this file can
be used to scatter plot the actual locations where the source terms are
computed.

• These locations are determined by intersections of grid edges with the
VG geometry. The source terms are computed here and distributed to
residuals at either end of the intersecting edge.

7

Initial Implementation of VG Source Terms in FUN3D
Execution

• Run solution to desired convergence as normal. Plot below shows
convergence histories with and without VG turned on for this case.

8

Initial Implementation of VG Source Terms in FUN3D
Visualization

• Physical interpretation, validation left as an exercise for the reader ☺

• Would think significant mesh resolution would still be needed even to
capture the effects of the modeled VG’s (?)

Density contours with and without VG

