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Saturday, June 20

Session 1: Meet and Greet All 8:00-8:30

Session 2 Welcome and Overview Eric Nielsen 8:30-9:00

Session 3: Compilation and Installation Bill Jones 9:00-9:15

Session 4: Gridding, Solution, and Visualization Basics Eric Nielsen 9:15-10:15

BREAK 10:15-10:30

Session 5: Boundary Conditions Jan-Renee Carlson 10:30-11:00

Session 6: Turbulence Models Jan-Renee Carlson 11:00-11:30

Session 7: Supersonic / Hypersonic Perfect Gas Simulations Mike Park 11:30-12:00

CATERED LUNCH: Lightning Talks Various 12:00-1:15

Session 8: Parameterization Tools Bill Jones 1:15-2:15

Session 9: Adjoint-Based Design for Steady Flows Eric Nielsen 2:15-3:45

BREAK 3:45-4:00

Session 10: Feature and Adjoint-Based Error Estimation and 

Mesh Adaptation
Mike Park 4:00-5:00
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Session 11: Time-Dependent Simulations Bob Biedron 8:00-8:30

Session 12: Dynamic Grid Simulations Bob Biedron 8:30-9:00

Session 13: Suggar ++ Ralph Noack 9:00-10:00

BREAK 10:00-10:15

Session 14: Overset Grid Simulations Bob Biedron 10:15-10:45

Session 15: Adjoint-Based Design for Unsteady Flows Eric Nielsen 10:45-12:00

LUNCH ON YOUR OWN 12:00-1:00

Session 16: Aeroelastic Simulations Bob Biedron 1:00-1:45

Session 17: Rotorcraft Simulations Bob Biedron 1:45-2:45

BREAK 2:45-3:00

Session 18: Current Development Activities,

Summary of User Feedback and Requests
All 3:00-4:00

Session 19: High-Energy / Generic Gas Simulations

*** Please see important note for this session below ***
Peter Gnoffo 4:00-4:30

FUN3D Training Workshop
June 20-21, 2015

Sunday, June 21

Due to security regulations, workshop participants who would like to attend this session will be required to present a 

valid US passport as proof of US citizenship.  There will be no exceptions to this requirement.  The FUN3D team 

apologizes for any inconvenience this may cause.





Chicken salad on croissant: Diced chicken, apples, grapes, mayonnaise

Turkey club: Smoked turkey, bacon, onion roll

Tuna salad: Tuna salad, green onion, wheat bread

Grilled vegetable wrap: Red bell peppers, yellow squash, mushrooms, 
mixed greens, olive oil, spinach tortilla

*** Circle one sandwich, one chips/cookie, and one drink ***

Mrs. Vickie’s Original Sea Salt Chips Doritos Nacho Cheese Chips

Mrs. Vickie’s Salt & Vinegar Chips Chocolate chip cookie

Mrs. Vickie’s Jalapeno Chips Macadamia cookie

Kettle Cooked Original Sea Salt & 
Cracked Pepper Chips

Oatmeal cookie

Doritos Cool Ranch Chips

Coke Diet Dr. Pepper Apple Juice

Diet Coke Pink Lemonade Grapefruit Juice

Sprite Lemonade Cranberry Juice

Coke Zero Crystal Geyser Water

Dr. Pepper Orange Juice

Total: $18.00

Includes tax and gratuity

Exact change appreciated, but change is available

Your name:

Special notes (omit toppings, etc):

FUN3D Training – Day One Lunch Order





FUN3D User Feedback and Requests

The training team will summarize and discuss content received from all participants

during the final session on Sunday. This is an opportunity to identify directions of mutual

interest between NASA and your organization, and to gauge the level of interest across

the user base. Please indicate any content below you wish to remain confidential; such

items will be excluded from the public discussion on Sunday. Thanks!

Feedback: Are we doing something poorly? Suggestions for improvements?

Requests: What capabilities would you like to see in future versions of FUN3D?

Your name (optional):
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FUN3D Training Evaluation Form 
  

I am a CFD:    Novice   Experienced user      Expert 
 
          I am a FUN3D:   Novice   Experienced user      Expert  

 

 
Strongly 
Agree 

Agree Neutral Disagree 
Strongly 
Disagree 

1. The training met my expectations.      

2. I will be able to apply the 
knowledge learned. 

     

3. The training objectives for each 
topic were identified and followed. 

     

4. The content was organized and 
easy to follow. 

     

5. The materials distributed were 
pertinent and useful. 

     

6. The trainers were knowledgeable.      

7. The quality of instruction was 
good. 

     

8. The trainers met the training 
objectives.  

     

9. Class participation and interaction 
were encouraged. 

     

10. Adequate time was provided for 
questions and discussion. 

     

 
  11. How do you rate the training overall? 
 
  Excellent   Good             Average     Poor              Very poor 

                                                  
 

  12. What aspects of the training could be improved? 
 
 
 

  13. Other comments? 
 

 
 

  Your name (optional):  
 
 

THANK YOU FOR YOUR PARTICIPATION!  
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Please Fill Out Your Saturday

Lunch Request ASAP

• Lunch will be brought in for us today (on your own tomorrow)

• Brief “lightning” talks related to FUN3D while we eat

• Please circle one sandwich, one chips/cookie, and one drink

• Note any special needs

• Total is $18, including tax/gratuity – cash only

• Exact change appreciated, but small change is available

• FUN3D team members will circulate shortly to collect orders and 
payments
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Who is Here From the NASA Team?

All from NASA Langley in Hampton, Virginia:

Kyle Anderson, Computational AeroSciences Branch (observing)

Bob Biedron, Computational AeroSciences Branch

Jan-Renee Carlson, Computational AeroSciences Branch

Peter Gnoffo, Aerothermodynamics Branch

Bill Jones, Computational AeroSciences Branch

Eric Nielsen, Computational AeroSciences Branch

Mike Park, Computational AeroSciences Branch

Also:

Ralph Noack, Celeritas Simulation Technology, LLC

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015 4

Who Are You?

Name

Organization/Company and Location

Any CFD Experience?

Any FUN3D Experience?

Goals/Uses for FUN3D
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FUN3D Training Workshop
June 20-21, 2015

Saturday, June 20

Session 1: Meet and Greet All 8:00-8:30

Session 2 Welcome and Overview Eric Nielsen 8:30-9:00

Session 3: Compilation and Installation Bill Jones 9:00-9:15

Session 4: Gridding, Solution, and Visualization Basics Eric Nielsen 9:15-10:15

BREAK 10:15-10:30

Session 5: Boundary Conditions Jan-Renee Carlson 10:30-11:00

Session 6: Turbulence Models Jan-Renee Carlson 11:00-11:30

Session 7: Supersonic / Hypersonic Perfect Gas Simulations Mike Park 11:30-12:00

CATERED LUNCH: Lightning Talks Various 12:00-1:15

Session 8: Parameterization Tools Bill Jones 1:15-2:15

Session 9: Adjoint-Based Design for Steady Flows Eric Nielsen 2:15-3:45

BREAK 3:45-4:00

Session 10: Feature and Adjoint-Based Error Estimation and 

Mesh Adaptation
Mike Park 4:00-5:00
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FUN3D Training Workshop
June 20-21, 2015

Sunday, June 21

Session 11: Time-Dependent Simulations Bob Biedron 8:00-8:30

Session 12: Dynamic Grid Simulations Bob Biedron 8:30-9:00

Session 13: Suggar ++ Ralph Noack 9:00-10:00

BREAK 10:00-10:15

Session 14: Overset Grid Simulations Bob Biedron 10:15-10:45

Session 15: Adjoint-Based Design for Unsteady Flows Eric Nielsen 10:45-12:00

LUNCH ON YOUR OWN 12:00-1:00

Session 16: Aeroelastic Simulations Bob Biedron 1:00-1:45

Session 17: Rotorcraft Simulations Bob Biedron 1:45-2:45

BREAK 2:45-3:00

Session 18: Current Development Activities,

Summary of User Feedback and Requests
All 3:00-4:00

Session 19: High-Energy / Generic Gas Simulations

*** Please see important note for this session below ***
Peter Gnoffo 4:00-4:30

Due to security regulations, workshop participants who would like to attend this session will be required to present a 

valid US passport as proof of US citizenship.  There will be no exceptions to this requirement.  The FUN3D team 

apologizes for any inconvenience this may cause.
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Administrative Details

• Need to stay on schedule, but please do not hesitate to ask questions

• Please submit your two forms by lunchtime on Sunday to any team 
member
– User Feedback/Requests Form

• User feedback and requests will be summarized and discussed in the final 
session on Sunday

– Training Evaluation Form
• Very interested in your feedback, good or bad!
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All Material Available Online

• For the v12.7 material presented here:
– Slides online in PDF format

– Demo content can be downloaded as a tarball

– Capture hopefully online soon

• A FUN3D v12.7 manual is available as NASA/TM-2015-218761 on 
the website
– You should also receive a copy of this with the source code distribution

– Additional material will continue to be added with new releases

– Your feedback/suggestions are extremely helpful

• Extensive material from prior training workshops is available on the 
website
– Slides in PDF

– Pro-shot streaming video

• We hope to eventually add an extensive tutorials document

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015 6

The FUN3D Development Team
fun3d-developers@lists.nasa.gov

• Consists of ~15-20 researchers across several branches at Langley
– Computational AeroSciences Branch

– Aerothermodynamics Branch

• Some people are full-time FUN3D, others part-time
– Spectrum runs from full-time development to full-time applications

• Also external groups such as Georgia Tech, National Institute of 
Aerospace (NIA)

• Open to other interested parties joining us
– Remote, real-time, read/write access to FUN3D repository is available

mailto:fun3d-developers@lists.nasa.gov
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The FUN3D Support Team
fun3d-support@lists.nasa.gov

• Consists of 14 members of the development team

• All are NASA civil servants
– Proprietary/sensitive data can be shared/discussed: all are bound by 

Trade Secrets Act

• Members: Kyle Anderson, Bob Biedron, Jan-Renee Carlson, Peter 
Gnoffo, Dana Hammond, Bill Jones, Bil Kleb, Beth Lee-Rausch, 
Steve Massey, Eric Nielsen, Matt O’Connell, Mike Park, Kyle 
Thompson, Jeff White

“Who sees my questions to the support alias?”

Myth: Our job is to develop a production-level tool and support users.

Reality: None of us are funded at any level to support users, maintain 

documentation, keep up a website, run training workshops, etc. The 

team is funded solely to perform their individual research efforts.

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015 8

The FUN3D User Community
fun3d-users@lists.nasa.gov

• FUN3D widely used within NASA for projects across the speed range
– Both engineering and research applications

– Users routinely running on several thousand cores

• Distributed to hundreds of external organizations across academia, 
industry, DoD, and OGAs
– Average about 100 distributions / year

– Wide range of uses including aerospace, automotive, HPC, etc

– Wide range of hardware being used

– From RC enthusiasts on single workstation to groups generating matrices 
of hundreds of solutions on thousands of HPC nodes

mailto:fun3d-support@lists.nasa.gov
mailto:fun3d-users@lists.nasa.gov
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FUN3D Core Capabilities

• Established as a research code in late 1980s; now supports   
numerous internal and external efforts across the speed range

• Solves 2D/3D steady and unsteady Euler and RANS equations    
on node-based mixed element grids for compressible and 
incompressible flows

• General dynamic mesh capability: any combination of                
rigid / overset / morphing grids, including 6-DOF effects

• Aeroelastic modeling using mode shapes, full FEM, CC, etc.

• Constrained / multipoint adjoint-based design and mesh adaptation

• Distributed development team using agile/extreme software 
practices including 24/7 regression, performance testing

• Capabilities fully integrated, online documentation,                
training videos, tutorials

US Army

Georgia

Tech

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Some Recent NASA Applications

Courtesy

NASA/Gulfstream 

Partnership on Airframe 

Noise Research

Angle of Attack, deg.

C
L

0 10 20 30
1

1.5

2

2.5

3

3.5 Workshop Grid

Adapted Grids

Exp. ETW

Airframe Noise

Adjoint-Based 

Adaptation for 

High-Lift

10
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Some Recent NASA Applications

Aeroelastic Analysis of 

the Boeing SUGAR 

Truss-Braced Wing 

Concept

Courtesy

Bob Bartels

11

Open-Rotor Concepts

Courtesy Bill Jones

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Some Recent NASA Applications

Transonic Buffet 

Characterization for 

Space Launch System
Courtesy

Greg Brauckmann, 

Steve Alter, Bil Kleb

12
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Some Recent NASA Applications

Sonic Boom Mitigation

Mars InSight

Lander

Courtesy

Chris Heath

13
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Some Recent NASA Applications

Courtesy

Ashley Korzun

Mars Ascent Vehicle 

for Sample Return
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Some Recent NASA Applications
Validation for Full Scale UH60A

• Structural loads

• Sectional airloads/pressures

• Balance loads

Blade Pressures at High Advance Ratio

Inboard Midspan Outboard

• Control settings

• Blade root motions

• Elastic blade deflections

Courtesy

Beth Lee-Rausch, 

Bob Biedron

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Some Recent NASA Applications

Courtesy

Mike Park,

Sally Viken,

Karen Deere,

Mark Moore

Distributed Electric 

Propulsion

16
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Some Recent NASA Applications

Courtesy

Mike Park, Sally Viken,

Karen Deere, Mark Moore

Distributed Electric 

Propulsion

17

Courtesy Bill Jones

Aeroelastic Analysis of 

HIADs: Hypersonic 

Inflatable Aerodynamic 

Decelerators

Courtesy Beth Lee-Rausch,

Bob Biedron, and Bil Kleb

Some Recent NASA Applications
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Some User Applications

FUN3D Training Workshop 
July 27-28, 2010

Falcon 9

First Launch

June 4, 2010

Mike Long

US Army

BMI Corporation

Georgia Tech

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015 20

FUN3D and High-Performance Computing

FUN3D is used on a broad range of HPC 

installations around the country

Scaled to 80,000 cores on DoE’s Cray XK7 ‘Titan’           

using grids containing billions of elements

Awarded the Gordon Bell Prize in a                                   

past collaboration with Argonne National Lab



6/10/2015

FUN3D Training Workshop 11

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015 21

• The material that will be shown here represents the current 

recommended best practices for the perfect gas option in 

FUN3D

• Simulations with real gas effects are covered Sunday 

afternoon for users who present a valid US passport

• There are always many research and development efforts 

taking place within the code that are not described here

• If you do not see something, please ask about it

Some Final Notes
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• What this will teach you
• How to configure and compile the FUN3D suite

• Configuration options

• Enable/Disable capabilities

• Specify the location of 3rd party libraries and tools

• How we do it

• What you will not learn
• How to build/install 3rd party libraries and tools

• How to configure your system to compile Fortran 90/MPI code

• What should you already know
• How to navigate through a *NIX shell

• mkdir

• cd

• Absolute/relative paths

Learning Goals

FUN3D Training Workshop 

June 20-21, 2015
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• Background 

• FUN3D uses the de facto industry standard build environment 
provided by GNU Autotools

• Build of the FUN3D distribution does not require Autotools on your 
system

• Provides localization through options to a configuration script

• Compatibility
• Requires a Bourne Shell derivative (*NIX, OS X, MinGW, etc.)

• Requires GNU `make` 

• Requires a functioning Fortran 95 compliant compiler (some 
optional capabilities rely on Fortran 2003 additions)

• May not work with non-standard installation of 3rd party libraries

• DiRTLib and SUGGAR++ assumptions for overset support

• Required library names: libp3d.a, libdirt.a, 
libdirt_mpich.a, libsuggar.a, and libsuggar_mpi.a

• Developers will need GNU Autotools installed

Setting

FUN3D Training Workshop 

June 20-21, 2015

3

http://fun3d.larc.nasa.gov

• Two step process
• `configure` selects capabilities and localizes to system

• `make` creates executables

• Distribution contains a `configure` script
• Familiar to Linux users/administrators who have built open source 

packages

• Must NOT be edited by hand

• Custom localization through command line options

• The `configure` script creates Makefiles
• Makefiles are customized/localized for a specific configuration

• Not practical for human consumption

• Must NOT be edited by hand

• All localization is managed through the `configure` script

• Checks various details required by compilation

• Fails fast (prior to compilation of FUN3D) if problems are detected 
with the configuration options (no compiler, missing libraries, etc.)

Nuts and Bolts (1 of 4)

FUN3D Training Workshop 

June 20-21, 2015

4
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• `configure --help` will show a list of all options

• Command line options

• Environment variables

• Order independent (uses last value if specified multiple times)

• FUN3D optional Features of general interest
--disable-FEATURE do not include FEATURE

(same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-hefss build with High Energy Physics [no]

--enable-ftune tailor Fortran compiler options for FUN3D [yes]

Nuts and Bolts (2 of 4)

FUN3D Training Workshop 

June 20-21, 2015
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• FUN3D optional Packages of general interest
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-mpi[=ARG] Path to MPI library (installation root)

--with-mpibin[=ARG] MPI binary directory (relative, absolute, without)

--with-mpif90[=ARG] MPI Fortran compiler wrapper (relative, absolute, without)

--with-mpicc[=ARG] MPI C compiler wrapper (relative, absolute, without)

--with-mpiexec[=ARG] MPI execution startup script (relative, absolute, without)

--with-mpibin[=ARG] MPI bin directory (relative, absolute, without)

--with-mpiinc[=ARG] Path to “mpif.h” (relative, absolute, without)

--with-parmetis[=ARG] ParMetis install path (contains lib/libparmetis.a)

--with-dirtlib[=ARG] use DiRTlib overset library (contains lib/libdirt.a)

--with-suggar[=ARG] use SUGGAR overset library (contains lib/libsuggar.a)

--with-tecio[=ARG] Tecplot I/O library install path (contains lib/libtecio.a)

--with-refine[=ARG] use refine adaptation package (installation root)

--with-refineFAKEGeom[=ARG] to specify refine FAKEGeom libs [-lFAUXGeom]

--with-knife[=ARG] use Knife cut cell package (installation root)

--with-CGNS[=ARG] CGNS library path (installation root)

--with-PORT[=ARG] use PORT optimization library (contains lib/libport.a)

--with-KSOPT[=ARG] use KSOPT optimization library (contains lib/libksopt.a)

--with-SNOPT[=ARG] use SNOPT optimization library (contains lib/libsnopt.a)

Nuts and Bolts (3 of 4)

FUN3D Training Workshop 

June 20-21, 2015
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• FUN3D environment variables of general interest
FC Fortran compiler command

(overridden by `--with-mpif90`)
FCFLAGS Fortran compiler flags

(adds to default unless --disable-ftune)
LDFLAGS linker flags, e.g. -L<libdir>

if you have libraries in a nonstandard directory <libdir>
CC C compiler command

CFLAGS C compiler flags

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CPPFLAGS C/C++ preprocessor flags,e.g. -I<incdir>

if you have headers in a nonstandard directory <incdir>
CPP C preprocessor

• `make` is used to build the executables
• Will reside in respective directories (e.g. nodet is in FUN3D_90)

Nuts and Bolts (4 of 4)

FUN3D Training Workshop 

June 20-21, 2015
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• Construct the vanilla serial executable

• Unpack your FUN3D distribution
• Creates a directory “fun3d-12.7-74063”

• Enter the FUN3D distribution directory

• Run the `configure` script and build executables with `make`

$ mkdir serial

$ cd serial

$ ../configure

$ make

• Note that this will search for a supported compiler in your path

• Chooses the first one found based on pre-defined order

• Override this with the FC=mycompiler option

• MPI configurations will use the ̀ --with-mpif90` wrapper if 
given

Basic Operation

FUN3D Training Workshop 

June 20-21, 2015

8
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…

Configuration (FUN3D):

Source code location: ..

Version: 12.7-74063

Fortran Compiler: ifort

Fortran basis: ifort

Fortran flags: -O2 -ip –align

-fno-alias -g -traceback

C Compiler: gcc

C flags: -g –O2

C++ Compiler: g++

C++ flags: -g –O2

Linker flags: –lm

Dependencies:

build:

High Energy Physics: no

Cmplx Variable Tools: no

Python bindings: no

FCCHT support: no

FSI support: no

PDF documentation: yes

bindings:

Libcore: internal

refine: subpackage

CAPRI support: no

knife: subpackage

MPI support: no

CUDA support: no

Zoltan: no

ParMETIS: no

Tecplot I/O: no

6DOF libraries: no

DiRTlib support: no

SUGGAR support: no

DYMORE support: no

RCAS_SDX support: no

CGNS support: no

PORT support: no

NPSOL support: no

DOT support: no

KSOPT support: no

SNOPT support: no

SMEMRD support: version 1.3.1

IRS support: no

SSDC support: no

SFE support: no

SPARSKIT support: no

SBOOM support: no

VisIt support: no

page 1 page 2

Did It Work? Expected Output

FUN3D Training Workshop 

June 20-21, 2015
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• Executables created relative to the serial sub-directory
– FUN3D_90/nodet, Adjoint/dual, Design/opt_driver

http://fun3d.larc.nasa.gov

• Create a parallel version of the code

• Build in a separate configuration subdirectory

• Stores object code and executables only

• Does not pollute the source tree with object code

• Multiple configurations utilize the same source

$ mkdir mpi

$ cd mpi

$ ../configure --with-mpi=/path/to/mpi \

--with-parmetis=/path/to/parmetis

$ make

Extended Operation
(How we do it)

FUN3D Training Workshop 

June 20-21, 2015

10
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Configuration (FUN3D):

Source code location: ..

Version: 12.7-74063

Fortran Compiler: /path/to/mpi/bin/mpif90

Fortran basis: ifort

Fortran flags: -O2 -ip –align

-fno-alias -g -traceback

C Compiler: /path/to/mpi/bin/mpicc

C flags: -g –O2

C++ Compiler: g++

C++ flags: -g –O2

Linker flags: –lm

Dependencies:

build:

High Energy Physics: no

Cmplx Variable Tools: no

Python bindings: no

FCCHT support: no

FSI support: no

PDF documentation: yes

bindings:

Libcore: internal

refine: subpackage

CAPRI support: no

knife: subpackage

MPI support: no

CUDA support: no

Zoltan: no

ParMETIS: /path/to/parmetis

Tecplot I/O: no

6DOF libraries: no

DiRTlib support: no

SUGGAR support: no

DYMORE support: no

RCAS_SDX support: no

CGNS support: no

PORT support: no

NPSOL support: no

DOT support: no

KSOPT support: no

SNOPT support: no

SMEMRD support: version 1.3.1

IRS support: no

SSDC support: no

SFE support: no

SPARSKIT support: no

SBOOM support: no

VisIt support: no

page 1 page 2

Did It Work? Expected Output

FUN3D Training Workshop 

June 20-21, 2015
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• Executables created relative to the mpi sub-directory
– FUN3D_90/nodet, Adjoint/dual, Design/opt_driver

http://fun3d.larc.nasa.gov

• Problems
• “checking for Fortran compiler default output file 
name... configure: error: Fortran compiler cannot 

create executables

See `config.log` for more details.”

• Make sure that Fortran compiler works in your environment

• Adjust PATH, load appropriate GNU modules, MPI installation, etc.

• Limited check of `configure` options
• Bad “--enable-*” and “--with-*” options silently ignored

• Option values containing spaces must be quoted from shell
• e.g. FCFLAGS=“-g –O2 –m32 -fno-common”

• Do NOT configure in top level distribution directory and then try to 
make individual configuration directories

• `make distclean` to clean a previous configuration of the source

• Look/send “config.log” file

• Also includes configuration options at the top (less quoted values w/ 
spaces)

Troubleshooting/FAQ (1 of 3)
fun3d-support@lists.nasa.gov

FUN3D Training Workshop 

June 20-21, 2015

12
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• Can I…
• Override the default compiler options?

• Yes, --disable-ftune FCFLAGS=“-what-ever-you-want”

• Remember some compilers always need certain options

• Explicitly specify my compiler?
• You can, with FC=compiler, but this will be overridden if using 

“--with-mpif90”

• Fix anything by manually editing the `configure` script or 
Makefiles?

• NO! and we cannot support any such action

• Anything that you can safely change is governed by a configure 
option

• Install the executables in a central location?
• Yes, `make install` will install executables, etc. under the 

location given by the “--prefix=/your/path” option to 
`configure`

Troubleshooting/FAQ (2 of 3)
fun3d-support@lists.nasa.gov

FUN3D Training Workshop 

June 20-21, 2015
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• What if I…

• Have a proprietary MPI installation?

• Some HPC resources have proprietary MPI installations using non-
standard paths and names

• Use “--with-mpibin”, “--with-mpiinc”, “--with-mpif90”, and 
“--with-mpiexec” along with their “--without-*” counterparts as 
needed to specify the binary and include paths as well as the name for 
the `mpif90` compiler wrapper and, if needed, the `mpiexec` script

• Paths can be absolute or relative to the “--with-mpi” and “--with-
mpibin” values

$ ./configure --with-mpi=/path/to/mpi

--with-mpif90=my_mpif90

--without-mpiexec

…

• My MPI executables will not run

• Check the consistency of your MPI compilation/runtime installations

• The MPI installation used for compilation is available as MPI Prefix: 
from

$ /path/to/nodet/nodet_mpi --version

Troubleshooting/FAQ (3 of 3)
fun3d-support@lists.nasa.gov

FUN3D Training Workshop 

June 20-21, 2015

14
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• How to configure and compile the FUN3D suite

• Execute `configure` to localize a configuration

• Build the executables with `make`

• Configuration options

• Enable/Disable Features

• With/Without Packages (3rd party libraries and tools)

• Custom environment variables

• Use separate configuration subdirectories

• Keeps source and object code separate

• Allows multiple configurations under one source

• Invoke as `../configure …`

What We Covered

FUN3D Training Workshop 

June 20-21, 2015
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Session 4:

Gridding, Solution, and 

Visualization Basics

Eric Nielsen

1
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FUN3D Training Workshop
June 20-21, 2015

Learning Goals

What we will cover

• Basic gridding requirements and formats

• Nondimensionalizations and axis conventions

• Basic environment for running FUN3D

• FUN3D user inputs

• Running FUN3D for typical steady-state RANS cases

– Compressible transonic turbulent flow over a wing-body using a 
tetrahedral VGRID mesh

– Turbulent flow over a NACA 0012 airfoil section

• Things to help diagnose problems

• Visualization overview

What we will not cover

• Other speed regimes

• Unsteady flows

2
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Gridding Considerations

• FUN3D is a node-based discretization
– To get similar resolution when comparing with a cell-centered code, you must 

use a finer grid
• E.g., on a tetrahedral grid, the grid for FUN3D must be ~2 times finer on the surface, 

and ~6 times finer in the volume mesh to be fair

– This is critical when comparing with cell-centered solvers
– Hanging nodes are not currently supported

• FUN3D integrates all of the way to the wall for turbulent flows
– Wall function grids are not adequate
– Goal is to place first grid point at y+=1

• Base y on a flat plate estimate using your Reynolds number; can examine result in 
solver output and tweak as necessary

• Users employ all of the common grid generators – VGRID, 
AFLR2/AFLR3/SolidMesh, ICEM, Pointwise, etc.

• FUN3D also supports point-matched, multiblock structured grids through 
Plot3D file input

– Subject to certain grid topologies:
• Singularities treated – i.e., hexes with collapsed faces converted to prisms 
• But hexes with 180 internal angles cause FUN3D discretization to break down (LSQ)

• FUN3D can convert tetrahedral VGRID meshes to mixed elements
• FUN3D can convert any mixed element grid into tetrahedra using command 

line option ‘--make_tets’

3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Supported Grid Formats

4

Grid Format Formatted Unformatted
Supports mixed 

elements

Direct load or 

converter
File extension(s)

FAST X X Direct .fgrid, .mapbc

VGRID
(single or multisegment)

X Direct .cogsg, .bc, .mapbc

AFLR3 X
X

Also Binary
X Direct

.ugrid/.(l)r8.ugrid/.(l)b8.ugrid, 

.mapbc

FUN2D X Direct .faces

Fieldview v2.4, 

v2.5, v3.0
X X X

Direct
(Some details of format 

not supported)

.fvgrid_fmt, .fvgrid_unf, 

.mapbc

Felisa X Direct .gri, .fro, .bco

Point-matched, 

multiblock Plot3D
X X

Hexes, 

degenerates
Converter .p3d, .nmf

CGNS Binary X Converter .cgns

The development team can work with you to handle other formats as needed
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Boundary Condition Input File

5

• Where required, the FUN3D .mapbc file takes the form:

Number of boundary patches

Boundary patch index BC index Family name

• The BC index may be either a 4-digit FUN3D-style index or a GridTool-style 

index

• The family name is optional, but must be present if the user requests patch 

lumping by family

3

1 4000 Wing

2 5000 Farfield

3 6662 Symmetry plane

• Exception: The .mapbc format for VGRID meshes follows the 

GridTool/VGRID format

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Nondimensionalization

• Notation: * indicates a dimensional variable, otherwise dimensionless; 

the reference flow state is usually free stream (“   “), but need not be

• Define reference values:

– = reference length of the physical problem (e.g. chord in ft)

– = corresponding length in your grid (dimensionless)

– = reference density (e.g. slug/ft3)

– = reference molecular viscosity (e.g. slug/ft-s)

– = reference temperature (e.g. oR, compressible only)

– = reference sound speed (e.g.  ft/s, compressible only)

– = reference velocity (e.g.  ft/s)

• Space and time are made dimensionless in FUN3D by:

–

(compressible)                (incompressible)   

6



ref

*



ref

*



Tref

*



x  x * /(Lref

* /Lref )



Lref

*



Lref






aref

*



Uref

*



t  t*aref

* /(Lref

* /Lref )



t  t*Uref

* /(Lref

* /Lref )
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Nondimensionalization (cont)

• For the compressible flow equations the dimensionless variables are:

– so 

– so 

– so

– so

– so

– so

– From the equation of state and the definition of sound speed:

• The input Reynolds number in FUN3D is related to the Reynolds number 

of the physical problem by

reynolds_number =                      where                                                 

i.e. reynolds_number is a Reynolds number per unit grid length

7



a  a* /aref

*



T  T* /Tref

*



e  e* /(ref

* aref

*2 )


u  u * /aref

*



P  P* /(ref

* aref

*2 )



u 
ref
 u 

ref

*
/aref

*  Mref



Pref  Pref

* /(ref

* aref

*2 ) 1/



aref 1



Tref 1



eref  eref

* /(ref

* aref

*2 ) 1/( ( 1)) Mref

2 /2



T   P /  a2



Reref /Lref



Reref  ref

* Uref

* Lref

* /ref

*



  * /ref

*



ref 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Setting the Reynolds Number Input

8

• Frequent cause of confusion, even for developers

• Need to know what characteristic length your Reynolds number is 

based on – mean aerodynamic chord, diameter, etc.

• Your input Reynolds number is based on the corresponding length 

of that “feature” in your computational grid

• Example: You want to simulate a Reynolds number of 2.5 million 

based on the MAC:

– If the length of the MAC in your grid is 1.0 grid units, you would input 

Re=2500000 into FUN3D

– If the length of the MAC in your grid is 141.2 grid units (perhaps these 

physically correspond to millimeters), you would input 2500000/141.2, 

or Re=17705.4 into FUN3D
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FUN3D Axis Convention

9

• FUN3D coordinate system differs from the standard wind coordinate system 

by a 180º rotation about the y-axis

• Positive x-axis is toward the “back” of the vehicle (downstream)

• Positive y-axis is out the “right wing”

• Positive z-axis is “upward”

• The freestream angle of attack and yaw angle are defined as shown

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Runtime Environment
• “Unlimit” your shell (also good idea to put this in any queue scripts):

$ ulimit unlimited # for bash

$ unlimit          # for c shell

• If unformatted or binary, what “endianness” does your grid file have?

– E.g., VGRID files are always big endian, regardless of platform

– If your compiler supports it, FUN3D will attempt to open files using an 
open(convert=…) syntax

– Most compilers support some means of conversion

• Either an environment variable or compile-time option, depending on what 

compiler you’re using

• E.g., Intel compiler can be controlled with an environment variable 
F_UFMTENDIAN = big

• Memory required by solver: rough rule of thumb is 3-3.5 GB per million 

points (not cells!)

– Conversely, 200k-300k points per 1 GB of memory

• Users generally partition into smaller domains than this, but be aware of these 

numbers

– This memory estimate will be higher if visualization options are used, etc

10
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User Inputs for FUN3D
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Input deck fun3d.nml

• The user is required to supply an input deck for FUN3D named fun3d.nml

(fixed name)

• This filename contains a collection of Fortran namelists that control FUN3D 

execution – all namelist variables have default values as documented

• But user will need to set at least some high-level variables, such as the project 

name

Command Line Options (CLOs)

• CLOs always take the form --command_line_option after the executable 

name

– Some CLOs may require trailing auxiliary data such as integers and/or reals

• User may specify as many CLOs as desired

• CLOs always trump fun3d.nml inputs

• CLOs available for a given code in the FUN3D suite may be viewed by using     
--help after the executable name

• Most CLOs are for developer use; namelist options are preferred where 

available

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Transonic Turbulent Flow on a 

Tetrahedral Wing-Body Mesh

• For this case, we will assume that someone has provided a set of 

VGRID files containing the mesh

– f6fx2b_trn.cogsg, f6fx2b_trn.bc, and f6fx2b_trn.mapbc

• It is always a good idea to examine the .mapbc file first to check the 

boundary conditions and any family names
– Note that specific boundary conditions will be covered in a separate session

12
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#Thu Mar 11 13:42:40 2010

#bc.map

Patch #        BC             Family   #surf   surfIDs         Family

#---------------------------------------------------------------------

1              3              3              0            0        Box

2              3              3              0            0        Box

3              3              3              0            0        Box

4              3              3              0            0        Box

5              3              3              0            0        Box

6              4              4              1            15       Wing

7              4              4              1            15       Wing

8              4              4              1            17       Wing

9              4              4              1            17       Wing

10             4              4              1            15       Wing

11             4              4              1            13       Fuselage

12             4              4              1            21       Fuselage

13             4              4              1            11       Fuselage

14             4              4              1            11       Fuselage

15             4              4              1            12       Fuselage

16             4              4              1            12       Fuselage

17             4              4              1            15       Wing

18             4              4              1            15       Wing

19             4              4              1            15       Wing

20             4              4              1            15       Wing

21             4              4              1            17       Wing

22             4              4              1            17       Wing

23             4              4              1            16       Wing

24             4              4              1            15       Wing

25             4              4              1            17       Wing

26             4              4              1            8        Fuselage

27             4              4              1            16       Wing

28             4              4              1            16       Wing

29             4              4              1            16       Wing

30             4              4              1            16       Wing

31             4              4              1            18       Wing

32             4              4              1            18       Wing

33             4              4              1            17       Wing

34             4              4              1            18       Wing

35             4              4              1            18       Wing

36             4              4              1            1        Wing

37             4              4              1            18       Wing

38             4              4              1            18       Wing

39             4              4              1            18       Wing

40             4              4              1            22       Fuselage

41             1              1              0            0        Symmetry

42             4              4              1            10       Fuselage

43             4              4              1            9        Fuselage

44             4              4              1            14       Fuselage

45             4              4              1            23       Fuselage

46             4              4              1            19       Wing

47             4              4              1            20       Wing

48             4              4              1            27       Fairing

49             4              4              1            29       Fairing

50             4              4              1            28       Fairing

51             4              4              1            30       Fairing

• For this case, the VGRID/GridTool-style 

.mapbc file is as shown

• Surface grid consists of 51 patches

• Note that VGRID/GridTool-style BC’s are 

specified

• Family names are also as shown 

(required in this format)

• FUN3D does not use the other columns 

of data

• If you cannot easily visualize your mesh 

to set appropriate boundary conditions, 

one easy approach is to set them all to 

inflow/outflow, then run a single time step 

of FUN3D with boundary visualization 

activated – then set patch BC’s as 

needed for actual simulation

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Transonic Turbulent Flow on a 

Tetrahedral Wing-Body Mesh

• Now we will look at the minimum set of user inputs needed in 
fun3d.nml to run this case

14
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&project

project_rootname = 'f6fx2b_trn’ Project name

/

&raw_grid

grid_format = 'vgrid’ Read a set of VGRID files

/

&reference_physical_properties

mach_number = 0.75 Sets freestream Mach number

reynolds_number = 17705.40 Sets Reynolds number

angle_of_attack = 1.0 Sets freestream angle of attack

temperature       = 580.0 Sets freestream temperature

temperature_units = "Rankine” Uses Rankine temperature units for input

/

&code_run_control

restart_read = 'off’ Perform a cold start

steps        = 500 Perform 500 time steps
/

&force_moment_integ_properties

area_reference = 72700.0 Sets reference area

x_moment_length = 141.2 Sets length for normalizing y-moments

y_moment_length = 585.6 Sets length for normalizing x-, z-moments

x_moment_center = 157.9 Sets x-moment center

z_moment_center = -33.92 Sets z-moment center

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0 CFL for meanflow is ramped from 10.0 to 200.0

schedule_cflturb = 1.0 30.0 CFL for turbulence is ramped from 1.0 to 30.0
/

All in

grid units

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Transonic Turbulent Flow on a 

Tetrahedral Wing-Body Mesh

16

• We now have the boundary conditions and input deck set up to run 
FUN3D

• To execute FUN3D, we use the following basic command line syntax:

mpirun ./nodet_mpi

– Note your environment may require slightly different syntax:

• mpirun vs mpiexec vs aprun vs …

• May need to specify various MPI runtime options:

• -np #

• -machinefile filename

• -nolocal

• Others
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• Using 1 Intel Haswell node (24 cores), this case runs in 2-3 minutes

• The top of the screen output will include an echo of your fun3d.nml, as well 

as some preprocessing information:

FUN3D 12.7-74063 Flow started 05/18/2015 at 06:09:15 with 24 processes FUN3D version, start time, job size

[Echo of fun3d.nml]

The default "unformatted" data format is being

used for the grid format "vgrid". VGRID input is being used

... nsegments,ntet,nnodesg 1     2994053      513095 Grid contains 2,994,053 tets and 513,095 points

cell statistics: type,      min volume,      max volume, max face angle Min/max cell volumes, max internal face angles

cell statistics:  tet,  0.41152313E-06,  0.66593449E+11,  179.973678915

cell statistics:  all,  0.41152313E-06,  0.66593449E+11,  179.973678915

... PM (64,skip_do_min) :            0 F

... Calling ParMetis (ParMETIS_V3_PartKway) ....           0 F

... edgeCut 140453 # of edges cut by partitioning (measure of communication)

... Time for ParMetis: .2 s

... Constructing partition node sets for level-0...               2994053 T

... Edge Partitioning ....

... Boundary partitioning....

... Reordering for cache efficiency....

... Write global grid information to f6fx2b.grid_info

... Time after preprocess TIME/Mem(MB):      1.60    180.52    180.52 1.6 secs required to preprocess the mesh

NOTE: kappa_umuscl set by grid: .00

Grid read complete

Repaired 82 nodes of symmetry plane 6662, max deviation: 0.172E-03

y-symmetry metrics modified/examined: 23601/23601

Distance_function unique ordering  T    20000000

construct partial boundary...nloop=           1

find closer surface edge...

find closer surface face...

Wall spacing: 0.766E-03 min, 0.120E-02 max, 0.115E-02 avg Min/max/avg wall spacing statistics

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Transonic Turbulent Flow on a 

Tetrahedral Wing-Body Mesh
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• At this point, time stepping commences

• For each time step:

– The L2-norm of the density|turbulence equation is red|blue; max and location are also included

– Lift and drag are reported in green

• “Done.” indicates execution is complete

Iter density_RMS density_MAX X-location   Y-location   Z-location

turb_RMS turb_MAX X-location   Y-location   Z-location

1  0.567457404772944E+00 0.28035E+02  0.16377E+03 -0.16562E+03  0.20117E+02

0.764159584901413E+04 0.13249E+07  0.79654E+04 -0.88280E+04  0.25675E+02

Lift  0.103226565173772E+00         Drag  0.646513396068887E+00

2  0.300679598726331E+00 0.12718E+02  0.29226E+03 -0.72487E+02 -0.12411E+02

0.753354470463467E+04 0.12868E+07  0.79654E+04 -0.88280E+04  0.25675E+02

Lift  0.146829230859457E+00         Drag  0.721243167013704E+00

.

.

.

999  0.383370843514542E-05 0.13909E-03  0.35380E+03 -0.58429E+02 -0.16200E+02

0.318320572426105E-02 0.19891E+00  0.36848E+03 -0.68458E+02  0.31074E+01

Lift  0.556387990643583E+00         Drag  0.388233647462313E-01

1000  0.382497896407724E-05 0.13871E-03  0.35380E+03 -0.58429E+02 -0.16200E+02

0.317436044959994E-02 0.19835E+00  0.36848E+03 -0.68458E+02  0.31074E+01

Lift  0.556387923023456E+00         Drag  0.388233658091165E-01

Writing f6fx2b.flow (version 11.8) lmpi_io 2

inserting current history iterations 1000

Time for write: .1 s

Done.
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• At this point, time stepping commences

• For each time step:

– The L2-norm of the density|turbulence equation is red|blue; max and location are also included

– Lift and drag are reported in green

• “Done.” indicates execution is complete

Iter density_RMS density_MAX X-location   Y-location   Z-location

turb_RMS turb_MAX X-location   Y-location   Z-location

1  0.567454200028342E+00 0.28035E+02  0.16377E+03 -0.16562E+03  0.20117E+02

0.764159584901741E+04 0.13249E+07  0.79654E+04 -0.88280E+04  0.25675E+02

Lift  0.103222129717669E+00         Drag  0.646514468368827E+00

2  0.300676687726037E+00 0.12718E+02  0.29226E+03 -0.72487E+02 -0.12411E+02

0.753354469872627E+04 0.12868E+07  0.79654E+04 -0.88280E+04  0.25675E+02

Lift  0.146830367737086E+00         Drag  0.721243419758588E+00

.

.

.

499  0.235098406158263E-04 0.44827E-02  0.63496E+04 -0.38199E+04  0.18712E+04

0.799698877237297E-01 0.12961E+02  0.46732E+04 -0.15204E+04  0.26710E+03

Lift  0.556610229549889E+00         Drag  0.388376897833650E-01

500  0.232908407834686E-04 0.44201E-02  0.63496E+04 -0.38199E+04  0.18712E+04

0.789246351974423E-01 0.12785E+02  0.46732E+04 -0.15204E+04  0.26710E+03

Lift  0.556607946389416E+00         Drag  0.388374809483346E-01 

Writing f6fx2b_trn.flow (version 11.8) lmpi_io 2

inserting current history iterations 500

Time for write: .0 s

Done.

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Transonic Turbulent Flow on a 

Tetrahedral Wing-Body Mesh

20

• FUN3D provides a couple of text files with basic statistics and summary data:

– f6fx2b_trn.grid_info File containing basic mesh statistics and partitioning info

– f6fx2b_trn.forces    File containing force breakdowns by boundary and totals

• FUN3D also produces:

f6fx2b_trn_hist.dat    Tecplot file with residual, force convergence histories

f6fx2b_trn.flow        Solver restart information

• For this particular case, the mean 

flow and turbulence residuals are 

reduced by ~5 orders of 

magnitude over 500 time steps

• Lift and drag come in after a few 

hundred time steps



6/5/2015

FUN3D Training Workshop 11

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

NACA 0012 Airfoil

21

• For this case, we have been given a set of 

binary, big endian AFLR3 files

– 0012.b8.ugrid, 0012.mapbc

– For computations in 2D mode
• Grid must be one-element wide in the y-direction 

(except when using FUN2D format)

• Grid must contain only prisms and/or hexes

• First check the .mapbc file
– The y-planes must be separate boundary patches 

and should be given BC 6662

4

1 4000

2 5000

3 6662

4 6662

0012.mapbc

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

NACA 0012 Airfoil

22

&project

project_rootname = '0012’

/

&raw_grid

grid_format = 'aflr3’ Read an AFLR3 grid

twod_mode = .true. Execute in 2D mode
/

&reference_physical_properties

mach_number = 0.80

reynolds_number = 1.e6

angle_of_attack = 1.25

temperature       = 580.0

temperature_units = "Rankine"

/

&code_run_control

restart_read = 'off'

steps        = 5000

/

&force_moment_integ_properties

area_reference = 0.1

x_moment_center = 0.25

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0

schedule_cflturb = 1.0 10.0

/

&global

boundary_animation_freq = -1

/

• fun3d.nml is shown here

• FUN2D grid format will 

automatically be executed 

in 2D mode; all others 

must be explicitly put in 

2D mode



6/5/2015

FUN3D Training Workshop 12

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

NACA 0012 Airfoil
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FUN3D 12.7-74063 Flow started 05/18/2015 at 09:06:46 with 24 processes

[Echo of fun3d.nml]

The default "stream" data format is being Binary AFLR3 format is the default

used for the grid format "aflr3".

Preparing to read binary AFLR3 grid: 0012.b8.ugrid Binary AFLR3 grid being read

nnodes 116862 Grid contains 116,862 points

ntface,nqface 204510 14607 Grid contains 204,510 tris, 14,607 quads

ntet,npyr,nprz,nhex 0 0 102255 7047 Grid contains 102,255 prisms, 7,047 hexes

cell statistics: type,      min volume,      max volume, max face angle Cell stats now broken out by cell type

cell statistics:  prz,  0.16960303E-06,  0.52577508E-01,  164.861624007

cell statistics:  hex,  0.83173480E-09,  0.12843645E-04,  123.906431556

cell statistics:  all,  0.83173480E-09,  0.52577508E-01,  164.861624007

... PM (64,skip_do_min) :            0 F

... Calling ParMetis (ParMETIS_V3_PartKway) ....           0 F

... edgeCut 11490

... Time for ParMetis: .1 s

... checking for spanwise edge cuts.

... Constructing partition node sets for level-0...                109302 T

... Edge Partitioning ....

... Boundary partitioning....

... Euler numbers Grid:1 Boundary:0 Interior:0

... Reordering for cache efficiency....

... ordering edges for 2D.

... Write global grid information to 0012.grid_info

... Time after preprocess TIME/Mem(MB):      0.31     90.82     90.82

NOTE: kappa_umuscl set by grid: .00

Grid read complete

Using 2D Mode (Node-Centered) Solver running in 2D mode

Distance_function unique ordering T    20000000

construct partial boundary...nloop=           1

find closer surface edge...

find closer surface face...

Wall spacing: 0.100E-03 min, 0.100E-03 max, 0.100E-03 avg

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

NACA 0012 Airfoil

24
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List of Key Input/Output Files

• Input

– Grid files (prefixed with project name, suffixes depend on grid format)

– fun3d.nml

• Output

– [project].grid_info

– [project].forces

– [project]_hist.dat

– [project].flow

25

http://fun3d.larc.nasa.gov
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What Could Possibly Go Wrong?

Problem

• Common complaint from VGRID meshes during initial preprocessing 

phase at front end of solver:

26

Checking volume-boundary connectivity...

stopping...unable to find common element for face       1 of 

boundary       3

boundary nd array      46  17368 334315

node,locvc 46******************************

node,locvc_type 46   tet tet tet tet tet

node,locvc 17368************************************

node,locvc_type 17368   tet tet tet tet tet tet

• This is due to a very old VGRID bug that causes an incompatibility 
between the .cogsg and .bc files

– Compile and run utils/repair_vgrid_mesh.f90 to generate a valid 

.bc file to replace your original one
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What Could Possibly Go Wrong?

Problem

• Common complaint from unformatted/binary meshes during initial 

preprocessing phase at front end of solver:

27

Read/Distribute Grid.

forrtl: severe (67): input statement requires too much data, unit 16100, 

file /misc/work14/user/FUN3D/project.cogsg

• Check the endianness of the grid and your environment/executables

Problem

• Unexpected termination, especially during preprocessing or first time 

step

– Are your shell limits set?

– Do you have enough local memory for what you are trying to run?

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

What Could Possibly Go Wrong?
Problem

• Solver diverges or does not converge

– Problem-dependent, very tough to give general advice here

– Sometimes require first-order iterations (primarily for high speeds)

– Sometimes require smaller CFL numbers

– Sometimes require alternate flowfield initialization (not freestream)  in 

some subregion of the domain: e.g., chamber of an internal jet

– Check your boundary conditions and gridding strategy

– Perhaps your problem is simply unsteady

Problem

• Solver suddenly dies during otherwise seemingly healthy run

– Sometimes useful to visualize solution just before failure

– Is it a viscous case on a VGRID mesh? Try turning on 
large_angle_fix in &special_parameters namelist (viscous flux 

discretization degenerates in sliver cells common to VGRID meshes)

– Is it a turbulent flow on a mesh generated using AFLR3? Look for 

“eroded” boundary layer grids near geometric singularities – AFLR3 

sometimes has trouble adding viscous layers near complex corners, etc

28
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What Could Possibly Go Wrong?

29

In General…

• Do not hesitate to send questions to fun3d-support@lists.nasa.gov ; 

we are happy to try to diagnose problems

– Please send as much information about the problem/inputs/environment 

that you can, as well as all screen output, any error output, and 
config.log

– In extreme cases, we may request your grid and attempt to run a case for 

you to track down the problem

– If you cannot send us a case due to restrictions, size, etc, a 

generic/smaller representative case that behaves similarly can be useful

– Check the manual for guidance

• Ask the FUN3D user community, fun3d-users@lists.nasa.gov

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Visualization Learning Goals

• What this will teach you

– Run-time flow visualization output

• Output on boundary surfaces

• Output on user-specified “sampling” surfaces within the volume

• Output of full volume data

• Output generated by “slicing” boundary data - “sectional” output

• What you will not learn

– The plethora of output options available for visualization

– Tecplot usage

• What should you already know

– Basic flow solver operation and control

30
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Background

• Datasets are getting simply too large to post-process in a traditional 

manner

• FUN3D allows visualization data to be generated as the solver is 

running

• User specified frequency and output type

• User specified output variables from a fairly extensive list

• Majority of output options are Tecplot-based

– Volume output may also be generated in Fieldview, CGNS 

formats

• Note FUN3D also supports true in-situ visualization at scale using 

the DoE VisIt package; however, this is not covered here

– Intelligent Light is currently integrating VisIt’s in-situ capabilities 

with Fieldview

31
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Selected Visualization Output Examples

32
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Visualization Overview

• All of the visualization outputs require similar namelist-specified 

“frequency” N to activate:

– In all cases, N = 0, 1, 2, 3, …

• N = 0 generates no output

• N < 0 generates output only at the end of the run - typically used 

for steady-state cases. The actual value of N is ignored

• N > 0 generates output every Nth time step - typically used to 

generate animation for unsteady flows; can also be used to 

observe how a steady flow converges

33
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Visualization Overview

• Customizable output variables (except sliced boundary data):

– Most variables are the same between the boundary surface, sampling 

and volume output options; boundary surface has a few extra

– See manual for lists of all available variables

– Default variables always include x, y, z, and the “primitive” flow 

variables u, v,  w, and p (plus density if compressible)

– Several “shortcut” variables: e.g.,

primitive_variables = rho, u, v, w, p

– Must explicitly turn off the default variables if you don’t want them 
(e.g. primitive_variables = .false.)

– Variable selection for each co-processing option done with a different 

namelist to allow “mix and match”

34
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Visualization Overview
• For boundary surface output, default is all solid boundaries in 3D and 

one y=const plane in 2D; alternate output boundaries selected with, e.g.:

&boundary_output_variables

number_of_boundaries = 3

boundary_list = ‘3,5,9’   ! blanks OK as

delimiter too: ‘3 5 9’

! dashes OK as delimiter 

too: ‘3-9’

/ 

• If you already have a converged solution and don’t want to advance the 

solution any further, can do a “pass through” run:

– set steps = 0 in &code_run_control

– You must have a restart file ([project].flow)

– Run the solver with the appropriate namelist input to get desired 

output

– [project].flow will remain unaltered after completion

35
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Visualization Overview
• Sampling output requires additional data to describe the desired 

sampling surface(s)

– Specified in namelist &sampling_parameters

– Surfaces may be planes, quadrilaterals or circles of arbitrary 

orientation, or may be spheres or boxes

– Isosurfaces and schlierens also available

– Points may also be sampled

– See manual for complete info

• Sliced boundary surface output requires additional data to describe the 

desired slice section(s)

– Specified in namelist &slice_data

– Always / only outputs x, y, z, Cp, Cfx, Cfy, Cfz

– User specifies which (solid) boundaries to slice, and where

– See manual for complete info

36
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Visualization Overview

• Output files will be ASCII unless you have built FUN3D against the 

Tecplot library (exception: sliced boundary data is always ASCII)

– ASCII files have .dat extension

– Binary files have .plt extension - smaller files; load into Tecplot faster

– Boundary output file naming convention (T = time step counter):

• [project]_tec_boundary_timestepT.dat if N > 0

• [project]_tec_boundary.dat           if N < 0

– Volume output file naming convention (note: 1 file per processor P)

• [project]_partP_tec_volume_timestepT.dat if N > 0

• [project]_partP_tec_volume.dat           if N < 0

– Sampling output file naming convention (one file per sampling 

geometry G):

• [project]_tec_sampling_geomG_timestepT.dat if N > 0

• [project]_tec_sampling_geomG.dat           if N < 0

37
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Boundary Output Visualization Example

38

&global

boundary_animation_freq = -1 Dump boundary vis at end of run

/

&boundary_output_variables

primitive_variables = .false. Turn off rho, u, v, w, p

cp                  = .true. Turn on Cp

yplus               = .true. Turn on y+

/
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Sampling Visualization Example

39

&sampling_parameters

number_of_geometries  = 3 Want 3 sampling geometries

type_of_geometry(1)   = 'plane‘ First geometry is a plane

plane_center(2,1)     = -234.243 Plane y-coordinate

plane_normal(2,1)     = 1.0 Plane y-normal

sampling_frequency(1) = -1 Write at end of run

type_of_geometry(2)   = 'sphere’ Second geometry is a sphere

sphere_center(1,2)    = 74.9 Center x-coordinate

sphere_center(2,2)    = -107.7 Center y-coordinate

sphere_center(3,2)    = 50.0 Center z-coordinate

sphere_radius(2)      = 20.0 Sphere radius

sampling_frequency(2) = -1 Write at end of run

type_of_geometry(3)   = 'isosurface’ Third geometry is an isosurface

isosurf_variable(3)   = 'mach’ Isosurface will be based on Mach number

isosurf_value(3)      = 1.00 Isosurface defined by Mach=1

sampling_frequency(3) = -1 Write at end of run
/

&sampling_output_variables

primitive_variables = .false. Turn off rho, u, v, w, p

mach                = .true. Turn on Mach number
/

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Volume Visualization Example

40

&global

volume_animation_freq = -1 Dump output at end of run

/

&volume_output_variables

export_to='tecplot’ Send results to Tecplot file

/
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Slicing Visualization Example

41

&global

slice_freq = -1 Dump output at end of run

/

&slice_data

nslices = 1 Perform one slice

slice_location(1) = -234.243 Coordinate of slice

/

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
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Troubleshooting/FAQ

• I can see what look like ragged dark lines on sampling surfaces and 

volume data – what is that?

– Duplicate information at partition boundaries is not removed; if 

surface is not completely opaque, double plotting locally doubles the 

opaqueness (duplicate info is removed from boundary surface 

output)

– Turn off transparency in Tecplot

• When I dump out volume plot files in Tecplot format, I get a file for every 

processor – is there a way around this?

– Not currently. However, Tecplot can be easily told to load all of the 

files at once without having to individually select them all.

– The team is working with Tecplot to develop their next generation of 

I/O API’s, with special focus on massively parallel needs

– Alternative: switch to Fieldview or CGNS output, which uses a single 

file

42
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What We Learned

• Basic gridding requirements and file formats

• Runtime environment

• How to set up boundary conditions and very basic FUN3D input decks

• How to run a tetrahedral RANS solution for a wing-body VGRID mesh

• How to perform a 2D mixed element airfoil solution using an AFLR3 

grid

• Some unhealthy things to watch for and possible remedies

• Overview of visualization output options and examples

43

Don’t hesitate to send questions our way!

fun3d-support@lists.nasa.gov
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PROBLÈMES SANS FRONTIÈRES 
PROBLEMS WITHOUT BOUNDARIES 

…is no problem at all… 
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Boundary Conditions 

Ø Define the problem 
Ø Solve the problem 
Ø Cause problems 

•  Boundary condition list 
•  Usage 
•  Examples 

…but real problems have boundaries… 

http://fun3d.larc.nasa.gov 

Problem setup 
Required files 

•  project name grid file:  typically                
   project_name[.r8,.b8].ugrid!

•  namelist input:   fun3d.nml!
•  boundary conditions:  project_name.mapbc !

–  Contains list of boundaries ( “in order” ) and the boundary 
condition to be associated with each one. 

–  Keeping all the boundaries for a particular mesh separate (i.e. 
not lumping) can make for rather large and sometimes difficult to 
manage mapbc files. 

Caveat:  Not lumping boundaries, though, allows the user to retain 
a finer control over simulation parameters such as differing inflow/
outflow conditions or transition, to name a few examples. 

4 4 FUN3D Training Workshop 
June 20-21, 2015 
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Dimensionalization 
Non- and otherwise 

•  The non-dimensionalization of the field variables, in the calorically 
perfect gas path, results in the ratio of Reynolds number and 
Mach number appearing in the transport equations. 

•  This ratio, along with the reference temperature, completely 
determines the flow conditions of the simulation.  Tilde denotes a 
dimensioned parameter. 

FUN3D Training Workshop 
June 20-21, 2015 5 
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p∞ = ρ∞R T∞

Useful for cross-checking 
auxiliary boundary 
condition data.  
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Boundary Condition List 

•  Boundary condition name (boundary condition number) 
•  Auxiliary data 
•  Limits 
•  Not a complete list 

 

6 6 FUN3D Training Workshop 
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Symmetry 
 

•  symmetry_x (6661), y-z plane 
•  symmetry_y (6662), x-z plane 
•  symmetry_z (6663), x-y plane 
•  tangency (3000), tangential flow!
•  symmetry_x_strong (6021), zero velocity in x-mom.eqn. 
•  symmetry_y_strong (6022), zero velocity in y-mom.eqn. 
•  symmetry_z_strong (6023), zero velocity in z-mom.eqn. 
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y 

z 
6662!

6022!

wedge grid 

x 
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Wall 
 

•  viscous_wall (4000), y+ < 5, 
•  viscous_weak_wall (4110), y+ < 5,          calculated 
•  viscous_wall_function (4100), y+ < 500,          modeled 

 

FUN3D Training Workshop 
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uwall = vwall = wwall = 0
τ wall

τ wall
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Wall 
Auxiliary information 
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Adiabatic wall input for bc 4000 
 
 &boundary_conditions!
   wall_temp_flag(1) = .true.!
   wall_temperature(1) = -1.0!
  /!

Wall function input for bc 4100 
 
&turbulent_diffusion_models!
      turbulence_model = 'sa’,’sst’!
      wall_function  = 'dlr’!
      use_previous_utau  = T!
     /!

http://fun3d.larc.nasa.gov 

Farfield 
 

Farfield boundaries use information from the fun3d.nml namelist 
parameter mach_number (5000,5025,5050). 
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ρ∞ =1,u∞ =Mach,v∞ = 0,w∞ = 0, p∞ =1/γ

riemann (5000,5025)!
farfield_roe (5050)!

How far is far enough? 
-  Problem dependent 
-  No gradients 


U∞
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Outflow 
 

•  Extrapolation  
–  extrapolate (5026), both perfect and generic gas paths 
–  all 5 primitive variables extrapolated, applicable for outflow Mach >= 1. 

 
•  Static pressure 

–  back_pressure (5051), extrapolates when local Mach >= 1. 
–  subsonic_outflow_p0 (7012), only applicable when local Mach < 1. 
–  Auxiliary information required: 

FUN3D Training Workshop 
June 20-21, 2015 11 

static_pressure_ratio(ib) = pboundary p∞

The static pressure ratio (SPR) is 
the requested static pressure on 
boundary ib, divided by the free 
stream static pressure. 
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Inflow 
 

•  Total pressure, total temperature  
–  subsonic_inflow_pt (7011), both perfect and generic gas paths 
–  Auxiliary information required:  

–  Flow direction is normal to the inflow face (default assumption). 
–  Applicable for inflow Mach < 1. 

 

FUN3D Training Workshop 
June 20-21, 2015 12 

total_pressure_ratio(ib) = ptotal,boundary p∞

total_temperature_ratio(ib) =
Ttotal,boundary

T∞
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Inflow 
 

•  Fixed inflow 
–  fixed_inflow (7100), calorically perfect gas path 
–  Auxiliary information required: 

 
–  rcs_jet_plenum (7021), generic gas path 
–  Auxiliary information required: (contact Peter Gnoffo, fun3d_support) 

•  Massflow 
–  massflow_in (7036), calorically perfect gas path 
–  Auxiliary information required:  

–  massflow(ib) will be in units of mesh squared 

FUN3D Training Workshop 
June 20-21, 2015 13 

massflow(ib) = 
mboundary

ρ∞ a∞

total_temperature_ratio(ib) =
Ttotal,boundary

T∞

Strictly applicable for 
inflow Mach >= 1. q_set(ib,1:5) = (ρ,u,v,w, p)boundary

http://fun3d.larc.nasa.gov 

Nozzle flow strategies  
Static jet case 

FUN3D Training Workshop 
June 20-21, 2015 14 

Outflow boundary 
several jet diameters 
downstream of exit 
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Nozzle flow strategies 
arn2.mapbc and fun3d.nml!

FUN3D Training Workshop 
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$ cat arn2.mapbc 
   9 number of boundaries 
   1   7011  nozzle plenum inflow boundary 
   2   5025  farfield 
   3   5025  farfield 
   4   5051  outflow boundary 
   5   4000  viscous solid 
   6   6663  z-symmetry 
   7   6662  y-symmetry 
   8   5025  freestream inflow 
   9   4000  viscous solid 
   
 &boundary_conditions 
   total_pressure_ratio(1)    = 1.357 
   total_temperature_ratio(1) = 1.764 
   static_pressure_ratio(4)   = 1.0  
 / 

-
-
-
- Note:  Do not lump boundaries by type, if 

there are several inflow or outflow 
boundaries that require separate settings… 
 
Note 2:  This low a pressure ratio would 
typically not require special volume 
initialization. 

http://fun3d.larc.nasa.gov 

Nozzle flow strategies 
Scenarios for modeling a supersonic jet 

FUN3D Training Workshop 
June 20-21, 2015 16 

M > 1 M < 1 

•  Subsonic 
•  Uniform 
•  Typically no flow angularity 
•  Well posed flow state, 

particularly with choked flow 

•  Supersonic, but… 
X   Radial gradient due to 
boundary layer 
X   Off-axis component due to 
geometry 

subsonic_inflow_pt (7011)!

fixed_inflow (7100)!
fixed_inflow_profile (7101)!

nozzle 
plenum 

throat 

Notional flow 
sketched in blue 
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Nozzle flow strategies 
Scenarios for modeling a supersonic jet 

FUN3D Training Workshop 
June 20-21, 2015 17 

No viscous spacing in grid normal to the face 
for either the subsonic or the supersonic inflow  
boundaries 

flow 

inflow boundary 
no streamwise viscous layer packing 

http://fun3d.larc.nasa.gov 

Nozzle flow strategies 
Scenarios for modeling a supersonic jet 

FUN3D Training Workshop 
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No viscous spacing in grid normal to the face 
for either the subsonic or the supersonic inflow  
boundaries 

flow 

inflow boundary 

no streamwise 
viscous layer 
packing 
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Nozzle flow strategies 
Scenarios for modeling a supersonic jet 

FUN3D Training Workshop 
June 20-21, 2015 19 

Solution startup can often 
be facilitated by using 
flow initialization 

flow 

&flow_initialization!
  number_of_volumes = 1!
  type_of_volume(1) = 'cylinder’!
  point1(1,:) = -0.2,0.,0.!
  point2(1,:) =  1.2.,0.,0.!
  radius(1)   = 1.0!
  rho(1)      = 100.!
  u(1)        = 0.1!
/!

x=0 x=1 

r=1 

Example:  NPR = 100 

Initialization volume 

http://fun3d.larc.nasa.gov 

Nozzle flow strategies 
fixed inflow namelist parameters 
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ρ = profile_ rho_ coef (ib,n)∗ rn
n=0

6

∑

u = profile_u_ coef (ib,n)∗ rn
n=0

6

∑

p = profile_ p_ coef (ib,n)∗ rn
n=0

6

∑

r = (p(1: 3)− patch_ center(ib,1: 3))2

ρ = q_ set(ib,1)
u = q_ set(ib, 2)
v = q_ set(ib,3)
w = q_ set(ib, 4)
p = q_ set(ib, 5)

fixed_inflow (7100)! fixed_inflow_profile (7101)!
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Nozzle flow strategies 
fixed_inflow_profile!

FUN3D Training Workshop 
June 20-21, 2015 21 

fixed_inflow_profile (7101)!

This sample namelist creates a profile 
constant in density and pressure, and cubic 
in velocity, centered on (-2.,0.,0.) and 
physically scaled by the factor of 1. for 
boundary 1.  

!
&boundary_conditions!
  patch_center(1,:)    =-2.0,0.,0.!
  patch_scale(1)       = 1.!
  profile_rho_coef(1,0)= 1.!
  profile_u_coef(1,0)  = 2.!
  profile_u_coef(1,1)  = 0.!
  profile_u_coef(1,2)  = -1.!
  profile_u_coef(1,3)  = -1.!
  profile_p_coef(1,0)  = 0.714!
/ !

Approximate 
profile of a 
Mach 2 jet 

http://fun3d.larc.nasa.gov 

Inlet flow strategies 
Bell mouth  
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&reference_physical_properties 
   mach_number       = 0.20 
   temperature_units = 'Rankine' 
   temperature       = 390.0 
 / 
 &boundary_conditions 
  static_pressure_ratio(1) = 0.95 
 / 
!
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Inlet flow strategies 
Bell mouth 

 

FUN3D Training Workshop 
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#Tue Apr  8 12:48:03 2008 
#bell2.mapbc 
Patch #        BC             Family   #surf   surfIDs         Family 
#--------------------------------------------------------------------- 
1              7012           1              0            0        inlet 
2              5050           1              0            0        freestream inflow 
3              6662           1              0            0        symmetry_y 
4              6663           1              0            0        symmetry_z 
5              5050           2              1            8        farfield roe 
6              3000           5              0            0        bellmouth 
7              3000           5              0            0        bellmouth 

 &governing_equations 
    viscous_terms        = 'inviscid' 
 / 
 
 &reference_physical_properties 
    temperature_units = 'Rankine' 
    mach_number       = 0.20 
    reynolds_number   = 1.0e+5 
    temperature       = 390.0 
 / 
 
 &boundary_conditions 
  static_pressure_ratio(1) = 0.95 
 / 
!

fun3d.nml 

http://fun3d.larc.nasa.gov 

Inlet flow strategies 
Supersonic inlet 
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&reference_physical_properties!
   mach_number       = 1.6!
   temperature_units = 'Kelvin'!
   temperature       = 216.0!
 /!
 &boundary_conditions!
  static_pressure_ratio(18) = 3.7!
 /!
!
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flow 

 &flow_initialization!
 number_of_volumes = 2 !
! Inlet 1!
   type_of_volume(1) = 'cylinder'!
     point1(:,1) = 0.0,0.,0.!
     point2(:,1) = 3.0,0.,0.!
     radius(1)   = 0.90!
     u(1)        = 1.0 !
 ! Inlet 2!
   type_of_volume(2) = 'cylinder'!
     point1(:,2) = 1.0,0.,0.!
     point2(:,2) = 3.0,0.,0.!
     radius(2)   = 0.90!
     u(2)        = 0.6 !
 /!

Mach = 1.6,!
static_pressure_ratio = 3.7!

Inlet flow strategies 
Supersonic inlet 

FUN3D Training Workshop 
June 20-21, 2015 25 

Solution startup can often be 
facilitated by using flow 
initialization.  In this case, it is  
just about required… 

subsonic_outflow_p0(7012)!

Flow initialization 

http://fun3d.larc.nasa.gov 

flow 

Mach = 1.6!
static_pressure_ratio = 3.7!

Inlet flow strategies 
Supersonic inlet 

FUN3D Training Workshop 
June 20-21, 2015 26 

&boundary_conditions!
    static_pressure_ratio(18) = 3.70!
/!
&nonlinear_solver_parameters!
 time_accuracy      = 'steady'!
 schedule_iteration = 1  200!
 schedule_cfl       = 1. 500.!
/!

Additionally, aggressive 
CFL ramping is 
sometimes required.  In 
this case, to push the 
shock out of the inlet. 

(7012)!

(7012)!
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Boundary conditions 

•  References 
–  Inflow/Outflow Boundary Conditions with Application to FUN3D, 

Jan-Renee Carlson, NASA/TM-2011-217181, October 2011. 
–  FUN3D V12.7 User manual 

27 27 FUN3D Training Workshop 
June 20-21, 2015 

http://fun3d.larc.nasa.gov/chapter-1.html#user_manual!
 

http://fun3d.larc.nasa.gov 28 28 FUN3D Training Workshop 
June 20-21, 2015 

EOF 

•  Listed available boundary conditions (slightly 
abridged) 

•  Along with some typical usage 
•  Tips on heading off (mostly startup) problems 
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FUN3D v12.7 Training

Session 6:

Turbulent Flow Simulations

Jan Carlson

FUN3D Training Workshop

June 20-21,2015
1
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Learning Goals

• Discuss some broad guidelines for turbulence models.

• List of available turbulence models (calorically perfect gas)

• Discuss the typical namelist parameters used.

• Show some sections of fun3d.nml namelists used for turbulent flow 
simulations.

• The detailed theory of turbulence models will not be covered in this 
session.

• Pros and cons of each model will not be discussed either due to 
time limitations.

– All of the models will likely work some of the time.

– But none of the models will work all of the time.

FUN3D Training Workshop

June 20-21, 2015
2
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The List
Steady flow simulations

• One-equation
– Spalart-Allmaras (sa), Recherche Aerospatiale, No. 1, 1994.

– Negative Spalart-Allmaras (sa-neg), ICCFD7-1902, 2012.

• Two-equation
– Menter-SST (sst), AIAAJ (32), 1994.

– Menter-SST with vorticity source term (sst-v), NASA-TM-103975, 1992.

– Menter-SST from 2003 (sst-2003), Turbulence, Heat and Mass Transfer 4.

– Wilcox k-omega (wilcox2006), AIAAJ (46), 2008.

– Wilcox k-omega (wilcox1998), Turbulence Modeling for CFD, 1998.

– Wilcox k-omega (wilcox1988), AIAAJ (26), 1988.

– Nonlinear k-omega (EASMko2003-S),J Aircraft (38), 2001.

FUN3D Training Workshop

June 20-21, 2015
3

http://fun3d.larc.nasa.gov

The List
Steady flow simulations

• Four-equation
– Langtry-Menter transition model (gamma-ret-sst), AIAA-2005-0522.

• Seven-equation
– Wilcox Stress-omega RSM (WilcoxRSM-w2006), Turbulence Modeling for CFD, 

2006.

– SSGLRR-RSM (SSGLRR-RSM-w2012), AIAA Journal, Vol. 53, No. 3, 2015, pp. 
739-755.

Other references and detailed explanations of the models can be found 
at the turbulence modeling website:

http://turbmodels.larc.nasa.gov

FUN3D Training Workshop

June 20-21, 2015
4
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The List
Time accurate flow simulations

• One-equation
– Detached eddy simulations, (des, des-neg), TCFD (20), 2006.

• Two-equation
– Hybrid RANS-LES (hrles), AIAA-2008-3854.

FUN3D Training Workshop

June 20-21, 2015
5

http://fun3d.larc.nasa.gov

General usage guidelines
Do we even need to perform a turbulent flow simulation?

• Flow physics
• What physics need to be simulated/predicted? 

• high speed flow -> possibly largely laminar

• corner flow -> possibly anisotropic turbulence

• blunt body wake -> possibly large eddy simulations

• Computational requirements
• to evaluate the grid's resolution required for a certain accuracy

physics

accuracy

resources

turbulence model            computational grid

simulation

FUN3D Training Workshop

June 20-21, 2015
6
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General usage guidelines

• Appropriate spacing of the mesh on viscous solid walls must be 
used.

– Generally accepted spacing is between .1 and 2.5 wall units.

– Using wall functions, generally accepted spacing is between 0.1 and 250 wall 
units.

– Many problems may have multiple scales, so no one physical distance for the 
first node spacing will suit the whole problem.

• Generate a mesh with appropriate resolution to model the problem ( 
within the limits of the available computational resources ).

– Try not to expand the mesh spacing too quickly away from a viscous wall.

– Typically the more curvature in the physical geometry, the higher concentration of 
mesh.

• One-equation models like Spalart-Allmaras tend to be very robust, 
cover a very wide range of flow situations and are a compromise 
between simplicity and accuracy.

• Multi-equation models like the Menter-SST or RSM require more 
computational resources, but are more physically complete and can, 
possibly, add more accuracy to the solution…though YMMV.

FUN3D Training Workshop

June 20-21, 2015
7

http://fun3d.larc.nasa.gov

General usage guidelines

• Solutions to a steady state are adequate for many problems.

• Depending upon the physics of the simulation, though, time-
accurate solutions may be required.

FUN3D Training Workshop

June 20-21, 2015
8
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Namelists
fun3d.nml

For turbulent flow simulations, depending upon the turbulence model 
and problem the following namelists within fun3d.nml are used.

• &governing_equations

• &turbulent_diffusion_models

• &spalart

• &gammaretsst

FUN3D Training Workshop

June 20-21, 2015
9
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Spalart-Allmaras 
fun3d.nml

&governing_equations

eqn_type = 'cal_per_compress'

viscous_terms = 'turbulent'

/

&turbulent_diffusion_models

turbulence_model    ='sa'  !default

! current 1-eqn options: 'sa-neg', 'des','des-neg'

turb_compress_model ='none'

! current options: 'ssz' ! (Ref. AIAA-95-0863, Shur et al.)

/

FUN3D Training Workshop

June 20-21, 2015
10
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Spalart-Allmaras 
fun3d.nml

&spalart

turbinf = 3.0

! free stream value for spalart model

ddes = .false.

! for activating delayed DES model 

ddes_mod1 = .false.

! Mod to DDES, Ref. AIAA Paper 2010-4001 

sarc = .false.      

! Ref. AIAAJ, Vol.38, No.5, 2000, pp.784-792.  

sarc_cr3 = 1.0

! constant associated with SARC model

/

FUN3D Training Workshop

June 20-21, 2015
11
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Menter-SST 
fun3d.nml

&governing_equations

eqn_type = 'cal_per_compress'

viscous_terms = 'turbulent'

/

&turbulent_diffusion_models

turbulence_model    ='sst'     

!other options: 'sst-v', 'sst-2003', 'gamma-ret-sst'

! 'hrles'

/

&gammaretsst 
set_k_inf_w_turb_intsty_percnt = 0.2 ! (percent) 

set_w_inf_w_eddyviscosity      = 1.0 ! (nondim)

transition_4eqn_on             = .true.

! toggles transition

/

FUN3D Training Workshop

June 20-21, 2015
12
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Sample fun3d.nml
Subsonic bump using S-A

http://turbmodels.larc.nasa.gov/bump.html

&project

project_rootname = 'bump_3levelsdown_177x81

/

&reference_physical_properties

mach_number = 0.2

reynolds_number = 3000000.0

temperature                = 540.0

temperature_units = 'Rankine'

/

&turbulent_diffusion_models

turbulence_model = 'sa'

/

&nonlinear_solver_parameters

schedule_iteration = 1     250

schedule_cfl = 10.   250.

schedule_cflturb = 10.   250.

/

&boundary_conditions

total_pressure_ratio(3)    = 1.02828

total_temperature_ratio(3) = 1.008

static_pressure_ratio(4)   = 1.0

/

FUN3D Training Workshop

June 20-21, 2015
13
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Sample fun3d.nml
Time accurate simulation using a S-A based DES model

&turbulent_diffusion_models

turbulence_model = 'des'

/

&nonlinear_solver_parameters

time_accuracy = '2ndorderOPT'

time_step_nondim =  0.10

pseudo_time_stepping = 'on'

subiterations = 10

schedule_iteration = 1 100

schedule_cfl = 5. 5.

schedule_cflturb = 5. 5

/

Details of running a time accurate simulations are covered in Session 11. 

FUN3D Training Workshop

June 20-21, 2015
14
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EOF
Turbulent flow simulations with Fun3D

Several turbulence model options are available in V12.7

Namelist nomenclature has been discussed.

Caveats:

Meshing and turbulence model decisions are highly 

dependent on the degree of fidelity and accuracy desired.

The desired aspects, though, may not fit inside the resources 

available.

FUN3D Training Workshop

June 20-21, 2015
15
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FUN3D v12.7 Training

Session 7:

Supersonic and Hypersonic 

Perfect Gas Simulation

Mike Park
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Session Overview
• How to use FUN3D to compute perfect gas supersonic and 

hypersonic flows (eqn_type=“compressible”)

• What are the challenges and strategies

• Inviscid flux types and inviscid flux gradient limiters options that 
work the best for supersonic and hypersonic flows

• Required practice for running adjoint with gradient limiters for 
design and grid adaptation

• Methods to initialize supersonic and hypersonic flows

• Example of a hypersonic flow application

• What to do when things go wrong

• The focus is on high-speed flows, but the strategies discussed can 
be used in other flow regimes

2
FUN3D Training Workshop  

June 20-21, 2015
2
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Perfect and Generic Gas Simulation
• The input parameters described in this talk are only valid for 

(eqn_type=“compressible”)

• Generic gas input parameters are different, but the philosophy is 
similar

• Work is underway to merge the options where possible, but consult 
generic gas specific documentation for details

3
FUN3D Training Workshop  

June 20-21, 2015
3
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• The inviscid terms can be discontinuous, i.e., when there are shocks

– Entropy problem: strong shocks can cause difficulties in inviscid flux 

schemes especially near points in the flow where the dissipation 

vanishes

– Monotonicity problem: shocks cause discontinuities that make robust 

implementation of higher order schemes difficult

• The inviscid terms can be a problem when there is strong expansion 

– Positivity problem: strong expansions can cause difficulties such that 

the local conditions approach a vacuum

– Sonic rarifaction or “expansion shock” problem: strong expansions near 

the sonic point where dissipation due to the u-a eigenvalues vanishes 

can cause difficulties

• Turbulence modeling challenges compound these issues but are not 

the focus of this talk

What Are the Challenges? 

FUN3D Training Workshop  
June 20-21, 2015

4
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• Inviscid flux schemes fall into several categories: 

• Contact preserving, i.e., good for viscous flows

• Flux difference splitting scheme of flux_construction = “roe”

• Non positivity near vacuum conditions

• The sonic rarefaction problem

• The “carbuncle” problem

• Non preservation of the total enthalpy in shocks

• Entropy fixes (Eigenvalue smoothing) exist for some but not all of these 

problems

• Flux splitting schemes such as flux_construction = “hllc” and 

“ldfss” may display some limited unphysical behavior at very strong 

normal shocks

• Non-contact preserving, i.e. not usually good for viscous flows

• Flux vector split scheme, flux_construction =”vanleer”, has 

desirable qualities

• Positivity near vacuum conditions

• Preservation of the total enthalpy in shocks

Inviscid Flux Types

5
FUN3D Training Workshop  

June 20-21, 2015
5
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• Inviscid flux schemes fall into several categories: 

• Hybrid or “blended” schemes

• The flux_construction = “dldfss” scheme is a blend of two schemes

• The vanleer scheme at shocks via a shock detector

• The ldfss scheme near walls via a shock and boundary layer detector

Inviscid Flux Types

6
FUN3D Training Workshop  

June 20-21, 2015
6
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Inviscid Flux Gradient Limiter Types
• Gradient limiters are available in two types: 

• Edge based : limiting is done on an edge by edge basis,                          
flux_limiter = “minmod”, “vanleer”, “vanalbada” and “smooth” 

• They are less dissipative and they work pretty well on hex grids but 

they are not as robust on mixed element or tetrahedral grids.

• They are not “freezable” and may cause convergence to get hung up 

by limiter cycling. They also can not be used when using the adjoint

solvers 

• Stencil based : limiting is done based on the max and min reconstructed 

higher order edge gradients that exist over the entire control volume 
“stencil”, flux_limiter = “barth”, “hvanleer”, “hvanalbada”, 
“hsmooth”, and “venkat”

• They are more robust but more dissipative and work on all grid types

• They are “freezable”, i.e. they can be frozen after a suitable number of 

iterations which sometimes will allow the solution to converge further

• They must be frozen when solving adjoint equations

• Limiters with the “h” prefix include a heuristic stencil based pressure 

limiter to increase robustness

7
FUN3D Training Workshop  

June 20-21, 2015
7
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Realizability

• Nonphysical (negative density or pressure) reconstructions are set 

to cell averages (first order) accompanied with a “realizability” 

warning

• Nonlinear density and pressure updates are floored to a ratio of 
freestream with the f_allow_minimum_m namelist variable

• The default floor may need to be lowered if the simulation 

requires it 

8
FUN3D Training Workshop  

June 20-21, 2015
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Calorically Perfect Supersonic Flow

• Maximum Mach number in computational domain < 3.0 such that:

• Shocks are relatively weak

• Expansion fans are relatively weak

• Inviscid flux options suitable for these applications:

• When Euler: viscous_terms = “inviscid”

• flux_construction = “vanleer”, “ldfss”, “hllc” or “roe”

• When Navier-Stokes: viscous_terms = “laminar” or “turbulent”

• flux_construction = “ldfss”, “hllc”, or “roe”

• Inviscid flux gradient limiter options most suitable for these applications:

• flux_limiter = “vanleer”, “vanalbada”, “hvanleer”, or 

“hvanalbada” 

• For applications that require solving the adjoint:

• flux_construction = “vanleer” or “roe”

• flux_limiter = “hvanleer” or “hvanalbada”

9
FUN3D Training Workshop  
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Calorically Perfect Hypersonic Flow

• Maximum Mach number in computational domain > 3.0 such that:

• Shocks may be strong, especially when there are normal shocks 

• Expansion fans may be strong

• Inviscid flux options suitable for these applications:

• When Euler: viscous_terms = “inviscid”

• flux_construction = “vanleer” or “dldfss”

• When Navier-Stokes: viscous_terms = “laminar” or 

“turbulent”

• flux_construction = “dldfss”

• Inviscid flux gradient limiter options most suitable for these 

applications:

• flux_limiter = “hvanleer” or “hvanalbada” 

• For applications that require solving the adjoint:

• flux_construction = “vanleer” or “roe”

• flux_limiter = “hvanleer” or “hvanalbada”

10
FUN3D Training Workshop  
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Nonlinear Equations

• When solving nonlinear equations (e.g., Euler, Navier-Stokes), the 

initial guess is critical!

• Transients can be much more challenging than the steady solution

• Solution under and over shoots can be aggravated

• Nonphysical states may be transited

• Boundary conditions are less robust with large gradients nearby

• Linear system solution scheme and nonlinear defect correction 

solution schemes can become unstable

11
FUN3D Training Workshop  
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Strategy

• Perform the simulation in phases

• Initialization

• Target solution scheme

• Optional end game that freezes limiter for better iterative 

convergence.

• Initialization is the primary challenge to success for high speed, 

internal, and propulsion flows

12
FUN3D Training Workshop  
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Initialization Strategies

• The default initialization fills the domain with freestream flow and 

applies strong boundary conditions

• Creates high gradients adjacent to the boundary

• Sets up an unphysical expansion on backward facing surfaces

• The goal of initialization is to improve this default flow field with one 

that establishes the physical mechanisms of the simulations (e.g., 

boundary layers, shear layers, recirculation zones)

• Moves large gradient regions away from the boundaries and into 

the interior of the domain

• You have the freedom to use methods that are inaccurate as long as 

you later restart the solution with an appropriate method for your 

simulation

• Includes changing boundary conditions, freestream conditions, 

etc.

13
FUN3D Training Workshop  
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Initialization Strategies

• Use first_order_iterations to create a spatially first-order 

solution

• This helps the nonlinear update because there are less 

approximations in defect correction

• Use a more dissipative flux scheme

• Roe with excessive Eigenvalue smoothing

• rhs_u_eigenvalue_coef, lhs_u_eigenvalue_coef, 

rhs_a_eigenvalue_coef, lhs_a_eigenvalue_coef

• “vanleer” for Navier-Stokes

• Restart from a lower Mach number or angle of attack solution

• Slow down (lower CFL number or physical time step)

• This aids the stability of the linear solve and nonlinear updates

• Combinations of these strategies

14
FUN3D Training Workshop  

June 20-21, 2015
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Initialization Strategies

• Explicitly initialize with the &flow_initialization namelist

• Fill plenums with subsonic high density and pressure gas

• Place a subsonic wake behind an aft facing step

• Surround the entire vehicle with a sphere of post shock flow 

conditions (subsonic high density and pressure gas)

• May reduce the execution time by allowing the use of larger CFL 

numbers

15
FUN3D Training Workshop  
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Solution Scheme

• See the advantages and disadvantages of the available fluxes and 

limiters

• Adjust (ramp) the CFL number for the best convergence rate

• Expect the solution convergence to stall due to limiter buzz

16
FUN3D Training Workshop  
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End Game

• Optionally freeze the gradient limiter to overcome limiter buzz

• Make sure the solution is sufficiently converged

17
FUN3D Training Workshop  
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Multiple Step Approach

• Applications with shocks and expansions may need to be run in 

multiple steps

• Step 1 : Run solution first order while scheduling the CFL number to 

evolve the solution to a quasi-steady state;

• Initialize the flow appropriately

• Set first_order_iterations to the same as the number of iterations 

specified by steps

• Use schedule_iteration, schedule_cfl, and schedule_cflturb to 

slowly increase CFL number

• Step 2 : Restart solution higher order while scheduling the CFL number 

to compute the final solution;

• Read the restart file, i.e. restart_read = “on”

• Set first_order_iterations = 0

• The CFL ramping of schedule_iteration, schedule_cfl, and 

schedule_cflturb may need to be less aggressive

18
FUN3D Training Workshop  
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Supersonic/Hypersonic 

Retro-propulsion Flow Example

• Turbulent retro-propulsion re-entry plume flow in one run that includes 

the three phases

• Relevant namelist settings
&code_run_control

steps              = 7500

restart_read = 'off' 

/          

&inviscid_flux_method

first_order_iterations = 2500

freeze_limiter_interation = 5000         

flux_limiter = 'hvanalbada'

flux_construction = ’dldfss'

/

&nonlinear_solver_parameters

schedule_iteration =  1    100

schedule_cfl =  0.1   10.

schedule_cflturb =  0.01   1.

/

19
FUN3D Training Workshop  
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Supersonic/Hypersonic 

Retro-propulsion Flow Example
• Switch from 1st order to 2nd order scheme occurs at 2500 iterations

• The hvanalbada limiter was frozen at 5000 iterations

• Continuity and energy equation residuals converged ~ 4 orders

• Jet unsteadiness probably preventing further convergence 

• Lift has converged, i.e. is no longer changing

20
FUN3D Training Workshop  
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Supersonic/Hypersonic 

Retro-propulsion Flow Example

Some Observations
• Turbulent flow has made this case easier to run because of the 

added dissipation caused by the eddy viscosity in the retro-

propulsion jet 

• If this case were laminar, it would probably be more difficult to run

- You would need to be careful that the dldfss flux scheme does 

not add too much dissipation by refining the grid

- You may need to resort to a multiple step running approach or 

explicit initialization of the flow field

21
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Diagnosis When Things Go Wrong

• Restart the solution and visualize just before an increase in the 
residual

• Create movies near the largest residual location

• Try to isolate the problem location

• Check your grid resolution near the maximum residual location

– Under-resolved expansions can cause a lot of trouble

– Really large grid aspect ratios near expansions can cause trouble

• Check to make sure your boundary conditions are well posed

• This is especially true for internal flows

FUN3D Training Workshop  
June 20-21, 2015
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Diagnosis When Things Go Wrong

• Isolate the problem to linear system or nonlinear update

• Invoke the --monitor_linear command line option

• Set linear_projection = .true. or change the number of 

linear sweeps

• Lowering CFL number can aid linear and nonlinear stability

• Try a different initialization strategy

FUN3D Training Workshop  
June 20-21, 2015
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• Recommended use cases and descriptions of flux schemes 

• Recommended use cases for gradient limiters and how to freeze 
them

• Initialization strategies

• What the convergence behavior may look like

• What to do when things go wrong

What We Learned

FUN3D Training Workshop  
June 20-21, 2015
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FUN3D v12.7 Training

Session 8:

Parameterization Tools

Bill Jones
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• FUN3D shape design relies on a pre-defined relationship between a 
set of parameters, or design variables, and the 
discrete surface mesh coordinates

• Given DV, surface parameterization determines Xsurf

• For example, given the current value of wing thickness 
at a location, what are the corresponding 
xyz-coordinates of the mesh?

• This narrows down the number of design variables 
from hundreds of thousands (raw mesh points) to dozens or 
hundreds
• Optimizers will perform more efficiently

• Smoother design space

• An additional requirement of the parameterization package is that it 
provides the Jacobian of the relationship between the design 
variables and the surface mesh,

• While users may provide their own parameterization scheme, 
FUN3D is set up to handle three common packages:
• MASSOUD: Aircraft-centric design variables (thickness, camber, planform, 

twist, etc)

• BandAids: General FFD based tool

• Sculptor®: Commercial package from Optimal Solutions

Setting

  

¶Xsurf ¶DV

FUN3D Training Workshop 

June 20-21, 2015
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• Parameterize geometry with respect to DVs to control shape

• MASSOUD

• BandAids

• Generate perturbed surface mesh and SDs for FUN3D 

design

• Visual validation

• What we will not cover

• Body transformations

• How to use the data in FUN3D

• That will be covered in the next session

Learning Goals

FUN3D Training Workshop 

June 20-21, 2015
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MASSOUD

• Multidisciplinary Aerodynamic-Structural Shape Optimization Using 
Deformation
• AIAA-2000-4911 (Jamshid Samareh)

• Used to generate consistent models for MDAO
• Same shape changes communicated across all disciplines

• Highly tailored for aerodynamic shapes
• Parameters familiar to engineer

• Mesh based parameterization

FUN3D Training Workshop 

June 20-21, 2015
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• Uses soft object animation algorithms for deforming 

meshes

• Nonlinear global deformation (twist and dihedral)

• NURBS surface (camber and thickness)

• Free-form deformation (planform)

• Parameterizes the discipline meshes

• Avoids mesh regeneration

• Parameterizes the changes in shape, not the shape itself

• No need to reproduce shape

• Reduces the number of design variables

MASSOUD Key Ideas

FUN3D Training Workshop 

June 20-21, 2015
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• Nonlinear Global Deformation

• Wrapped in twist cylinder

• Twisted and sheared in planes along span normal to twist vector

MASSOUD Twist and Shear

Twist parameterization 
of a generic wing

Twist parameterization 
of a generic transport

Extreme deformation 
of a generic transport

FUN3D Training Workshop 

June 20-21, 2015
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• Non-Uniform Rational B-Spline (NURBS)

• Represents the shape changes not the shape

MASSOUD Camber and Thickness

NURBS Control Points for 

Camber and Thickness

Camber

Extreme Camber and 

Thickness deformation

Thickness

FUN3D Training Workshop 

June 20-21, 2015
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• Free-form Deformation (FFD)

• Surround shapes with quadrilaterals

MASSOUD Planform

Baseline

Control Points 

for FFD

Deformed

FFD control polygon

FUN3D Training Workshop 

June 20-21, 2015
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• Distributed as source code

• Single Makefile uses GNU C compiler (gcc)

• Any localization must be done manually

• Creates two executables

• `massoudDesignDriver` creates parameterization

• `massoud` surface mesh perturbation with sensitivity data

MASSOUD Installation

FUN3D Training Workshop 

June 20-21, 2015
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MASSOUD Process

Step 1:

Determine # and 

locations of design 

variables

Step 2:

Create baseline 

analysis mesh for 

discipline N

Step 3:

Parameterize each 

discipline
massoudDesignDriver

Step 4:

Perturb and 

compute sensitivity
massoud

Baseline

Model

gpNFile

Design

Variable

Templates

Plot file

(Tecplot™)

Design

Variable

SD Input

Design Group

New

SDs

Mesh N

New

Mesh N

Plot file

(Tecplot™)

P
re

p
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e
s
s
in

g
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h
a
s
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P
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c
e
s
s
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g
 P

h
a
s
e

Design

Locations
Mesh N
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• Parameterization requires input to define DV locations

• Small ASCII file

• Contains 7 groups of oriented curves

• X axis is positive downstream

• Y is positive out the wing span

• Y should be positive with curves monotonically increasing

• GridTool can be used to create the file

MASSOUD Step 1

FUN3D Training Workshop 

June 20-21, 2015
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Planform

MASSOUD Design Locations File

Twist

Leading and

Trailing Edges

Thickness

Camber

FUN3D Training Workshop 

June 20-21, 2015
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Design location file Case Name Title (SECTION 1)

np ne      ntwist ncmax

4        1         2     100   0 1 2

Pt X Y Z (SECTION 2)

0               -0.0010000       -1.0010000e+00         0.0000000e+00

1                1.0010000       -1.0010000e+00         0.0000000e+00

2                1.0010000        0.0000000e+00         0.0000000e+00

3               -0.0010000        0.0000000e+00         0.0000000e+00

0               1               2                       3

#Twist Vector (SECTION 3)

# Ax Ay Az

0.0000000e+00    1.0000000e+00    0.0000000e+00

# x y z ir or

2.5000000e-01   -1.0000000e+00    0.0000000e+00         1000.0        10000.0

2.5000000e-01    0.0000000e+00    0.0000000e+00 1000.0        10000.0

# Le/Te definitions (SECTION 4)

2

0.0000000e+00   -1.0010000e+00    0.0000000e+00

0.0000000e+00    0.0000000e+00 0.0000000e+00

2

1.0000000e+00   -1.0010000e+00    0.0000000e+00

1.0000000e+00    0.0000000e+00    0.0000000e+00

5       2 0.000000e+00-1.001000e+00 0.000000e+00 1.000000e+00 # Thickness (SECTION 

5)

0.0 0.000000e+000.000000e+00

0.1 0.000000e+000.000000e+00

0.5 0.000000e+000.000000e+00

0.75 0.000000e+000.000000e+00

1.0 0.000000e+000.000000e+00

3       2

0.000000e+00   -1.001000e+00    0.000000e+00

0.000000e+00   -0.500000e+00    0.000000e+00

0.000000e+00    0.000000e+00 0.000000e+00

5       2 0.000000e+00-1.001000e+00 0.000000e+00 1.000000e+00 # Camber (SECTION 6)

0.0 0.000000e+000.000000e+00

0.1 0.000000e+000.000000e+00

0.5 0.000000e+000.000000e+00

0.75 0.000000e+000.000000e+00

1.0 0.000000e+000.000000e+00

3       2

0.000000e+00   -1.001000e+00    0.000000e+00

0.000000e+00   -0.500000e+00    0.000000e+00

0.000000e+00    0.000000e+00 0.000000e+00
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1. Planform

• Cover planform with 5 point quadrilaterals

• Closed but orientation does not matter

• 1 Curve per planform section

• GridTool Family name “planform”

MASSOUD Design Locations

FUN3D Training Workshop 

June 20-21, 2015
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2. Leading Edge

• Create an n point PWL curve defining the leading edge

• Must bound all mesh nodes

• May extend beyond actual geometry 

• GridTool Family name “le”

3. Trailing Edge
• Create an n point PWL curve defining the trailing edge

• Must bound all mesh nodes

• GridTool Family name “te”

MASSOUD Design Locations

Le

Te

FUN3D Training Workshop 

June 20-21, 2015

14



6/5/2015

8

http://fun3d.larc.nasa.gov

4. Twist Vector
• Create a 2 point curve to represent the twist vector

• Twist sections defined normal to this vector

• GridTool Family name “twistv”

5. Twist Location
• Create an n point PWL curve to represent the n twist locations

• Airfoil sections defined at these points normal to “twistv”
• First and last section must bound the Y coordinates of the target mesh

• GridTool family name “twist”

MASSOUD Design Locations

Twist

Shear

Twist Vector

Twist Vector

FUN3D Training Workshop 

June 20-21, 2015
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• Thickness
• Chordwise

• Create an n point PWL curve to 
represent the n chordwise
thickness locations

• Start, length, and %

• GridTool family name “tx”

• Spanwise

• Create an m point PWL curve 
to represent the m spanwise
thickness locations

• Should bound Y values of all target mesh nodes

• Beginning and ending Y coordinates must be bounded by the Y 
coordinates of both the “le” and “te” curves

• May be a duplicate of the “twist” curve

• GridTool family name “ty”

• n x m set of DVs

MASSOUD Design Locations

T1

T2

T3

T4

T7

T10

T13

T14

T6

T9

T12

T15

“tx”

“ty”

FUN3D Training Workshop 
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• Camber

• Same as for Thickness but with GridTool family names “cx” and 

“cy” respectively

• May be duplicates of “tx” and “ty”

• Two curves define n x m set of DVs

MASSOUD Design Locations

C1

C2

C3

C4

C7

C10

C13

C14

C6

C9

C12

C15

“cx”

“cy”

FUN3D Training Workshop 
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• Dump out surface meshes of interest in a Tecplot™ format

• Includes the surface node coordinates

• Global ID of the surface nodes wrt the volume mesh

• FUN3D flow solver CLO ‘--write_massoud_file’

• Produces “[project]_massoud_bndryN.dat” file for body N

• Default extracts all viscous boundary surfaces as separate bodies

• FUN3D Namelist controls
&massoud_output

n_bodies = 2 ! Parameterize 2 bodies

nbndry(1) = 6 ! 1st body has 6 boundaries

boundary_list(1) = ‘3-8’ ! Boundaries in 1st body

nbndry(2) = 3 ! 2nd body has 3 boundaries

boundary_list(2) = ‘9,10,12’ ! Boundaries in 2nd body

/

• boundary_list() indices should reflect boundary lumping

MASSOUD Step 2

FUN3D Training Workshop 

June 20-21, 2015
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• Generate geometry parameterization

% massoudDesignDriver –t input_massoud_bndry1.dat \
designLocations \
design.gp.1

• Geometry parameterization is output in “design.gp.1”
• Used as input to `massoud`

• Additional output
• “designVariableTemplate”

• Reference for “design.1” file with zero perturbations

• “designTemplate.usd”
• Reference for “design.usd.1” user defined variable links

• “designVariableTemplateNumber”
• Lists the DV indices by DV type (planform, twist, etc.)

• “baselineShape.plt”
• Tecplot™ readable zero perturbation reference

• Errors in “GP.log”

MASSOUD Step 3

FUN3D Training Workshop 

June 20-21, 2015
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• Mesh deformation %massoud massoud.N

• Where MASSOUD input is in “massoud.N”

• FUN3D design will utilize “customDV.N” for perturbations

#MASSOUD INPUT FILE

# Option (0 analysis), (> 0 sd using user dvs ) (-1, sd using massoud dvs)

-1

# core (0 incore solution)  (1 out of core solution)

0

# input parameterized file

design.gp.1

# design variable input file

design.1

# input sensitivity file (used for Option > 0)

design.usd.1

# output file mesh file

new1.plt

# output tecplot file for viewing

model.tec.1

# file containing the design variables group

designVariableGroups.1

# user design variable file

[customDV.1]

MASSOUD Step 4

FUN3D Training Workshop 

June 20-21, 2015
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• Visual inspection

• Tecplot™

• “model.tec.1.sd1” contains mesh and SDs

• (e.g. XD1, YD1, ZD1… XDndv, YDndv, ZDndv)

• GridTool

% GridTool –d model.tec.1.sd1

• Sliders to interactively perturb DVs

• Twist is non-linear and is only indication of change

MASSOUD Results

FUN3D Training Workshop 

June 20-21, 2015
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• Failure … check “GP.log”

• Design locations must be defined to bound all target mesh nodes

What Could Go Wrong (1 of 2)

Twist Vector

Twist Vector

FUN3D Training Workshop 

June 20-21, 2015
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• Design locations must be defined to bound all target mesh nodes

C1

C2

C3

C4

C7

C10

C13

C14

C6

C9

C12

C15

“cx”

“cy”

“cy” does not 

bound tip 

nodes with full 

precision

What Could Go Wrong (2 of 2)

FUN3D Training Workshop 
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• New variables as linear combination of MASSOUD 

variables

M6.usd

VariablesDesign   Defined- User

VariablesDesign   MASSOUD 
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MASSOUD User Defined Variables
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MASSOUD Pros and Cons

Pros

• Consistent Meshes

• No need for mesh 
generation

• Easy to setup (hours)

• Parameterization is fast

• Analytic sensitivity

• Compact set of DVs

• Suitable for high- and low-
fidelity application

Cons

• Limited to small shape 
changes

• Fixed topology

• No built-in geometry 
constraints

• No direct CAD connection

FUN3D Training Workshop 

June 20-21, 2015
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• Aerodynamic Shape Parameterization based on 

Free-Form Deformation

• General application based on free-form deformation

• Handles complex shapes

• DVs are not classic aerodynamic parameters

BandAids

FUN3D Training Workshop 

June 20-21, 2015
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1. Parameterize surface mesh

• Avoids mesh regeneration

2. Use FFD to represent shape perturbations

• Automates surface parameterization

3. Parameterize changes in shape perturbation, not the 

shape itself

• Reduces the number of design variables

BandAids Key Ideas

FUN3D Training Workshop 

June 20-21, 2015

27

http://fun3d.larc.nasa.gov

• Based on algorithm used in computer animation
• Control points are DVs

• Immersed in Jell-O®

• Design variables have no aerodynamic significance
• Only those near surface have significant impact

BandAids FFD (1 of 3)

FUN3D Training Workshop 

June 20-21, 2015

28



6/5/2015

15

http://fun3d.larc.nasa.gov

• Many more control points in 3D

• Only those near surface have impact on surface

BandAids FFD (2 of 3)

FUN3D Training Workshop 
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• Equivalent 3D bi-variant form of tri-variant FFD

• Collapse CPs onto surface

• Move CP moves surface underneath

• Number of DVs reduced from N3 to N2

• 4 sided Bandaid marking surface over geometry

• Moves only surface to which it is collapsed

• No MDO

BandAids FFD (3 of 3)

FUN3D Training Workshop 
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• Shape changes are small

• Can be represented with fewer CPs than surface

• Maintains surface mesh character/quality

BandAids Parameterizes Changes

NURBS control points for

camber & thickness

Baseline

surface

mesh

Design

variable

vector

Surface

mesh point

Shape

changes

( ) ( )b

n n nr v r r v 

FUN3D Training Workshop 
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• Distributed as source code

• Single Makefile uses GNU C compiler (gcc)

• Any localization must be done manually

• Creates a single executable

• `bandAids` parameterization and deformation

BandAids Installation

FUN3D Training Workshop 
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• Create structured marking surface

• Marks portion of geometry to parameterize

• Can span multiple geometry surfaces

BandAids Marking Surfaces (1 of 2)

Marking

Surface

(PLOT3D)

Surface Mesh 
(Tecplot™)

FUN3D Training Workshop 
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• Marking surface interpolated by reference with n x m CPs

• n x m DVs

BandAids Marking Surfaces (2 of 2)

FUN3D Training Workshop 
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% bandAids inMesh.plt \

inDesignSurf.p3d \

output \

numDesignInU \

numDesignInV \

[tol]

• “inMesh.plt” target mesh in Tecplot™ format

• “inDesignSurf.p3d” marking surface in PLOT3D format

• “outfile” output file name prefix

• “numDesignInU” number of design variables in U-direction

• “numDesignInV” number of design variables in V-direction

• “tol” optional, max gap between mesh and marking surface

• User defined variables are created if a “bandaids.usd” file 
exists at execution

BandAids Execution

FUN3D Training Workshop 

June 20-21, 2015
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• Execution produces seven files:
• “output.bandaid”

• All non-zero shape information

• Read directly by FUN3D

• “output.distance.plt”

• Tecplot™ file with the surface mesh including the distance between 
the surface mesh and marking surface

• “output.distanceSD.plt”

• Tecplot™ file containing surface mesh and sensitivity data

• “bandAidsSample.dvs”

• Template for input design variable file

• “bandAidsAll.usd”, “bandAidsCol.usd”, and 
“bandAidsRow.usd”

• Templates to base “bandaids.usd” used for DV linking

• Requires a subsequent `bandaids` run for linked variables 

BandAids Output

FUN3D Training Workshop 

June 20-21, 2015
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• Not necessary with FUN3D as all deformation is linear
• Useful for validation

• Execute bandAids with –deformMesh

% bandAids -deformMesh \

output.distanceSD.plt \

my.dvs \

new.plt

• “output.distanceSD.plt”

• Tecplot™ file containing surface mesh and sensitivity data

• “my.dvs”

• Input DV perturbations

• “new.plt”

• Deformed surface mesh

BandAids Deformation

FUN3D Training Workshop 

June 20-21, 2015
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• Visual inspection

• Tecplot™

• “output.distanceSD.plt” contains mesh and SDs

• (e.g. XD1, YD1, ZD1… XDndv, YDndv, ZDndv)

• GridTool

% GridTool –d output.distanceSD.plt

• Sliders to interactively perturb DVs

BandAids Results

FUN3D Training Workshop 

June 20-21, 2015
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BandAids Pros and Cons

Pros

• General Application

• Consistent Meshes

• No need for mesh 

generation

• Easy to setup (hours)

• Parameterization is fast

• Analytic sensitivity

• Compact set of DVs

• Suitable for high- and 

low- fidelity application

Cons

• Non-intuitive DVs

• Limited to small shape 

changes

• No built-in geometry 

constraints

• No direct CAD connection

FUN3D Training Workshop 

June 20-21, 2015
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• MASSOUD parameterizes with aerodynamic parameters

• Best applied to aerodynamic shapes

• BandAids provides general application

• Albeit w/o intuitive parameters

• Both mesh based parameterization

• Both tools parameterize shape changes not shape

• Reduces number of DVs

• Both provide mesh perturbation with SDs suitable for 

FUN3D

What We Learned

FUN3D Training Workshop 

June 20-21, 2015
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Adjoint-Based Design for 

Steady Flows

Eric Nielsen
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Learning Goals

• Introduction and basic approach taken in FUN3D
• Some lingo/nomenclature
• What is an adjoint, and what is it used for?

– Error estimation and mesh adaptation
– Sensitivity analysis for design optimization

• Design variables
• Objective/constraint functions
• Geometry parameterizations
• Setup and execution of a simple unconstrained problem
• Things to watch out for
• How to interpret results

What we will not cover
• Body transforms, body grouping
• Overset grid details
• Multipoint/multiobjective/constrained optimization
• Hooking in your own optimizer, parameterization tools
• Forward-mode differentiation using complex variables
• Design of unsteady flows

– Later session

2
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What to Expect

• Cost of design optimization is very problem-dependent, but in 

general you can expect to spend ~20 times the cost of a flow 

solution to get reasonable improvements, depending on how “good” 

the baseline is

• Generally see very rapid improvements initially, followed by 

diminishing returns

• We will cover the bare essentials here; also see the manual

– There are many aspects we will not have time to cover here

• Hands-off design is challenging – be patient, send in questions, and 

we’ll try to help you through

– There are a lot of pieces involved, and getting things running smoothly 

always involves stumbling blocks along the way

3
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Design Optimization Using FUN3D

• Based on a gradient-based approach

• FUN3D is distributed with support for several COTS gradient-based 
optimization packages
– You must download and install your choice of these third-party libraries

• DOT/BIGDOT (Vanderplaats R&D)

• KSOPT (Greg Wrenn @ Langley)

• PORT (Bell Labs)

• NPSOL (Stanford)

• SNOPT (Stanford)

• Other packages are generally straightforward to hook up – couple of hours

• These optimizers are based on the user supplying functions and 
gradients (and perhaps constraints and their gradients also)
– Optimizers know nothing about CFD, all they see are f and f

• In CFD, objective/constraint functions are generally based on things 
like lift, drag, pitching moment, etc.
– But can be anything you code up, generally speaking

4
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Design Optimization Components

Functions

• When the optimizer requests a function value, it requires a flow 
solution with inputs and a grid corresponding to the current design 
variables

Gradients

• When the optimizer requests a gradient value, it requires a 
sensitivity analysis with inputs and a grid corresponding to the 
current design variables
– The most straightforward way to generate sensitivity information is to 

perturb each design variable independently and run black-box finite 
differences

• This is prohibitively expensive when each finite difference requires a new 
CFD simulation (or two) – cost scales linearly with the number of design 
variables

– The most efficient sensitivity analysis approach for CFD simulations 
based on large numbers of design variables (hundreds or thousands) is 
the adjoint method

5
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Notation and Governing Equations

• Incompressible through hypersonic flows

• May include turbulence models and various physical models from 

perfect gas through thermochemical nonequilibrium

( , , ) 0
t


 



Q
R D Q X

R

D

= Spatial residual

= Design variables

Q

X

= Dependent variables

= Computational grid

We wish to perform rigorous adaptation and design optimization

based on the steady-state Euler/Navier-Stokes equations,

without requiring any a priori knowledge of the problem:
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What is an Adjoint?

f

K

fΛ

gΛ

= Cost function (lift/drag/boom/etc)

= Mesh movement elasticity matrix

= Flowfield adjoint variable

= Grid adjoint variable

Combine cost function with Lagrange multipliers :

Differentiate with respect to D:

R Q R
Λ Λ

D D D D Q Q

TT T

f f

dL f f

d

          
                   

T T

T T

f g g

surf

f          
                   

X R X
Λ Λ K Λ

D X X D

Mesh Movement EquationsFlowfield EquationsCost Function

( , , , , ) ( , , ) ( , , ) ( )T T
f g f g surfL f   D Q X Λ Λ D Q X Λ R D Q X Λ KX X

T

f

f  
    

R
Λ

Q Q

This adjoint equation for the flowfield 

has powerful implications for:

• Error estimation & mesh adaptation

• Sensitivity analysisGoverning Eqns Engineering Output
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Adjoints for Error Estimation and Mesh Adaptation

It is apparent that:

f
f




Λ
R

Direct relationship between local equation 

error and the output we are interested in

• These relationships can be used to get 
error estimates on 

• Also used to compute a scalar field 
explicitly relating local point spacing 
requirements to output accuracy for a 
user-specified error tolerance

• Often yields non-intuitive insight into 
gridding requirements

• Relies on underlying mathematics to 
adapt, rather than heuristics such as 
solution gradients

Blue=Sufficient Resolution

Red=Under-Resolved

Transonic Wing-Body:

“Where do I need to put grid points

to get 10 drag counts of accuracy?”f

User no longer required to be a

CFD expert to get the right answer
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Supersonic Adjoint-Based Mesh Adaptation

• Objective: Adapt grid to compute drag on 

lower airfoil as accurately as possible

• Result of adjoint-based adaptation:

• Uniformly-resolved shocks are not required

• Drag is computed accurately with a        

90% smaller grid

Adjoint-Based Adaptation

CD=0.0766   3,810 Nodes

Feature-Based Adaptation

CD=0.0767   37,352 Nodes

3M 

Collaboration with Venditti/Darmofal of MIT using FUN2D

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
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Adjoint-Based Mesh 

Adaptation for High Lift
Collaboration with Venditti/Darmofal of MIT using FUN2D

• Initial grid was coarse Euler mesh

• Pressure-based indicator only 

resolves strong flow curvature

• Adjoint-based indicator also includes 

important smooth regions, stagnation 

streamline and wakes
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Adjoints for Sensitivity Analysis
Examine the remaining terms in the linearization:

T T T
T T

f f g g
surf

dL f f

d

             
                          

R X R X
Λ Λ Λ K Λ

D D D D X X D

R
K Λ Λ

X X

T

T

g f

f    
        

Discrete adjoint equation

for mesh movement

T T

f g

surf

dL f

d

   
       

R X
Λ Λ

D D D D

Sensitivity

equation



Function Evaluation Sensitivity Evaluation

1. Compute surface mesh at current D

2. Solve mesh movement equations

3. Solve flowfield equations

3. Solve flowfield adjoint equations

2. Solve mesh adjoint equations

1. Matrix-vector product over surface

Analysis Cost = Sensitivity Analysis Cost

Even for 1000s of design variables

http://fun3d.larc.nasa.gov
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Design Variables in FUN3D

• Global flowfield variables
– Mach number, angle of attack

• Shape variables
– These depend entirely on the geometric parameterization being 

supplied to FUN3D

– FUN3D has no native shape variables, other than the grid points 
themselves

• Additional variables related to unsteady simulations

12
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Objective/Constraint Functions in FUN3D

13

*

1

( )
i

j

J
p

i j j j

j

f C C


 
 = weight C = aero coeff

p = power C
= target aero coeff

• We call each term in the summation a component function and the 
summation fi a composite function

• User may specify which boundary patch in the grid (or all) to which each 
component function applies

• Constraints may be explicit or added as “penalties”

• Multipoint/multiobjective: as many composite functions/constraints as 
desired

– Only limited by particular optimization package

– Adjoints for multiple functions/constraints computed simultaneously

• The optimization always seeks to minimize the objective function(s), so 
pose them accordingly

• This general form leads to numerous ways to pose an optimization 
problem; each optimizer has its own limitations though

– Extensive discussion in manual

http://fun3d.larc.nasa.gov
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Objective/Constraint Functions Examples

14

Unconstrained Drag Minimization

Drag Minimization with CL=0.5 Lift Penalty

Drag Minimization with Explicit CL=0.5 Lift Constraint

2

Df C

2 210 ( 0.5)D Lf C C  

2

1 Df C 2 Lf C
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Geometry Parameterizations

15

• FUN3D relies on a pre-defined relationship between a set of               
parameters, or design variables, and the discrete surface mesh          
coordinates

• Given D, surface parameterization determines Xsurf (surface mesh)

• For example, given the current value of wing thickness at a location,             
what are the corresponding xyz-coordinates of the mesh?

• This narrows down the number of design variables from hundreds                     
of thousands (raw grid points) to dozens or hundreds

– Optimizers will perform more efficiently

– Smoother design space

• The other requirement of the parameterization package is that it              
provides the Jacobian of the relationship between the design                  
variables and the surface mesh, Xsurf/D

• While users may provide their own parameterization scheme, FUN3D is set up 
to handle three common packages:

– MASSOUD: Aircraft-centric design variables (thickness, camber, planform, twist, etc)

– Bandaids: General patching tool to handle fillets, winglets, and other odd shapes

– Sculptor: Commercial package from Optimal Solutions

• To dump out the surface grids in the Tecplot format necessary for these tools, 
run the flow solver with ‘--write_massoud_file’

– This procedure generates a [project]_massoud_bndryN.dat file for the ith solid 
boundary

Wing Twist via MASSOUD

http://fun3d.larc.nasa.gov
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Design/description.i

• i suffix is an integer referring to the 

design point (to accommodate multipoint 

design)

• Contains all of the baseline files 

describing this design point (CFD model 

and all input decks specific to it)

• The optimization never changes 

anything in here; this is where the 

optimizer can always find the problem 

definition

• You provide the problem description 
for the ith design point here

Directory Tree for FUN3D-Based Design

16

Design

• Main directory for design execution

• The only directory here without a hardwired name

Design/ammo

• Design is executed from here 
using the opt_driver

executable

• design.nml resides here

Design/model.i
• i suffix is an integer referring to 

the design point (to accommodate 

multipoint design)

• All CFD runs are performed here

• You never change anything in 

here; it only contains outputs

Design/model.i/Flow

• All flow solutions are 

performed here

Design/model.i/Adjoint

• All adjoint solutions are 

performed here

Design/model.i/Rubberize

• All parameterization evaluations 

are performed here

Design/model.i/Rubberize/surface_history

• A Tecplot file for every surface grid evaluated during the 

design is stored here

You need not set up this tree 

manually; the code will do it for you, 

provided some basic pathnames
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Maximize L/D for Transonic Flow Over a Wing

• To create the directory structure necessary for performing the optimization, issue 

the following command:
‘/path/to/your/FUN3D/installation/Design/opt_driver --setup_design 1’

• The trailing integer represents the number of design points desired

• This command will prompt you for several paths and then will set up the 

required directory structure

• First we will discuss the files that must be provided in the 
description.1 directory

17

ONERA M6 Wing:

Baseline L/D=6.7
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Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

• This file is used to specify any command line options (CLOs) required by the 

FUN3D executables, as well as MPI

• The first line specifies the number of executables for which you are providing CLOs

• This is followed by a line containing an integer and a keyword

– The integer specifies the number of CLOs you are providing for the code identified by the 

keyword

• This is followed by the actual CLOs for the current executable

• Note ‘mpirun’ is an available keyword: this provides a mechanism to feed your 
mpirun executable any options it may require (-nolocal, -machinefile

filename, etc.)

– Depends on your environment, queue structure, etc.

command_line.options

3

0 flow

1 adjoint

‘--rmstol 1.e-3’

0 mpirun
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• These files are input files for MASSOUD for the 1st body; the MASSOUD setup 

tool provides these when you set up your parameterization

• Do not change these files

19

design.1, design.gp.1

• This file is an input file for MASSOUD for the 1st body; the MASSOUD setup tool 

provides this template when you set up your parameterization

• Depending on how you choose to “link” raw MASSOUD variables to create new 

variables, this defines the linking weights (see MASSOUD documentation)

• When using MASSOUD with FUN3D, you must always use the design variable 

linking option, even if simply set to the identity matrix

design.usd.1

We are assuming the use of a MASSOUD parameterization for this example

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

http://fun3d.larc.nasa.gov
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design.usd.1

# this is input sd file for MASSOUD

# number of row == number dvs within MASSOUD

# number of col == final number  dvs

#(row) (col) (#of nonzero rows)

10 11 10

d   1d   2d   3d   4d   5d   6d   7d   8d   9d  10d  11d

1    1    0    0    0    0    0    0    0    0    0    0

2    0    1    0    0    0    0    0    0    0    0    0

3    0    0    1    0    0    0    0    0    0    0    0

4    0    0    0    1    0    0    0    0    0    0    0

5    0    0    0    0    1    0    0    0    0    0    0

6    0    0    0    0    0    1    0    0    0    0    0

7    0    0    0    0    0    0    1    0    0    0    1

8    0    0    0    0    0    0    0    1    0    0    1

9    0    0    0    0    0    0    0    0    1    0    1

10    0    0    0    0    0    0    0    0    0    1    1

• Our demo problem uses 166 variables; this sample file only shows 10 

raw variables plus 1 linked variable for clarity

• Linked variable is equal combination of raw DV’s 7-10

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory
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• This file tells MASSOUD the names of its input/output files for the 1st body

• The first value specifies the number of linked MASSOUD design variables

– If linking matrix is identity, this is just the number of raw MASSOUD design variables

• The remainder of the inputs are filenames; they should remain as is, but with 

the integer value in each name set to the index of the current body

21

massoud.1

#MASSOUD INPUT FILE

# runOption (0 analysis), (> 0 sd using user's dvs ) (-1, sd using massoud's dvs)

166

# core (0 incore solution)(1 out of core solution)

0

# input parameterized file

design.gp.1

# design variable input file

design.1

# input sensitivity file (used for runOption > 0

design.usd.1

# output file grid file

new1.plt

# output tecplot file for viewing

model.tec.1

# file containing the design variables group

designVariableGroups.1

# user design variable file

customDV.1

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

http://fun3d.larc.nasa.gov
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• This is the nominal solver input deck for your case

• The adjoint solver also uses this input

– If the adjoint requires different values (e.g., stopping tolerance), you can override 
these values with CLOs given in command_line.options

• It should contain the necessary inputs to run the baseline case

• The optimization will override values as needed using CLOs (e.g., angle of 

attack, etc)

22

fun3d.nml

• This is the nominal mesh for your baseline case in whatever grid format is 

convenient

[project].fgrid, [project].mapbc

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory
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• This is the main design control file used to define the design variables and their 

bounds, objective functions, and constraints for the current design point

• It also stores current values of functions and sensitivities

• A copy of this file is placed in the model.1 directory at the beginning of an 

optimization and is continuously updated with the current values of the design 

variables, objective/constraint functions, and all gradient information

– If you want to know the latest info during a design, it’s probably in here

rubber.data

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory
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• In general, for each design variable, you must set several fields

– Active (0=no, 1=yes), baseline value, upper and lower bounds (if active)

• First subsection lays out global design variable information including Mach 

number, angle-of-attack, yaw, noninertial rates

• This is followed by an input stating the number of bodies to be designed

• Then for each body:

– Fixed number of rigid motion variables – leave these alone (used for unsteady flows)

– Number of shape variables and their inputs – these correspond directly to the 

MASSOUD variables previously discussed

• When setting bounds for shape variables, it pays to be conservative – the optimizer will exploit 

every radical shape it can dream up

• You can quickly get into unsolve-able or invalid/crossed-up geometries

• You can always loosen up the bounds and restart the design if needed

rubber.data:  Design Variable Block

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory
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###############################################################################

######################## Design Variable Information ##########################

###############################################################################

Global design variables (Mach number / angle of attack)

Index Active         Value               Lower Bound            Upper Bound

Mach    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

AOA    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

Yaw    0   0.000000000000000E+00  0.000000000000000E+00 0.000000000000000E+00

xrate 0   0.000000000000000E+00  0.000000000000000E+00 0.000000000000000E+00

yrate 0   0.000000000000000E+00  0.000000000000000E+00 0.000000000000000E+00

zrate 0   0.000000000000000E+00  0.000000000000000E+00 0.000000000000000E+00

Number of bodies

1

Rigid motion design variables for body 1 (name of body 1, less than 80 cols)    

Var Active         Value               Lower Bound            Upper Bound

RotRate 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotFreq 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotAmpl 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotOrgx 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotOrgy 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotOrgz 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotVecx 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotVecy 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotVecz 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

TrnRate 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

TrnFreq 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

TrnAmpl 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

TrnVecx 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

TrnVecy 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

TrnVecz 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

Parameterization Scheme (Massoud=1 Bandaids=2 Sculptor=4)

1

Number of shape variables for body 1 (name of body 1, less than 80 cols)        

166

Index Active         Value               Lower Bound            Upper Bound

1    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

2    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

3    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

.

.

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory
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• These sections lay out the objective/constraint function definitions

• First input is the total number of composite functions being specified (sum of 

objectives + constraints)

• Then, for each function:

– Is it an objective function (1) or a constraint (2)

– If it is a constraint, what are the upper and lower bounds (otherwise dummies)

– How many component functions are used to build up the composite function

– Time step interval defining the function (leave as dummies – for unsteady design)

– Composite function weight/target/power: for further generality, described in manual

– Then the list of component functions:

• Boundary index it applies to (0 means all boundaries)

• Keyword identifying the function type (see manual)

• Value (dummy – this is an output during the optimization)

• Weight/target/power to be applied to current component function

• The remainder of the function block is devoted to sensitivity outputs – you can place 

dummies here, but there must be a line corresponding to every design variable

rubber.data:  Function Block

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory
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##############################################################################

############################ Function Information ############################

##############################################################################

Number of composite functions for design problem statement

1

##############################################################################

Cost function (1) or constraint (2)

1

If constraint, lower and upper bounds

0.0 0.0

Number of components for function   1

1

Physical timestep interval where function is defined

1 1

Composite function weight, target, and power

1.0 0.0 1.0

Components of function   1: boundary id (0=all)/name/value/weight/target/power

0 clcd 0.000000000000000           1.000   20.00000 2.000

Current value of function   1

0.000000000000000

Current derivatives of function wrt global design variables

0.000000000000000

0.000000000000000

.

.

.

Current derivatives of function wrt rigid motion design variables of body   1

0.000000000000000

0.000000000000000

.

.

.

Current derivatives of function wrt design variables of body   1

0.000000000000000

0.000000000000000

.

.

.

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

Our objective function:
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• We are now finished setting things up in the description.1 directory

• There is one more file that needs to be set up in the ../ammo directory

• The design.nml file controls the actual optimization procedure

• Everything in this namelist file is pretty self-explanatory, but a few reminders:

– ‘opt_algorithm’: DOT/BIGDOT=1, KSOPT=3, PORT=4, NPSOL=5, SNOPT=6

– ‘what_to_do’: analysis=1, sensitivity analysis=2, optimization=3

– Note you can specify the mpirun executable name

• Useful if executable is called ‘mpiexec’, ‘aprun’, or otherwise on your system

– Otherwise, see extensive documentation for this namelist in the manual

Maximize L/D for Transonic Flow Over a Wing
ammo/design.nml

&design

base_directory = ‘path/to/your/design/case’

what_to_do = 1

mpirun_prefix = ‘mpiexec’

/
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• Things are now ready for execution

• The first thing I typically do is just run a function evaluation to see that 

the parameterization and all of the inputs are set correctly

• To do this, edit design.nml and set what_to_do to 1

• From the ammo directory, the command line that is used to run this case 

is

./opt_driver --sleep_delay 5

– The ‘--sleep_delay 5’ instructs the design driver to wait 5 seconds in 

between operations – allows NFS caching to keep up

– Different systems may require more time (or none)

Maximize L/D for Transonic Flow Over a Wing
Running a Function Evaluation
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• The first thing that you will see is MASSOUD evaluating the parameterization for each 

body, defining the surface grid coordinates at the baseline position

• The flow solver will then start up, but prior to the solve, you will see an auxiliary solution 

take place that represents the interior mesh movement based on the elasticity equations

– For this first step at the baseline position, you should see very small numbers for the “Natural 

Error Est” (close to machine zero): this indicates the current surface mesh is very close to the 

requested surface mesh

• After the actual flow solution takes place, the solver will evaluate each of the objective 

and constraint functions you posed:

Current value of function     1      178.087727962997

• This marks the end of a successful function evaluation

• Always wise to plot the flow solver convergence – you want to run enough iterations to 

get a “reasonable” answer (outputs resolved beyond what you are expecting from design 

changes), but you don’t necessarily need to drive it into the ground

Maximize L/D for Transonic Flow Over a Wing
Running a Function Evaluation
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[MASSOUD Screen Output]

Sleeping to allow file system time to catch up...

Executing: mpiexec nodet_mpi --animation_freq -1 --design_run --irest 0 --write_mesh inviscid

FUN3D 12.7-74063 Flow started 05/20/2015 at 14:38:54 with 24 processes

[Echo of fun3d.nml]

[Usual preprocessing info]

Using linear elasticity to reposition grid...

reading ../rubber.data ...

reading:../Rubberize/model.tec.1.sd1

Iter Natural Err Est Error Estimate      Restarts

0   0.648914658284637E-16   0.000000000000000E+00         0

Iter density_RMS density_MAX X-location   Y-location   Z-location

1  0.725550147064997E-04  0.46595E-03  0.34893E-01  0.60683E-01  0.00000E+00

Lift  0.657554528793843E-01         Drag  0.319926994134964E-01

…

74  0.207836490870309E-09  0.82846E-08  0.22500E+01  0.45000E+01  0.65000E+01

Lift  0.881383268442809E-01         Drag  0.132438291863532E-01

Writing boundary output: inviscid_tec_boundary.dat

Time step: 74, ntt: 74, Prior iterations: 0

Writing inviscid.flow (version 11.8) lmpi_io 2

inserting current history iterations 74

Time for write: .0 s

Current value of function            1   178.087727962997

writing ../rubber.data ...

global element counts below i4 limit, write as 'stream'

wrote inviscid.b8.ugrid in     0.0000

Done.

Analysis complete.

Maximize L/D for Transonic Flow Over a Wing
Running a Function Evaluation

ONERA M6 Wing:

Baseline L/D=6.7
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• Now lets test a sensitivity analysis

• Edit design.nml and set what_to_do to 2

• Submit the job just as before

• The first thing that will take place is a function evaluation, just as before

• After the function evaluation takes place, MASSOUD will fire up again to 

evaluate the linearizations of the surface mesh coordinates with respect to the 

design variables

• FUN3D’s adjoint solver will then start up:

– You will see a solution taking place; this is the flowfield adjoint

– Afterwards, you will see another solution occurring; this is the elasticity adjoint for the 

mesh

– The final step is to update the model.1/rubber.data file with the sensitivity 

information

• This marks the end of a successful sensitivity analysis

• Again, it is wise to plot the convergence of the flowfield adjoint system

– This convergence history is in the model.1/Adjoint/[project]_hist.dat file

– In general, you want 2-3 orders of magnitude convergence; this is usually sufficient 

for reasonable sensitivity information

Maximize L/D for Transonic Flow Over a Wing
Running a Gradient Evaluation
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[Function Evaluation]

[MASSOUD Screen Output]

Sleeping to allow file system time to catch up...

Executing: mpiexec dual_mpi --rmstol 1.e-3 --getgrad --irest 0 --force_stream_file

FUN3D 12.7-74063 Adjoint started 05/20/2015 at 14:44:00 with 24 processes

[Echo of fun3d.nml]

[Usual preprocessing info]

Iter adjoint RMS  adjoint MAX   X location   Y location   Z location

1  0.707037901636711E+00  0.30235E+01  0.57720E+00  0.95000E+00  0.13288E-01

2  0.221413741319278E+02  0.77671E+03  0.22500E+01  0.45000E+01  0.65000E+01

3  0.252132505507981E+02  0.85665E+03  0.22500E+01  0.45000E+01  0.65000E+01

…

79  0.108404219416308E-02  0.48685E-01  0.20671E+00  0.43560E+01  0.19196E+01

80  0.961305851711102E-03  0.43086E-01  0.20671E+00  0.43560E+01  0.19196E+01

Performing linear elasticity adjoint...

reading ../rubber.data ...

Using defaults for move_relaxation.schedule.

Boundary 1 allowed to deform with y=constant constraint

Iter Natural Err Est Error Estimate      Restarts

0   0.540562915758561E+04   0.100000000000000E+01         0

1   0.351062487957891E+02   0.649438719756149E-02         0

11   0.426070657988252E-02   0.788198090485649E-06         0

writing ../rubber.data ...

Done.

Sensitivity analysis complete.

Maximize L/D for Transonic Flow Over a Wing
Running a Gradient Evaluation
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• If you got this far, things are looking pretty good – we’ve checked that everything is set up 

to run functions and gradients correctly, which is all the optimizer depends on

• Now we’re ready to try an actual optimization

– Edit design.nml and set what_to_do to 3; submit the job like usual

• Now you will see a lot of function and gradient evaluations going by, as the optimizer 

starts to change design variables and search for an optimum solution

• One easy way to monitor progress is to grep your screen output:

– ‘grep “Current value” screen.output’:
Current value of function            1   178.087727962997     

Current value of function            1   137.781363854615     

Current value of function            1   109.428434387371     

Current value of function            1   95.6295324769749     

Current value of function            1   98.1556907116245     

Current value of function            1   90.6778940684516     

Current value of function            1   90.5396512437177     

Current value of function            1   87.6654699895390     

Current value of function            1   87.6871503037963     

Current value of function            1   87.1318763195701     

Current value of function            1   86.8957999910668     

Current value of function            1   87.3525539085617     

Current value of function            1   86.5144811775675     

Current value of function            1   86.8116026938974     

Current value of function            1   86.2791203108911     

Current value of function            1   86.2399423689607     

Current value of function            1   86.2399415584093 

• You can also observe (but don’t change!) the file model.1/rubber.data

Maximize L/D for Transonic Flow Over a Wing
Running the Optimization
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• After the job finishes, PORT will summarize its performance in the file 
model.1/port.output

• Since each solution is a warm start, you can plot the entire flow solution history contained 
in model.1/Flow/[project]_hist.dat

• A history of the surface geometry is stored in 
model.1/Rubberize/surface_history/model.tec.1.sd1.iteration.*

Redesigned Wing:

L/D=10.7

Maximize L/D for Transonic Flow Over a Wing
Post Mortem
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• The procedure can terminate due to CFD-related problems:

– Running into negative volumes during a mesh movement (you can plot the 

history of the surface(s) using the files in model.1/Rubberize/surface_history)

• Watch for invalid surfaces or unusually large changes

• Be conservative in your lower/upper bounds!

– The flowfield or the adjoint solution is unstable

• Problem-dependent; get in touch for advice

• The procedure can also terminate due to hardware/environment 

problems

– You run out of allocated time, a node dies, etc.

• Finally, the procedure can terminate if the optimizer has given up:

– No more progress can be made due to constraints

– The optimizer has hit the max number of functions/gradients you allowed

– An optimal solution has been found

What Could Possibly Go Wrong?
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List of Key Input/Output Files

Input

• In description.i directory:

– All files necessary to run solutions for ith design point (grid files, 

fun3d.nml, etc)

– All parameterization files for ith parameterized body

– command_line.options

– rubber.data

• ammo/design.nml

Output

• All files normally associated with running the solver

• rubber.data

• port.output

• Design history in model.1/Rubberize/surface_history

37
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• That’s more or less the basic pieces involved with running an optimization

• Lots of options we did not cover here; see manual or get in touch for help

– How the wrappers work (LibF90/analysis.f90, LibF90/sensitivity.f90)

– Parameterizations other than MASSOUD

– Multipoint/multiobjective (tutorial on website)

– Constrained problems (tutorial on website)

– Running with other optimization packages (tutorial on website)

– Body grouping, spatial transforms

– Archiving files during optimization

– Overset grids

– Forward-mode sensitivity analysis using complex variables

– Unsteady design (later session)

General Advice

• Become very comfortable with the flow solver

• Work the tutorials

• Learn how to set up parameterizations using MASSOUD and/or bandaids

• Try plugging in your own grids/parameterizations in the tutorials

• Ask questions – it’s actually not that bad once you get up the learning curve

Summary of Design Optimization for Steady Flows
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What We Learned
• General approach used by FUN3D for design optimization

• What is an adjoint

• What does a function/gradient evaluation consist of in terms of CFD

• Design variables in FUN3D

• Functions/constraints in FUN3D

• What is required of a geometry parameterization tool

• How to set up the inputs required for design optimization

• How to run function, gradient evaluations

• How to perform a basic design optimization

• What to watch out for and how to interpret results

39
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Estimation and Mesh Adaptation
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Learning Goals

• Background on adaptation

• Manual step-by-step output adaptation cycle

• Describe the scripts that automate this process

FUN3D Training Workshop 

June 20-21, 2015 
2
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Available Adaptation Modes

• Split into error-estimation/metric construction and adaptive 

mechanics

• Output-based adaptation for capabilities with an adjoint

• Local-error or feature-based adaptation for other flow solver 

capabilities

• Anisotropic metric-based triangular and tetrahedral grid adaptation 

with a frozen mixed element boundary layer that can be subdivided

• Experimental grid adaptation for time accurate simulations

• Controlled with the &adapt_mechanics and 

&adapt_metric_construction namelists

• See FUN3D user manual grid adaptation overview section and 

complete namelist description 

FUN3D Training Workshop 

June 20-21, 2015 
3
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Output-Based Adaptation

• Mathematically rigorous approach involving the adjoint solution that 

reduces estimated error in an engineering output

• Uniformly reducing discretization error is not ideal from an 

engineering standpoint - some errors are more important to outputs

FUN3D Training Workshop 

June 20-21, 2015 
4

Adapted for Drag Adapted for Shock Propagation
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Shock Propagation Example

• Adaptation is targeted to improve off-body pressure integral output 

for diamond airfoil

FUN3D Training Workshop 

June 20-21, 2015 
5

Pressure Integral

Mach Number Density Adjoint

Diamond Airfoil

http://fun3d.larc.nasa.gov

Local Error and Output Adaptation

Local error based

• Feature based adaptation

• Flow solver/physics agnostic

• Not as robust

• Requires more manual 

interaction

Output (adjoint) based

• Requires adjoint solution

• More robust

• Transport of errors

• Fewer user controlled 

parameters

FUN3D Training Workshop 

June 20-21, 2015 
6
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Adaptation Process

Local error based Output (adjoint) based

FUN3D Training Workshop 

June 20-21, 2015 
7

Flow Solver

Adjoint Solver

Adaptation Metric

Grid Adaptation

Flow Solver

Adaptation Metric

Grid Adaptation

http://fun3d.larc.nasa.gov

Metric Adaptation Mechanics

• Parallel node insertion, node movement, element collapse, and 

element swap to iteratively drive mesh to satisfy an anisotropic 

metric M

FUN3D Training Workshop 

June 20-21, 2015 
8

x M =

x M =
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Metric

• Eigenvalue decomposition of the metric reveals a spacing request in 

a rotated orthogonal basis 

FUN3D Training Workshop 

June 20-21, 2015 
9
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Metric

• Many methods are available in literature to construct the metric

• Most commonly used methods in FUN3D are based on a 
reconstructed Hessian (adapt_hessian_method) of a scalar 

(adapt_hessian_key), i.e. Mach number

FUN3D Training Workshop 

June 20-21, 2015 
10
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Metric Adaptation Mechanics

• Selectable with adapt_library in &adapt_mechanics or driven 
with scripts

• FUN3D is distributed with

– refine/one (mature, development stopped)

– refine/two (immature, under development, 2D, mixed elements)

• FUN3D can interact with external tools

– BAMG (Bidimensional Anisotropic Mesh Generator)

– Felflo.a (Loseille, INRIA)

• FUN3D has also been used with in-house proprietary tools by 

customers

FUN3D Training Workshop 

June 20-21, 2015 
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Venditti Adaptation Metric

FUN3D Training Workshop 

June 20-21, 2015

• Default option of adapt_error_estimation in 

&adapt_metric_construction

• Output-based size specification scales the stretching and orientation 

of the Mach Hessian grid metric (Venditti and Darmofal)
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Venditti Adaptation Metric

FUN3D Training Workshop 

June 20-21, 2015

• Output-based size specification scales the stretching and orientation 

of the Mach Hessian grid metric (Venditti and Darmofal)

• This error is typically evaluated on an embedded grid (with a large 

memory requirement) with an interpolated solution 
adapt_error_estimation=‘embed’

• adapt_error_estimation=‘single’ is an single grid heuristic

http://fun3d.larc.nasa.gov

INRIA Optimal Goal-Based Metric

FUN3D Training Workshop 

June 20-21, 2015

• Only implemented for Euler equations

• Adjoint gradient weighted Hessian of the flux

• No explicit dependence on the current grid

• adapt_error_estimation=‘opt-goal’

• See Loseille, Dervieux, and Alauzet JCP 2010 DOI:0.1016/j.jcp.2009.12.021 
for details
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Feature Local-Error Metric

• Implemented in the Venditti framework where the nodal error 

estimate is replaced with a function of a solution scalar

– adapt_feature_scalar_key

– adapt_feature_scalar_form

• See Bibb, et al. AIAA-2006-3679 for details and Shenoy, Smith, Park 

AIAAJA 2014 DOI:10.2514/1.C032195 for a recent application

FUN3D Training Workshop 

June 20-21, 2015 
15
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Cases

• Single output-based cycle performed manually on a supersonic flat 

plate 

• Semi-automatic feature-based adaptation to supersonic ramp

• Fully scripted diamond airfoil drag adaptation in supersonic flow

FUN3D Training Workshop 

June 20-21, 2015 
16
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Supersonic Flat Plate

• Mach 2, 1,000,000 Reynolds number, Spalart-Allmaras turbulence 

model

FUN3D Training Workshop 

June 20-21, 2015 
17
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Initial Flow Solution

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
18

&project

project_rootname = "box01"

/

&raw_grid

grid_format = "fast"

data_format = 'ASCII'

/

&reference_physical_properties

mach_number = 2.0

reynolds_number = 1.0e+6

/
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Initial Flow Solution

• Initial fun3d.nml solver parameters

FUN3D Training Workshop 

June 20-21, 2015 
19

&nonlinear_solver_parameters

schedule_iteration = 1    50

schedule_cfl = 1.0  200.0

schedule_cflturb = 1.0   10.0

/

&linear_solver_parameters

linear_projection = .true.

meanflow_sweeps = 5

turbulence_sweeps = 5

/

&code_run_control

steps              = 1000

stopping_tolerance = 1.0e-13

restart_read = "off"

/

Convergence of all 
residuals is critical!

Linear system Krylov
projection

http://fun3d.larc.nasa.gov

Initial Flow Solution

• Initial fun3d.nml co-visualization

FUN3D Training Workshop 

June 20-21, 2015 
20

&global

boundary_animation_freq = -1

/

&boundary_output_variables

number_of_boundaries = -1 ! compute from list

boundary_list = '1-7'

mu_t = .true.

/
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Initial Flow Solution

• Initial fun3d.nml co-visualization

FUN3D Training Workshop 

June 20-21, 2015 
21

&sampling_parameters

number_of_geometries = 2

sampling_frequency(1) = -1

type_of_geometry(1) = 'plane'

plane_center(:,1) = 0.0, 0.05, 0.0

plane_normal(:,1) = 0.0, 1.0,  0.0

sampling_frequency(2) = -1

type_of_geometry(2) = 'plane'

plane_center(:,2) = 1.0, 0.0, 0.0

plane_normal(:,2) = 1.0, 0.0, 0.0

/

http://fun3d.larc.nasa.gov

Initial Flow Solution

• Follow the design directory layout convention

• Grid and fun3d.nml should be in a directory named Flow

FUN3D Training Workshop 

June 20-21, 2015 
22

$ cd Flow

$ mpirun -np 8 nodet_mpi
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Initial Flow Solution

• Flow solver (primal) convergence history

FUN3D Training Workshop 

June 20-21, 2015 
23
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Initial Adjoint Solution

• Adjoint function is defined in rubber.data

– Only need to set the cost function, the other design inputs no 

used

• This is a integral of pressure along a line

– Target off-body pressures required for sonic boom prediction

FUN3D Training Workshop 

June 20-21, 2015 
24

...

Components of func 1: boundary id (0=all)/name/value/weight/target/power

0 boom_targ 0.000000000000000    1.0    0.00000 1.000

...
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Initial Adjoint Solution

• The boom_targ function requires an additional namelist in 
fun3d.nml

FUN3D Training Workshop 

June 20-21, 2015 
25

&sonic_boom

x_lower_bound =  0.0

x_upper_bound =  1.0

nsignals = 1

y_ray(1) =  0.05

z_ray(1) =  0.1

/

http://fun3d.larc.nasa.gov

Initial Adjoint Solution

• Initial fun3d.nml adjoint solver parameters

FUN3D Training Workshop 

June 20-21, 2015 
26

&code_run_control

steps              = 200

stopping_tolerance = 1.0e-13

restart_read = "off"

/

Typically run less adjoint
iterations
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Initial Adjoint Solution

• Follow the design directory layout convention

• Grid and fun3d.nml should be in a directory named Flow

• The file rubber.data should be in the directory above 

• Adjoint solver should be run in a directory named Adjoint

FUN3D Training Workshop 

June 20-21, 2015 
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$ cd Adjoint

$ mpirun -np 8 dual_mpi --outer_loop_krylov

http://fun3d.larc.nasa.gov

Initial Adjoint Solution

• Adjoint solver (dual) convergence history

FUN3D Training Workshop 

June 20-21, 2015 
28
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Output-Based Adaptation

• Output-based adaptation fun3d.nml parameters

FUN3D Training Workshop 

June 20-21, 2015 
29

&adapt_mechanics

adapt_project = 'box02'

adapt_freezebl = 0.001

/

New project name

Frozen boundary layer

Original Grid

Frozen Grid

Adapted Grid

http://fun3d.larc.nasa.gov

Output-Based Adaptation

• Planar geometry is specified to refine/one with faux_geom

• Place in the same directory that the adaptation is executed 
(Adjoint)

FUN3D Training Workshop 

June 20-21, 2015 
30

7

1 xplane -1.0000000000000000

2 xplane 2.0000000000000000

3 yplane 0.0000000000000000

4 yplane 0.1000000000000000

5 zplane 0.0000000000000000

6 zplane 0.0000000000000000

7 zplane 0.8813629407814508

Each plane with normal 
and position

Number of planes
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Initial Adjoint Solution

• Follow the design directory layout convention

• Grid and fun3d.nml should be in a directory named Flow

• The file rubber.data should be in the directory above 

• Adjoint grid adaptation should be run in a directory named Adjoint

FUN3D Training Workshop 

June 20-21, 2015 
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$ cd Adjoint

$ mpirun -np 8 dual_mpi --rad --adapt

--rad = Residual Adjoint Dot-product

--adapt = Activates grid adaptation

http://fun3d.larc.nasa.gov

Adapted Flow Solution

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
32

&project

project_rootname = "box02"

/

&raw_grid

grid_format = "aflr3"

data_format = 'stream'

/

&code_run_control

steps              = 1000

stopping_tolerance = 1.0e-13

restart_read = "on"

/

New project name

New grids are always 
AFLR3 (ugrid) stream 
format

The solution is 
interpolated
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Adapted Flow Solution

• Follow the design directory layout convention

• Grid and fun3d.nml should be in a directory named Flow

FUN3D Training Workshop 

June 20-21, 2015 
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$ cd Flow

$ mpirun -np 8 nodet_mpi

http://fun3d.larc.nasa.gov

Adapted Flow Solution

• Flow solver (primal) convergence history

FUN3D Training Workshop 

June 20-21, 2015 
34
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Adapted and Original Flat Plate Grid

FUN3D Training Workshop 

June 20-21, 2015 
35
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Supersonic Ramp Feature Adaptation

• Mach 2.5, inviscid flow

FUN3D Training Workshop 

June 20-21, 2015 
36
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Initial Flow Solution

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
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&project

project_rootname = 'ramp00'

/

&raw_grid

grid_format = 'aflr3'

data_format = 'stream'

/

&governing_equations

viscous_terms = 'inviscid'

/

&reference_physical_properties

mach_number = 2.5

/

http://fun3d.larc.nasa.gov

Initial Flow Solution

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
38

&inviscid_flux_method

first_order_iterations = 10000

flux_construction = 'vanleer'

/

&nonlinear_solver_parameters

schedule_iteration =    1    20

schedule_cfl = 10.0 1000.0

/

First-order and large CFL for 
demonstration, use second 
order with frozen limiter in 
practice
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Initial Flow Solution

• Grid and fun3d.nml should be in the current directory

FUN3D Training Workshop 

June 20-21, 2015 
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$ cd Flow

$ mpirun -np 8 nodet_mpi --irest 0

--rest 0 turns off restart for the initial grid

http://fun3d.larc.nasa.gov

Feature-Based Adaptation

• Output-based adaptation fun3d.nml parameters

FUN3D Training Workshop 

June 20-21, 2015 
40

&adapt_mechanics

adapt_project = 'ramp01'

adapt_cycles = 10

/

&adapt_metric_construction

adapt_feature_scalar_key = 'mach'

adapt_feature_scalar_form = 'delta-l'

adapt_output_tolerance = 0.05

adapt_min_edge_length = 0.01

adapt_max_anisotropy = 1.0

/

New project name

Passes for grid mechanics 

Isotropic

Target shocks and 
expansions



6/5/2015

21

http://fun3d.larc.nasa.gov

Feature-Based Adaptation

• Planar geometry is specified to refine/one with faux_geom

• Place in the same directory that the adaptation is executed

FUN3D Training Workshop 

June 20-21, 2015 
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8

1  zplane 0.0

2  zplane 2.0

3  yplane 0.0

4  xplane -2.0

5  yplane 0.5

6  xplane 3.0

7  general_plane 0.0

-0.5 0.0 1.0

8  zplane 0.5

Each plane with normal 
and position

Number of planes

http://fun3d.larc.nasa.gov

Feature-Based Adaptation

• Grid, fun3d.nml, and restart should be in the current directory

FUN3D Training Workshop 

June 20-21, 2015 
42

$ mpirun -np 8 nodet_mpi --adapt

--adaptuse adaptation mechanics
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Scripting it

• Unix bash and sed are your friends

• Create fun3d.nml files ahead of time

FUN3D Training Workshop 

June 20-21, 2015 
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#! /bin/bash

cp -f fun3d.nml-00 fun3d.nml

mpirun -np 8 nodet_mpi --irest 0

for i in {1..5} ; do

mpirun -np 8 nodet_mpi --adapt

cp -f fun3d.nml-0${i} fun3d.nml

mpirun -np 8 nodet_mpi

done

Adapt and flow solve on 
new grid

Initial solution

http://fun3d.larc.nasa.gov

Adapted and Original Grid and Mach Number

FUN3D Training Workshop 

June 20-21, 2015 
44
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F3D script

• Domain specific language written in Ruby

• Simple syntax for driving adaptation with the power of a scripting 

language if needed

• Input file case_specifics is scanned for updates during 

adaptation allowing for computational steering

• All input files are expected to be in the current directory and are also 

scanned for updates

– Files are copied to Flow and Adjoint as needed

• Can generate rubber.data with $ f3d function cd

• Subcommands to start, stop, and examine adaptation in progress

• Discussed in Grid Adaptation section of the user manual

FUN3D Training Workshop 

June 20-21, 2015 
45
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Drag-Adapted Diamond Airfoil

• Mach 2.0, inviscid flow, extremely coarse initial BAMG grid

FUN3D Training Workshop 

June 20-21, 2015 
46
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F3D input case_specifics example

• Keyword value pairs to add command line options, adjust namelist

settings, and specify outer adaptation cycle iterations

FUN3D Training Workshop 

June 20-21, 2015 
47

root_project 'diamond'

number_of_processors 8

adj_cl " --outer_loop_krylov "

rad_nl["adapt_complexity"] = 200*(1.5**iteration)

all_nl['data_format']="'stream'" if (iteration>1)

first_iteration 1

last_iteration 10

http://fun3d.larc.nasa.gov

Namelist Setup

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
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&project

project_rootname = 'diamond01'

/

&raw_grid

grid_format = 'aflr3'

data_format = 'ascii'

/

&code_run_control

steps              = 500

stopping_tolerance = 1.0e-11

restart_read = 'off'

/
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Namelist Setup

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
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&inviscid_flux_method

kappa_umuscl = 0

flux_limiter = 'hvanalbada'

freeze_limiter_iteration = 100

flux_construction = 'vanleer'

/

http://fun3d.larc.nasa.gov

Namelist Setup

• Initial fun3d.nml grid and flow conditions

FUN3D Training Workshop 

June 20-21, 2015 
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&adapt_mechanics

adapt_library = 'refine/two'

adapt_project = 'diamond02'

/

&adapt_metric_construction

adapt_hessian_method = 'grad'

adapt_hessian_average_on_bound = .true.

adapt_twod = .true.

adapt_statistics = 'average'

adapt_max_anisotropy = 10.0

adapt_complexity = 1000

adapt_gradation = 1.5

adapt_current_h_method = 'implied'

/

refine version 2 
mechanics
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F3D script

• Run with no subcommands for help

FUN3D Training Workshop 

June 20-21, 2015 
51

$ f3d

usage: f3d <command>

<command>       description

--------- -----------

start           Start adaptation

view            Echo a single snapshot of stdout

watch           Watch the result of view

shutdown        Kill all running fun3d and ruby processes

clean           Remove output and sub directories

function [name] write rubber.data with cost function [name]

http://fun3d.larc.nasa.gov

F3D script

• To begin and watch progress

FUN3D Training Workshop 

June 20-21, 2015 
52

$ f3d start

$ f3d watch
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F3D script

• Copies fun3d.nml into Flow directory and modifies it to set 

project_rootname, restart_read, and other options with the 

nl_flo, nl_adj, nl_rad hashes

• Backup copies of fun3d.nml are saved as 

[project]_flow_fun3d.nml, [project]_dual_fun3d.nml, 

and [project]_rad_fun3d.nml

• Backup copies of standard screen output are are saved as 
[project]_flow_out, [project]_dual_out, and 
[project]_rad_out

FUN3D Training Workshop 

June 20-21, 2015 
53

http://fun3d.larc.nasa.gov

Drag-Adapted Diamond Airfoil

FUN3D Training Workshop 

June 20-21, 2015 
54
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Drag-Adapted Diamond Airfoil

• Mach 2.0, inviscid flow

FUN3D Training Workshop 

June 20-21, 2015 
55
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Running with PBS

• Creates and submits a PBS batch script

FUN3D Training Workshop 

June 20-21, 2015 
56

$ pbswrap

Usage: pbswrap [OPTION]... [COMMAND]

required:

-cpn P  there are P cores per node

-t   H  walltime limit of H hours

-np C  run on C cores (-np and -n are exclusive)

-n   N  run on N nodes (-np and -n are exclusive)

optional:

-q   Q  submit to queue Q otherwise try system default

-a   A  charge job to account A

-m   M  use cpu model M

-b      block the pbs submission
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Running with PBS

• Example usage in case_specifics

• Generates a pbs job with xMoDaHrMnS.pbs

– Month, Day, Hour, Min, tens of Sec.

• Output written to file named xMoDaHrMnS

FUN3D Training Workshop 

June 20-21, 2015 
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mpirun_command 'pbswrap -b -q K3-standard -cpn 16 -t 1'

http://fun3d.larc.nasa.gov

What Can Go Wrong?

• Flow solver did not produce a project.forces file on completion

– Indicate a setup problem (first iteration)

– Previous grid adaptation failed (error estimation, grid mechanics)

– Flow solver crashed or diverged

• Examine flow_out for more details

FUN3D Training Workshop 

June 20-21, 2015 
58

/u/mpark/fun3d/opt/bin/f3d:149:in ̀ readlines': No such file or 

directory - Flow/diamond07.forces (Errno::ENOENT)

from /u/mpark/fun3d/opt/bin/f3d:149:in ̀ read_forces'

from /u/mpark/fun3d/opt/bin/f3d:121:in ̀ flo'

from /u/mpark/fun3d/opt/bin/f3d:224:in ̀ iteration_steps'

from /u/mpark/fun3d/opt/bin/f3d:233:in ̀ iterate'

from /u/mpark/fun3d/opt/bin/f3d:310



6/5/2015

30

http://fun3d.larc.nasa.gov

What Can Go Wrong?

• Adjoint solver setup (particularly rubber.data)

FUN3D Training Workshop 

June 20-21, 2015 
59

http://fun3d.larc.nasa.gov

Evolving Process

• AVIATION paper for status

– Session: CFD-03, Meshing Techniques I, Monday, June 22, 2015 

from 9:00 AM to 12:30

• Things learned will be shift to default options

• Continuing development of refine grid mechanics

• Implementation of error estimation technics

FUN3D Training Workshop 

June 20-21, 2015 
60
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Session 11: 
Time-Dependent Simulations 

http://fun3d.larc.nasa.gov 

Session Scope 
•  What this will cover 

–  How to set up and run time-accurate simulations on static meshes 
•  Subiteration convergence: what to strive for and why 
•  Nondimensionalization 
•  Choosing the time step 
•  Input / Output 

•  What will not be covered 
–  Moving-mesh, aeroelastics (covered in follow-on sessions) 

•  What should you already be familiar with 
–  Basic steady-state solver operation and control 
–   Basic flow visualization 

FUN3D Training Workshop 
June 20-21, 2015  2 
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Introduction 
•  Background  

–  Many of problems of interest involve unsteady flows and may also 
involve moving geometries 

–  Governing equations written in Arbitrary Lagrangian-Eulerian 
(ALE) form to account for grid speed  

–  Nondimensionalization often more involved/confusing/critical 
•  Compatibility 

–  Compressible/incompressible paths 
–  Mixed elements; 2D/3D 
–  Dynamic grids 
–  Not compatible with generic gas model 

•  Status 
–  Incompressible path exercised very infrequently for unsteady flows 

FUN3D Training Workshop 
June 20-21, 2015  3 

http://fun3d.larc.nasa.gov 

Governing Equations 
•  Arbitrary Lagrangian-Eulerian (ALE) Formulation 

 

              Arbitrary control surface velocity; Lagrangian if 
     (moves with fluid); Eulerian if              (fixed in space) 
•  Discretize using Nth order backward differences in time, linearize  

about time level n+1, and introduce a pseudo-time term: 

 

•  Physical time-level      ;  Pseudo-time level 
•  Want to drive subiteration residual                     using pseudo-time 

subiterations at each time step – more later – otherwise you have 
more error than the expected             truncation error 
 FUN3D Training Workshop 

June 20-21, 2015  4 
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Time Advancement - Namelist Input  
•  The &nonlinear_solver_parameters namelist in the fun3d.nml 

file governs how the solution is advanced in time 
•  Relevant entries - default values shown - some definitely need changing: 
&nonlinear_solver_parameters 
  time_accuracy        = ’steady’ (i.e. not time accurate) 
  time_step_nondim     = 0.0 
  subiterations        = 0 
  schedule_iteration   = 1     50 
  schedule_cfl         = 200.0 200.0 
  schedule_cflturb     = 50.0  50.0 
  pseudo_time_stepping = “on” 
  temporal_err_control = .false. 
  temporal_err_floor   =  0.1   
/ 

•  Let’s look at these in some detail (defer time_step_nondim to last)  
FUN3D Training Workshop 

June 20-21, 2015  5 
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Time Advancement - Order of Accuracy  
•  Currently have several types of backward difference formulae (BDF) that 

are controlled by the time_accuracy component:  

–  In order of formal accuracy: BDF1 (1storder), BDF2 (2ndorder), 
BDF2OPT (2ndorderOPT), BDF3 (3rdorder),                             
MEBDF4 (4thorderMEBDF4) 

–  Can pretty much ignore all but BDF2OPT and BDF2 

•  BDF1 is least accurate; little gain in CPU time / step over 2nd order; 
for moving grids can be helpful to start out with BDF1 (rare) 

•  BDF3 not guaranteed to be stable; feeling lucky? 

•  MEBDF4 only efficient if working to very high levels of accuracy - 
including spatial accuracy - generally not for practical problems 

•  BDF2OPT (recommended) is a stable blend of BDF2 and BDF3 
schemes; formally 2nd order accurate but error is ~1/2 that of BDF2; 
also allows for a more accurate estimate of the temporal error for the 
error controller (p.8)  

FUN3D Training Workshop 
June 20-21, 2015  6 
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Time Advancement - Subiterations (1/4)  
•  Can think of each time step as a mini steady-state problem  
•  Subiterations (subiterations > 0) are essential  

–  Subiteration control in each time step operates exactly like iteration 
control in a steady state case:   
•  CFL ramping is available for mean flow and turbulence model – 

however, be aware that ramping schedule should be                          
< subiterations or the specified final CFL won’t be obtained 
- We almost never ramp CFL for time-accurate cases 
- If used, CFL ramping starts over each time step 

•  Caution: the spatial accuracy flag,  first_order_iterations, 
starts over each time step, so make sure you don’t have this on 

•  Pseudo-time term helpful for large time steps 
-  We always use it in our applications 
-  pseudo_time_stepping = “on” (default)!

FUN3D Training Workshop 
June 20-21, 2015  7 
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Time Advancement - Subiterations (2/4)  
•  How many subiterations? 

–  In theory, should drive subiteration residual “to zero” each time step – 
but you cannot afford to do that 

–  Otherwise have additional errors other than              (if 2nd order time) 
•  In a perfect world, the answer is to use the temporal error controller 
-  temporal_err_control = .true. !
-  temporal_err_floor = 0.1  => iterate until the subiteration 

residual is 1 order lower than the (estimated) temporal error (0.01 => 2) 
-  Subiterations kick out when this level of convergence is reached OR 

subiteration counter > subiterations 
-  (empirically) 1 order is about the minimum; 2 orders is better, BUT… 
-  Often, either the turbulence residual converges slowly or the mean flow 

does, and the max subiterations you specify will be reached 
-  When it kicks in, the temporal error controller is the best approach, and 

the most efficient; even if it doesn’t kick in, it can be informative 
FUN3D Training Workshop 

June 20-21, 2015  8 
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Time Advancement - Subiterations (3/4)  
•  Be wary reaching conclusions about the effect of time-step refinement 

unless the subiterations are “sufficiently” converged for each size step 
•  How to monitor and assess the subiteration convergence:!

–  Printed to the screen, so you can “eyeball” it 
–  With temporal error controller, if the requested tolerance is not met, 

message(s) will be output to the screen:!
•  WARNING: mean flow subiterations failed to converge 
to specified temporal_err_floor level 

•  WARNING: turb flow subiterations failed to converge 
to specified temporal_err_floor level 

•  Note: when starting unsteady mode, first timestep never achieves 
target error (no error estimate first step, so target is 0) 

•   Note: x-momentum residual (R_2) is the mean-flow residual targeted 
by the error controller 

–  Plot it (usually best) 
FUN3D Training Workshop 

June 20-21, 2015  9 
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Time Advancement - Subiterations (4/4)  

FUN3D Training Workshop 
June 20-21, 2015  10 

All Time Steps Final Few Time Steps 

•  Tecplot file (ASCII) with subiteration convergence history is output to a file:       
[project]_subhist.dat!

-  Plot (on log scale) R_2 (etc) vs Fractional_Time_Step 

-  Also contains Cl, Cd, Cm to assess force convergence in a time step 
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Nondimensionalization of Time  
•  Notation: * indicates a dimensional variable, otherwise nondimensional; 

the reference flow state is usually free stream (“    “), but need not be 
•  Define:     

–  L*ref = reference length of the physical problem (e.g. chord in ft) 
–  Lref   = corresponding length in your grid (considered nondimensional) 
–  a*ref = reference speed of sound (e.g. ft/sec) (compressible) 
–  U*ref = reference velocity (e.g. ft/sec; compressible: U*ref = Mach a*ref) 
–  t*     = time (e.g. sec) 

•  Then nondimensional time in FUN3D is related to physical time by:!
–  t = t* a*ref (Lref/L*ref)   (compressible) 
–  t = t* U*ref (Lref/L*ref)  (incompressible) 

–  Usually have  Lref/L*ref = 1*, but need not - e.g. typical 2D airfoil grid 

–  Lref/L*ref  appears because Re in FUN3D is input per unit grid length                            

FUN3D Training Workshop 
June 20-21, 2015  11 
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Determining the Time Step 
•  Identify a characteristic time t*chr that you need to resolve with some 

level of accuracy in your simulation; perhaps:     
–  Some important shedding frequency f*shed (Hz) is known or estimated 

t*chr ~ 1 / f*shed 

–  Periodic motion of the body t*chr ~ 1 / f*motion 
–   A range of frequencies in a DES-type simulation t*chr ~ 1 / f*highest 
–  If none of the above, you can estimate the time it takes for a fluid 

particle to cross the characteristic length of the body, t*chr ~ L*ref /U*ref 

–  tchr = t*chr a*ref (Lref/L*ref)  (comp)      tchr = t*chr U*ref (Lref/L*ref)  (incomp) 

•   Say you want N time steps within the characteristic time:!
–    t = tchr / N  = time_step_nondim  

•  Figure an absolute minimum of N = 100 for reasonable resolution of tchr 
with a 2nd order scheme - really problem dependent (frequencies > f* may 
be important); but don’t over resolve time if space is not well resolved too 
! FUN3D Training Workshop 
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€ 

Δ



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   7	
  

http://fun3d.larc.nasa.gov 

Tutorial Case: Unsteady Flow, High AoA (1/7) 
•  Test case located in: tutorials/flow_unsteady_airfoil_high_AoA 
-  run_tutorial.sh script starts with a 2000 time step restart file, runs 

an additional 100 steps, and makes plots that follow 
•  Consider flow past a (2D) NACA 0012 airfoil at 45o angle of attack - the 

flow separates and is unsteady  
–  Rec* = 4.8 million,  Mref = 0.6,   assume a*ref = 340 m/s 
–  chord = 0.1m,  chord-in-grid = 1.0  so Lref/L*ref = 1.0/0.1  = 10 (m-1) 
–  Say we know from experiment that lift oscillations occur at ~450 Hz 
–  t*chr = 1 / f*chr = 1 / 450 Hz = 0.002222 s 
–  tchr = t*chr a*ref (Lref/L*ref) = (0.002222)(340)(10) = 7.555!
–     t = tchr / N     so      t = 0.07555 for 100 steps / lift cycle 
–  By way of comparison, for M = 0.6, a*ref = 340 m/s, and L*ref = 0.1 m    

it takes a fluid particle ~ (0.1)/(204) = 0.00049 s to pass by the airfoil; 
this leads to smaller, more conservative estimate for the time step, by 
about a factor of 4 

!
FUN3D Training Workshop 
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Tutorial Case: Unsteady Flow, High AoA (2/7) 

FUN3D Training Workshop 
June 20-21, 2015  14 
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Tutorial Case: Unsteady Flow, High AoA (3/7) 
•  Flow viz: output u-velocity and y-component of vorticity 
•  Relevant fun3d.nml namelist data (note: many defaults assumed)!

 &project 
    project_rootname = "n0012_i153" 
    case_title = "NACA 0012 airfoil, 2D Hex Mesh" 
 / 
 &global 
    boundary_animation_freq = 5 
 / 

 &raw_grid 
     grid_format = "aflr3" 
     data_format = “ASCII” 
     twod_mode   = .true. 
 / 
 &reference_physical_properties 
    mach_number       = 0.60 
    reynolds_number   = 4800000.00 
    temperature       = 520.00 
    temperature_units = ‘Rankine’ 
    angle_of_attack   = 45.0 
 / 
 !

!

!
FUN3D Training Workshop 
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Tutorial Case: Unsteady Flow, High AoA (4/7) 
•  Relevant fun3d.nml namelist data (cont)!

&force_moment_integ_properties 
    x_moment_center = 0.25 
 / 
&nonlinear_solver_parameters 
    time_accuracy        = "2ndorderOPT” ! Our Workhorse Scheme 
    time_step_nondim     = 0.07555       ! 100 steps/cycle @ 450 Hz 
    temporal_err_control = .true.        ! Enable error-based kickout 
    temporal_err_floor   = 0.1           ! Exit 1 order below error estimate 
    subiterations        = 30            ! No more than 30 
    schedule_cfl         = 50.00 50.00 ! constant cfl each step; no ramping 
    schedule_cflturb     = 30.00 30.00 
 / 

&code_run_control 
    steps        = 100  ! need ~2000 steps to be periodic from freestream 

    / 

    &boundary_output_variables 
      primitive_variables = .false. ! turn off default 
      y = .false.     ! So tecplot displays correct 2D orientation by default 
      u = .true. 
      vort_y = .true.   
    / 

!
!

FUN3D Training Workshop 
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Tutorial Case: Unsteady Flow, High AoA (5/7)  

FUN3D Training Workshop 
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Tutorial Case: Unsteady Flow, High AoA (6/7)  
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Subiteration Residuals, Final 10 Steps Subiteration Lift & PM, Final 10 Steps 

•  Subiterations converge? grep “WARNING” screen_output | wc 
-  In this case, all steps converge to the specified tolerance 
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Tutorial Case: Unsteady Flow, High AoA (7/7) 
•  Animation of Results 
!
!
!
!
!
!
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List of Key Input/Output Files 
•  Beyond basics like fun3d.nml, etc.: 
•  Input 

–   none 
•  Output 

–  [project]_subhist.dat 
–  Use to check subiteration residual and force/moment convergence 

FUN3D Training Workshop 
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Dynamic-Grid Simulations 
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Session Scope 
•  What this will cover 

–  How to set up and run time-accurate simulations on dynamic meshes 
•  Nondimensionalization 
•  Choosing the time step 
•  Body / Mesh motion options 
•  Input / Output 

•  What will not be covered 
–  Specifics for overset and aeroelastic: covered in follow-on sessions 

•  What should you already be familiar with 
–  Basic steady-state solver operation and control 
–   Basic flow visualization 

FUN3D Training Workshop 
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Introduction 
•  Background  

–  Many of problems of interest involve involve moving or deforming 
geometries 

–  Governing equations written in Arbitrary Lagrangian-Eulerian 
(ALE) form to account for grid speed  

–  Nondimensionalization often more involved/confusing/critical 
•  Compatibility 

–  Fully compatible for compressible/incompressible flows; mixed 
elements; 2D/3D 

–  Not compatible with generic gas model 
•  Status 

–  Compressible path with moving grids is exercised routinely; 
incompressible path much less so 

–  6-DOF option has had very limited testing / usage 

FUN3D Training Workshop 
June 20-21, 2015  3 
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Governing Equations 
•  Arbitrary Lagrangian-Eulerian (ALE) Formulation 

 

              Arbitrary control surface velocity; Lagrangian if 
     (moves with fluid); Eulerian if              (fixed in space) 
•  Discretize using Nth order backward differences in time, linearize  

about time level n+1, and introduce a pseudo-time term: 

 

•  Physical time-level      ;  Pseudo-time level 
•  Need to drive subiteration residual                     using pseudo-time 

subiterations at each time step – more later – otherwise you have 
more error than the expected             truncation error 
 FUN3D Training Workshop 
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Mesh / Body Motion (1/2) 
•  Motion is triggered either by setting moving_grid = .true. in  
&global (fun3d.nml), or by the command line --moving_grid  

•  All dynamic-mesh simulations require some input data via an auxiliary 
namelist file: moving_body.input  

•  A body is defined as a user-specified collection of solid boundaries in grid 
•  Body motion options: 

–  Several built-in functions for rigid-body motion: translation and/or 
rotation with either constant velocity or periodic displacement!

–  Read a series of surface files – body can be either rigid or deforming 
–  Read a series of 4x4 transform matrices - rigid body 
–  6 DOF via UAB/Kestrel library “libmo” 

•  Limited distribution 
•  Requires configuring with --with-sixdof=/path/to/6DOF 

–  Application-specific: mode-shape based aeroelasticity (linear 
structures); rotorcraft nonlinear beam 

FUN3D Training Workshop 
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Mesh / Body Motion (2/4) 
•  Chose a mesh-motion option than can accommodate the desired      

body-motion option 
•  Mesh motion options: 

–  Rigid - maximum 1 body containing all solid surfaces (unless overset) 
–  Deforming – allows multiple bodies without overset; can be limited to 

relatively small displacements before mesh cells collapse 
–  Combine rigid and/or deforming with overset for large displacements / 

multiple bodies 
•  Rigid mesh motion performed by application of 4x4 transform matrix to all 

points in the mesh - fast; positivity of cell volumes guaranteed to be 
maintained 
–  Complex transforms can be built up from simple ones: matrix multiply 
–  Allows parent-child motion (child follows parent but can have its own 

motion on top of that) 

FUN3D Training Workshop 
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Mesh / Body Motion (3/4) 
•  Mesh deformation handled via solution of a linear elasticity PDE: 

 

–      (Poisson’s ratio) is fixed; E (Young’s modulus) is selectable as: 
•  1 / slen        --elasticity 1 (default) 
•  1 / volume   --elasticity 2 (rarely used anymore) 
•  1 / slen**2   --elasticity 5 (last ditch for difficult problems) 

•  Elasticity solved via GMRES method; CPU intensive - can be 30% or more 
of the flow solve time; check convergence (screen output) 

•  Fairly robust, but can generate negative cell volumes; code stops 
•  “untangling” step attempted if neg. volumes generated – tet meshes only  

FUN3D Training Workshop 
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Mesh / Body Motion (4/4) 
•   GMRES solver used for mesh deformation has default parameter 

settings which can be adjusted in the namelist &elasticity_gmres (in 
the fun3d.nml file):  

 ileft   nsearch nrestarts       tol 
     1       +50        10    1.e-06 

–  You generally won’t have to adjust these values 
–  Exception: “structured” grids with very tight wake spacing can be very 

hard to deform and you may need to set tol very small, e.g. 1.e-12 
(and will need more restarts); usually not an issue with typical grids 

–  If negative volumes are generated and not successfully untangled, try 
reducing tol, which in turn may require a larger value of nrestarts 

FUN3D Training Workshop 
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Nondimensionalization of Motion Data (1/2)  
•  Recall: * indicates a dimensional variable, otherwise nondimensional 
•  Typical motion data we need to nondimensionalize: translational velocity, 

translational displacement, angular velocity, and oscillation frequency 
•  Angular or translational displacements / velocities are input into FUN3D 

as magnitude and direction 
•  Displacement input: angular in degrees; translational  
•  Translational velocity is nondimensionalized just like flow velocity:     

–  U* = translation speed of the vehicle (e.g. ft/s) 
–  U   = U* / a*ref  (comp.; this is a Mach No.)    U = U* / U*ref (incomp)  

•  Rotation rate:!
–       = body rotation rate (e.g. rad/s) 
–              (L*ref/Lref) / a*ref   (comp)                    (L*ref/Lref) / U*ref   (incomp) 

–  Other variants on specified rotation rate are possible, e.g. rotor tip 
speed, from which      = U*tip / R*                 

FUN3D Training Workshop 
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Nondimensionalization of Motion Data (2/2)  
•  Oscillation frequency of the physical problem can be  specified in different 

forms 
–  f * = frequency (e.g. Hz) 
–       = circular frequency (rad/s) 
         = 2     f *             
–  k   = reduced frequency, k = ½ L*ref      / U*ref    (be careful of exact 

definition - sometimes a factor of ½ is not used) 
•  Built-in sinusoidal oscillation in FUN3D is defined as sin(2    f t +    ) where 

the nondimensional frequency f and phase lag     are user-specfied 
•  So the corresponding nondimensional frequency for FUN3D is 

–  f = f * (L*ref / Lref) / a*ref       (comp)      f = f * (L*ref / Lref)/ U*ref       (incomp) 

–  f =       (L*ref / Lref) / (2    a*ref)            f =       (L*ref / Lref) / (2    U*ref) 

–  f = k M*ref / (    Lref)                            f = k / (    Lref) 

! FUN3D Training Workshop 
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Overview of moving_body.input 
•  A body is defined as a collection of solid boundaries in the grid 
•  The specifics of body / mesh motion are set in one or more namelists that 

are put in a file called moving_body.input -  this file must be provided 
when moving_grid is triggered (as a CLO or &global entry) 
–  The &body_definitions namelist defines one or more bodies that 

move and is always needed in a dynamic-grid simulation 
–  The &forced_motion namelist provides a limited means of defining 

basic translations and rotations as functions of time 
–  The &motion_from_file namelist defines the motion of a rigid body 

from a sequence of 4x4 transform matrices 
–  The &surface_motion_from_file namelist defines the motion of 

a rigid or deforming body from a time sequence of boundary surfaces 
–  The &observer_motion namelist provides a means of generating 

boundary animation output from a non-stationary reference frame 
•  &body_definitions is required with moving_grid , others optional  

  

FUN3D Training Workshop 
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Overview of &body_definitions Namelist 
•  Only most-used items shown here – see manual for complete list 
•  The &body_definitions namelist defines the bodies that move 

(defaults shown; most need changing) 
 &body_definitions            ! below, b=body  i=boundary 

   n_moving_bodies       = 0  ! how many bodies in motion 

   body_name(b)          = ‘’ ! must set unique name for each 

   parent_name(b)        = ‘’ ! child inherits motion of parent 

   n_defining_boundary(b)= 0  ! how many boundaries define body 

   defining_boundary(i,b)= 0  ! list of boundaries defining body 

   motion_driver(b)      = ‘none’ ! mechanism driving body motion                   

   mesh_movement(b)      = ‘static’ ! specifies how mesh will move                      
 / 

•  Caution: boundary numbers must reflect any lumping applied at run time! 
•  All variables above except n_moving_bodies are set for each body 
•  The blank string(‘’) for parent_name => inertial frame 

FUN3D Training Workshop 
June 20-21, 2015  12 
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Overview of &body_definitions (cont.) 
•  Options for motion_driver (default: ‘none’) 

–  ‘forced’  
•   Built-in forcing functions for rigid-body motion, const. or periodic 

–  ‘surface_file’ 
•  File with surface meshes at selected times; interpolates in between  

–  ‘motion_file’ 
•  File with 4x4 transforms at selected times; “interpolates” in between   

–  ‘6dof’ 
•  relies on calls to “libmo” functions 

–  ‘aeroelastic’ 
•  modal aeroelastics 

–  All the above require additional namelists to specify details; next slide 
outlines namelist required when motion_driver=‘forced’ 

•  Options for mesh_movment (default: ‘static’) 
–  ‘rigid’, ‘deform’, ‘rigid+deform’ 

FUN3D Training Workshop 
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Overview of &forced_motion Namelist 
•  Use &forced_motion namelist to specify a limited set of built-in motions 
 &forced_motion        ! below, index b=body#  
  rotate(b)             ! how to rotate this body: 0 don’t (default); 
                        ! 1 constant rotation rate; 2 sinusoidal in time 
  rotation_rate(b)      ! body rotation rate; used only if rotate = 1 
  rotation_freq(b)      ! frequency of oscillation; use only if rotate = 2 
  rotation_amplitude(b) ! oscillation amp. (degrees); only if rotate=2 
  rotation_vector_x(b)  ! x-comp. of unit vector along rotation axis 
  rotation_vector_y(b)  ! y-comp. of unit vector along rotation axis 
  rotation_vector_z(b)  ! z-comp. of unit vector along rotation axis 
  rotation_origin_x(b)  ! x-coord. of rotation center (to fix axis) 
  rotation_origin_y(b)  ! y-coord. of rotation center 
  rotation_origin_z(b)  ! z-coord. of rotation center 
 / 

•  There are analogous inputs for translation (translation_rate, etc.) 
•  See manual for complete list 
•  Note: FUN3D’s sinusoidal oscillation function (translation or rotation) has  

2     built in, e.g sin(2    rotation_freq t) 

FUN3D Training Workshop 
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Output Files!
•  In addition to the usual output files, for forced / 6-DOF motion there are 3 

ASCII Tecplot files for each body 
–  PositionBody_N.dat tracks linear (x,y,z) and angular (yaw, pitch, 

roll) displacement of the “CG” (rotation center) 
–   VelocityBody_N.dat tracks linear (Vx,Vy,Vz) and angular                

(                  ) velocity of the “CG” (rotation center) 
–  AeroForceMomentBody_N.dat tracks force components (Fx,Fy, Fz) 

and moment components (Mx,My,Mx)  
–  Data in all files are nondimensional by default (e.g. “forces” are 

actually force coefficients); moving_body.input file has option to 
supply dimensional reference values such that this data is output in 
dimensional form - see manual/website for details 

–  Forces are by default given in the inertial reference system; 
moving_body.input file has option to output forces in the body-
fixed system - see manual/website for details  

FUN3D Training Workshop 
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Tutorial Case: Pitching Airfoil (1/8) 
•  Test case located in: tutorials/flow_unsteady_airfoil_pitching 
-  run_tutorial.sh script starts with a 600 time step restart file, runs 

an additional 100 steps, and makes plots that follow 
•  Consider one of the well known AGARD pitching airfoil experiments, 

“Case 1” 
–  Rec* = 4.8 million,  Minf = 0.6,  chord = c* = 0.1m ,   chord-in-grid = 1.0 
–  Reduced freq. k = 2    f * / (U*inf / 0.5c*) = 0.0808,  (f *= 50.32 Hz) 

–  Angle of attack variation (exp):                                                  (deg) 
•  Setting the FUN3D data:            

–  angle_of_attack = 2.89  rotation_amplitude = 2.41 
–  Recall f = k M*ref /       from the 2nd nondimensionalization slide 
–  rotation_freq = f = 0.0808 (0.6) / 3.14… = 0.01543166 
–  So in this case we actually didn’t have to use any dimensional data 

since the exp. frequency was given as a reduced (non dim.) frequency 

!
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Tutorial Case: Pitching Airfoil (2/8) 
•  Setting the FUN3D data (cont): 

–  Time step: the motion has gone through one cycle of motion when 
    t = T, so that 
       sin(2    rotation_freq T) = sin(2   )                                                   
       T = 1 / rotation_freq  (this is our t chr )  

   for N steps / cycle,   T = N   t  so 
         t = T / N = (1 /rotation_freq) / N 
–  Take 100 steps to resolve this frequency:                                              
          t = (1 / 0.01543166) / 100 = 0.64801842 
–  Alternatively, could use tchr = (1/ f *) a*inf (Lref/L*ref), with f * = 50.32 Hz, 

and assume value for a*inf 

FUN3D Training Workshop 
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Tutorial Case: Pitching Airfoil (3/8) 

FUN3D Training Workshop 
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Tutorial Case: Pitching Airfoil (4/8) 
•  Relevant fun3d.nml data 

 &global 
    moving_grid = .true. 
 / 
 &nonlinear_solver_parameters 
    temporal_err_control = .true.        ! Turn on  
    temporal_err_floor   = 0.1           ! Exit 1 order below estimate 
    time_accuracy        = "2ndorderOPT” ! Our Workhorse Scheme 
    time_step_nondim     = 0.64801842    ! 100 steps/pitch cycle 
    subiterations        = 30 
    schedule_cfl         = 50.00 50.00   ! constant cfl each step 
    schedule_cflturb     = 30.00 30.00 
 / 

•  Relevant moving_grid.input data 
&body_definitions 
  n_moving_bodies     =  1,        ! number of bodies 
  body_name(1)        = 'airfoil', ! name must be in quotes 
  n_defining_bndry(1) =  1,        ! one boundary defines the airfoil 
  defining_bndry(1,1) =  5,        ! (boundary, body) 
  motion_driver(1)    = 'forced’ 
  mesh_movement(1)    = 'rigid’, 
/ 
 
 !

FUN3D Training Workshop 
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Tutorial Case: Pitching Airfoil (5/8) 
•  Relevant moving_grid.input data (cont) 

&forced_motion 

  rotate(1)             = 2,          ! type: sinusoidal 

  rotation_freq(1)      = 0.01543166, ! reduced rotation frequency 

  rotation_amplitude(1) = 2.41,       ! pitching amplitude 

  rotation_origin_x(1)  = 0.25,       ! x-coordinate of rotation origin 

  rotation_origin_y(1)  = 0.0,        ! y-coordinate of rotation origin 

  rotation_origin_z(1)  = 0.0,        ! z-coordinate of rotation origin 

  rotation_vector_x(1)  = 0.0,        ! unit vector x-component along     
                                      ! rotation axis 

  rotation_vector_y(1)  = 1.0,        ! unit vector y-component along 
                                      ! rotation axis 

  rotation_vector_z(1)  = 0.0,        ! unit vector z-component along 
                                      ! rotation axis 

/ 
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Tutorial Case: Pitching Airfoil (6/8)  
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Tutorial Case: Pitching Airfoil (6/8)  

FUN3D Training Workshop 
June 20-21, 2015  22 

Fractional_Time_Step

R
_2

R
_6

670 672 674 676 678 680
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R_2
R_6

Dashed Lines Indicate
Approx. Temporal Error Estimates

Subiteration Residuals, Final 10 Steps  
(mean flow just misses tolerance) 

(subit_history.lay)   

Fractional_Time_Step

C
L

C
M
y

690 692 694 696 698 7000.2

0.25

0.3

0.35

0.4

-0.01

-0.008

-0.006

-0.004

-0.002

0

Subiteration Lift & PM, Final 10 Steps  
 

(subit_force_history.lay)   



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   12	
  

http://fun3d.larc.nasa.gov 

Tutorial Case: Pitching Airfoil (7/8) 

FUN3D Training Workshop 
June 20-21, 2015  23 

Mach Number 
(mach_animation.lay) 

Pressure Coefficient 
(cp_animation.lay) 

http://fun3d.larc.nasa.gov 

Tutorial Case: Pitching Airfoil (8/8)  

FUN3D Training Workshop 
June 20-21, 2015  24 

Rigid mesh and deforming mesh produce nearly identical results 

α, deg

C
L

0 2 4 60

0.2

0.4

0.6

0.8
Experiment
Rigid Mesh, 100 Steps/Cycle
Deforming Mesh, 100 Steps/Cycle

α, deg

C
m

0 2 4 6-0.01

0

0.01

0.02

0.03

0.04
Experiment
Rigid Mesh, 100 Steps/Cycle
Deforming Mesh, 100 Steps/Cycle

Comparison with Landon, AGARD-R-702, Test Data,1982 
Note: comparison typical of other published CFD results 

These plots not generated as part of the tutorial 

Pitching Moment vs. Alpha  Lift  vs. Alpha 
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Troubleshooting Body / Grid Motion!
•  When first setting up a dynamic mesh problem, suggest using either the 

following in the &global namelist 
–  body_motion_only = .true. 
–  grid_motion_only = .true.  

•  Both options turn off the flow solution for faster processing (memory 
footprint is the same however) 
–  body_motion_only especially useful for 1st check of a deforming 

mesh case since the elasticity solver is also bypassed 
–  grid_motion_only performs all mesh motion, including elasticity 

solution – in a deforming case this can tell you up front if negative 
volumes will be encountered 

–  Caveat: can’t really do this for aeroelastic or 6DOF cases since motion 
and flow solution are coupled 

•  Use these with some form of animation output: only solid boundary output 
is appropriate for body_motion_only; with grid_motion_only can 
look at any boundary, or use sampling to look at interior planes, etc.  

FUN3D Training Workshop 
June 20-21, 2015  25 

http://fun3d.larc.nasa.gov 

List of Key Input/Output Files 
•  Beyond basics like fun3d.nml, etc.: 

–  Set moving_grid = .true. in &global namelist  
•  Input 

–   moving_body.input  (else code stops when moving_grid = T) 
•  Output 

–  [project]_subhist.dat 
–  PositionBody_N.dat (forced motion / 6-DOF only) 
–  VelocityBody_N.dat (forced motion / 6-DOF only) 
–  AeroForceMomentBody_N.dat (forced motion / 6-DOF only) 

FUN3D Training Workshop 
June 20-21, 2015  26 
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Outline

• Brief overview of overset approach

• Why use Overset?

• Introduction to Suggar++ Inputs

• Summary
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Overset / Chimera Fundamentals

• Set of body fitted grids (structured or unstructured) 
are constructed around each component of a 
complex configuration

• Component grids are constructed (mostly) 
independently from each other

• Overlap each other arbitrarily within each 
component, and between all components

• Interpolation links solution on component grids 
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Overset Grid Approach

• Domain is discretized using overlapping component grids

• Overset composite grid consists of
– Composite grid (set of component grids, possibly treated as a single unstructured grid)

– Domain Connectivity Information (DCI)

Overset Hole Cutting

• Hole cutting is required to identify points that should be 

excluded from computations (OUT points)
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Overset Fringe Boundary Points

• Intergrid or Fringe boundary points connect the solutions 
on different components

• Inner fringe between hole points and active solution 
points

• Outer fringe at outer/overlap boundary

Overset Overlap Minimization

• Solution quality can be improved by reducing the overlap 
between grids

• Goal is for fringe (receptor) and interpolation source 
(donor) to have approximately the same size
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Simplify Grid Generation

• Flexibility of overlapping grids simplifies 

grid generation 

– For complex geometries

– Geometry changes

10
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Example of Flexibility

Easily Modify Geometry

11

Turbine Blade With Cooling Hole

Example of Flexibility

Multiple Copies of Geometry

• Multiple identical bodies 

can be easily gridded 

by simply copying and 

translating.

– Consistent grid in all 

copies

• Important for evaluating 

multiple variants 

quickly.
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Improving Resolution

• Overset grids simplifies improving 

resolution in appropriate locations

– Insert a new grid with desired refinement

13

Enabling Relative Motion

• Overset grids will move rigidly with each body

• Domain connectivity must be recomputed

14
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Overset Grid Generation 

“Requirements”

• Need sufficient overlap between grids

• Better flow solution when

– Cell size is consistent in overlap region

• Fringe & donor have similar sizes

– Do not have large regions of overlap

• Use overlap minimization procedure to trim excess 

overlap

16
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XML Tags/Markup Constructs

• An XML tag is enclosed in “< >”
– <start>

• Must have an associated end tag
– Same as start tag but with / after <

– </start>

<name>

<first>John</first>

<last>Doe</last>

</name>

• Empty elements can have implicit end tag 

– <name></name> can be written as <name/>
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Hierarchies in XML

• Each XML tag defines an item or element

• Elements can be embedded inside start/end pair 

of another element

– Creates a parent/child and sibling/sibling relationship

– Children define element content

– Child element must be closed before a parent can be 

closed

• Only one root element allowed

Example Hierarchy

• Hierarchy for <name> example

name

first

last

John

Doe

<name>
<first>John</first>
<last>Doe</last>

</name>
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XML Elements Can Have Attributes

• Attributes

– are name/value pairs associated with an 
element

– are always attached to the start tag

– must have a value enclosed in quotes
(either single or double quotes)

• Place inside of start tag before closing “>”

<body name=“store”>

Comments in XML

• Comments in XML

– start with <!-- and end with 

– cannot use -- in the comment string

<!-- cannot embed double dashes -- 

– cannot be within a tag

<start <!-- this is illegal--> />
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Input Has Three Main Sections

• Global parameter

– Content of <global>

• Body Hierarchy

– <body>

• Grid/Surface definition

– <volume_grid>

• <boundary_surface>

24
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Values Specified by Attributes

• All input values are specified by element 

attributes

– <body name=“root”>

– Data between elements (PCDATA) is ignored

• Can use as comments, some restricted characters

• Some attributes are required

– Will abort if not present

• Other attributes are optional
25
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<global> Content

• Specify execution control parameters 

• Sets default values for parameters that 

can be set in a grid

• See Suggar++ user’s guide for complete 

list

• Specify root body

27

<global> Typical Content

<global>

<threads n="5"/>

<hole_cut method="direct" fill_type="out_cells"/>

<minimize_overlap set_dsf="element_size"/>

<!--<cell_centered mark_using_neighbors="Yes"/> -->

<output>

<composite_grid style="aflr3" filename="composite_grid.r8.ugrid"

precision="double" format="unformatted" />

<domain_connectivity style="unformatted_gen_drt_pairs" 

byte_order="native" filename="output++.dci"/>

</output>

<body name="root"> ... </body>

</global>
28
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Composite Grid

• Best if flow solver uses composite grid 

written by Suggar++

– Exporting from grid generator has possibility 

of incorrect order of component grids

• Use <composite_grid/> to specify format 

and filename

• Some restrictions on format of input 

component grids and output composite 

grid 29
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Body Hierarchy Controls Hole Cut

• A hierarchical grouping of grids/bodies minimizes user 
inputs and controls which grids are cut by which surfaces

• Siblings cut each other
– Geometry in one body (including all children) cuts all grids in a 

sibling body (including all children) 

ROOT
Aircraft Store

Wing Pylon Body

Fin1

Fin2

Fin3

Fin4

XML for Wing/Pylon/Store Hierarchy

<body name=“Root">

<body name="Aircraft">

<body name="Wing“/>

<body name="Pylon“/>

</body>

<body name="Store">

<body name="Body“/>

<body name="Fin1“/>

<body name="Fin2“/>

<body name="Fin3“/>

<body name="Fin4“/>

</body>

</body>
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Transformations

• Associated with a body

• Hierarchical: Child body transforms are relative to parent

• Order dependent

• Suggar++ has two different types of transformations
– Static transformations

• Applied to the grid coordinates on input

• Original coordinates are replaced by transformed coordinates

– Dynamic transformations

• Flags the body as moving

• Grid coordinates are left in original coordinates

– Transformations are always from original coordinate system

• Transformations are used internally during execution

• Output grids are transformed
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Hierarchical Transformation Example

<body name=“Aircraft”> 

<transform> 

<rotate axis="y" value=”20"/> 

</transform>

<body name=“fuselage”> … </body>

<body name=“store">

<dynamic>

<transform> 

<rotate axis=“z" value=”45"/> 

<translate axis="y" value="-2"/>

</transform> 

</dynamic>

</body>

</body>

Static

transformation

Dynamic

transformation

Component Grid Input



6/7/2015

19

Suggar++ Current Grid Types 

• Structured

– Curvilinear 

– Analytic
• Cartesian

• Cylindrical

• Spherical

• Unstructured
– Tetrahedron

– Mixed element
• Tet, Hex, Prism, Pyramid

– Octree-based Cartesian

Can use mix of input grid types 

if solver and output composite 

grid supports the mixture of 

elements

<volume_grid> Element

• Parent element is <body>

• Associates a grid with a body

– Actual grid to be used is specified with the filename attribute.

• A body can have more than one <volume_grid> child

– Cannot have child <body> and child grids!

• Required attribute is name=“grid name“

<body name="Wing">

<volume_grid name="wing grid”>

</volume_grid>

</body>
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<volume_grid>

filename, style attributes

• Grid file is specified with the attributes…

– filename=“file”

– style=“style”

• Both are required

<volume_grid name=“wing”

filename=“Grids/wing.g” style=“p3d”/>

Boundary Surfaces
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Boundary Surface Creation

• Boundary surfaces are automatically created for 

unstructured surface patches

– User must specify associated Boundary Conditions

– Boundary conditions are automatically set for VGRID 

files

• Internal mapping between USM3D BCs and Suggar++ BCs

• Can specify an alternate mapping

• Must be explicitly defined for structured grids

– If not defined surface is created with a boundary 

condition of “overlap”

Suggar++ Boundary Conditions

• Suggar++ boundary conditions do not need to 

“match” flow solver boundary conditions

• Some cases where there may be a loose 

mapping

– Flow solver “wall” ~ Suggar++ “solid”

– Flow solver “farfield” ~ Suggar++ “farfield”

– Geometric connections: axis, Block-to-Block, etc.
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Suggar++ Boundary Conditions

• Many cases where Suggar++ BCs should be 

different than solver BCs

– Hole cutting geometry must be closed/“water tight”!!!

• Surface is not solid geometry but must be used as hole 

cutting geometry
– Inlet/Exhaust surface

– Solver has solid surface that is not needed as cutting 

surface

• Tunnel walls but no grids extend past tunnel walls

– Suggar++ has a limited set of BCs

Specifying Boundary Conditions

for Unstructured Grids

• Boundary conditions can be specified

– in the input XML file
• <boundary_surface find=“yes” name=“…”>

– in auxiliary files (Recommended approach)

• for Vgrid file sets

– projectName.suggarbc

• for other unstructured grid files

– gridFilename.suggar_surface_bc

– gridFilename.suggar_mapbc

• An auxiliary file can also be used to specify solver BCs in 

the output composite grid

– filename.solver_bc
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Suggar++ Boundary Condition Types

“overlap” An overset or overlap boundary surface. 

“solid” A solid boundary and will be used to define the hole cutting geometry.

“symmetry” A symmetry non-overset boundary surface. The grid points on the 
symmetry boundary will be used to determine the value of the symmetry 
plane.

“axis” A singular axis where all the grid points in one of the computational 
coordinates are collapsed to a point.

“periodic” A periodic boundary in the structured grid. Both the min and max 
boundary surfaces should be specified. 

“cut” The surface is a cut boundary in the structured grid. Both the min and max 
boundary surfaces should be specified.

“block-to-block”, “block-block”, “block2block” The surface is a block-to-
block interface to another grid. Requires additional attributes.

“freestream” or “farfield” A freestream non-overset boundary surface

“non-overlap”, “non_overlap”, “nonoverlap”, “non-solid” , “non-*”  The surface is 
an unspecified non-overset boundary.

Setting Solver BCs for 

Unstructured Component Grids

• Solver BCs can be set from auxiliary files 

associated with each component grid

– Vgrid

project.mapbc file

– Cobalt

• grid_filename_cobalt_bc

• basename.cobalt_bc
– Where basename = grid_filename with trailing suffix removed

– Other formats

• grid_filename.solver_bc

• grid_filename.suggar_mapbc
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Solver BCs for 

Unstructured Composite Grid

• Suggar++ will write selected solver 

boundary condition files for the composite 

grid

– Vgrid

project.mapbc file

– Cobalt

composite_grid_filename_cobalt_bc

– Other unstructured grid formats 

composite_grid_filename.suggar_mapbc

Overlapping 

Surface Grids
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Overlapping Surface Grids:

Additional Complexities

• Overlapping surfaces will have different 

discrete representations

• Surfaces in a grid can be associated with 

different geometry components

– Grid is in one body but some surfaces define 

geometry in another body

• Overlapping surfaces require special 

treatment to eliminate double counting in 

Force and Moment integration

Overlapping Surface Grids:

Different Discrete Representations

• Surfaces that overlap on geometry with 

curvature will have different discrete 

representations

• Difficulties arise when the tangential 

spacing is “large” relative to the curvature 

and the normal spacing

• Special procedures are required to 

properly find appropriate donors
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Surface Assembly

• Grid points are not changed

• Fringe points are shifted during the donor search

– Requires grid with structure normal to the surface

• Structured grid or mixed element with hex/prism layers

• Vgrid tet mesh with layers and poin1 file

• Surface assembly procedure is use to find the 

shift for each fringe point 

– Enabled with <surface_assembly/> element

– Relative to overlapping surface in each donor grid

• A fringe point will have different shifts/offsets for each donor 

grid

52
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Integrating Force And Moments 

On Overlapping Surfaces

• Special treatment to eliminate double counting in 

force and moment integration

– Panel weights

• Weight factor between 0 & 1 for each integration surface 

face/panel

– Single valued/water tight integration surface

• Remove overlap, glue remaining portions of original surfaces 

together using new triangles

Suggar++ has integrated USURP capability

• Enabled with <usurp> element

• Output

– Panel weights 

• Included in DCI file: Can be retrieved via DiRTlib

• Written to files

– Can create zipper grid

• Water tight surface grid with overlap eliminated

• Not sufficiently robust 
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<usurp> Example: Overlapping Surfaces

EXAMINE SUGGAR++ 

RESULTS

56
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General Suggestions

Check Suggar++ Output

• Look at 

– summary.log

– Standard error output file

• Suggar++ -reopen will write to out.stderr++

• Visualize the DCI

– Look at orphans

– All blanked points

• May have flood fill leak if entire grid is blanked out

– Use gviz or pointwise

SUGGAR++ USER’S GUIDE 

58
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Suggar++ User’s Guide

• List of all inputs elements

– Hyperlinked to parent element 

– Possible child content

• List of attributes

– Hyperlinked to parent element 

• Sections on usage, advance topics, grid 

formats, etc.

59

SUMMARY

60
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Summary

• Overset grids are an enabling technology

– Simplifies grid generation/model changes

– Enables moving body simulations

• Briefly presented some Suggar++ Inputs

• Briefly discussed overlapping surface grids

– Need surface assembly if overlapping 

surfaces are not planar

– Force & Moment integration needs procedure 

to eliminate double counting 61

62

Commercial distribution and support 

for Suggar++ provided by

Celeritas Simulation Technology, LLC

http://www.CeleritasSimTech.com

Exportable under an EAR-99 license
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Session Scope 
•  What this will cover 

–  Static and dynamic simulations in FUN3D using overset meshes 
and SUGGAR++ /DiRTlib 

•  What will not be covered 
–  SUGGAR++ operation (Covered by Ralph Noack) 

•  What should you already be familiar with 
–  Basic time-accurate and dynamic-mesh solver operation and 

control 

FUN3D Training Workshop 
June 20-21, 2015  2 
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Introduction 
•  Background  

–  Many moving-body problems of interest involve large relative motion 
- rotorcraft, store separation are prime examples 
•  Deforming meshes allow limited relative motion before mesh 

degenerates 
•  Single rigid mesh allows only one body; no relative motion 
•  Use overset grids to overcome these limitations 

•  Compatibility 
–  Requires DiRTlib and SUGGAR++ from Celeritas Simulation Tech. 
–  Grid formats: VGRID, AFLR3, FieldView (FV) 

•  Status 
–  Current SUGGAR++ supports unstructured meshes that overlap on 

solid surfaces, but we have not really exercised this 
–  Overset grids generally limit scalability; not much of an issue for 

O(100) cores 
FUN3D Training Workshop 

June 20-21, 2015  3 

http://fun3d.larc.nasa.gov 

Overset - General Info 
•  Configuring FUN3D for overset 

–   Use --with-dirtlib=/path/to/dirtlib and --with-
suggar=/path/to/suggar 

–  FUN3D will expect to find the following libraries in those locations: 
•  libdirt.a, libdirt_mpich.a and libp3d.a (these may be    

soft links to the actual serial and mpi builds of DiRTlib) 
•  libsuggar.a and libsuggar_mpi.a  (may be soft links) 

•  You will also need a “stand-alone” SUGGAR++ executable in addition to the 
library files that FUN3D will link to 

•  Grids 
–  A composite overset grid is comprised of 2 or more component grids - 

independently generated - but with similar cell sizes in the fringe areas 
–  SUGGAR++ assembles the composite grid from the component grids, 

and determines overset connectivity data for the composite mesh 

FUN3D Training Workshop 
June 20-21, 2015  4 
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Overset Preprocessing 
•  Overset simulations starts with an execution of SUGGAR++ to generate a 

composite grid and initial (t=0) connectivity data  

–  When generating component meshes, try to make cell sizes “similar” 
in the overlap regions - .e.g. by using similar sourcing strengths 

–  Create an XML input file for SUGGAR++ (previous session)!

•  Use the name of your FUN3D project for the names appearing in 
<composite_grid> and <domain_connectivity>  

•  Can mix and match component grid types (VGRID, FV, AFLR) and 
select one of the types for the output composite grid - but note 
VGRID only supports tetrahedra 

–  Run SUGGAR++ and make sure it all works as expected. You should 
now have a [project].dci file; this Domain Connectivity 
Information file contains all necessary overset data for solver 
interpolation between the component meshes at t=0 
 

FUN3D Training Workshop 
June 20-21, 2015  5 

http://fun3d.larc.nasa.gov 

Overset Preprocessing (cont) 
•  For dynamic-grid simulations, there is an additional consideration at the 

preprocessing stage: either precompute the overset connectivity for ALL 
time steps up front, or do this “on the fly” from within FUN3D  

–  Precomputing requires up-front knowledge of the motion - rules out 
6DOF and aeroelastic cases since the motion depends on the flow 
solution; rules out deforming meshes even if motion known!

–  If the case fits these restrictions, from the point of view of flow solver 
run time, precomputing all connectivity is the most efficient 

–  Need to ensure that SUGGAR++ motion will match FUN3D motion 

–  Resulting dci files must be named [project]N.dci for timestep N 

•  If connectivity is computed at run time (by necessity or for convenience) 

–  Computation of overset connectivity is performed on a single 
processor (the last one) 

–  That processor must have enough memory (basically same memory 
requirements as stand alone SUGGAR++)  
 FUN3D Training Workshop 

June 20-21, 2015  6 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   4	
  

http://fun3d.larc.nasa.gov 

Overset – Boundary Conditions  
•  FUN3D requires only one specialized overset boundary condition - all 

other BC’s can be applied as needed:  
–  In mapbc files, set BC type to -1 for boundaries that are set via 

interpolation from another mesh 
      !

FUN3D Training Workshop 
June 20-21, 2015  7 

Grid Courtesy Eric Lynch, GA  Tech 

http://fun3d.larc.nasa.gov 

Overset  – Boundary Conditions (Cont.) 
•  SUGGAR++ needs BC info for each component grid  

–  Can be set either via the  SUGGAR++ input XML file OR an auxiliary file 
for each component grid 

–  Strongly recommend (esp. for dynamic meshes) the XML file approach 

•  More cumbersome than auxiliary file, but...  

•  If the auxiliary files get separated from the other files, SUGGAR may 
assume some defaults which can cause problems with hole cutting 

•  The exception to setting SUGGAR++ BC info in the XML file is if ALL 
the component grids are of VGRID type - in that case both SUGGAR++ 
and FUN3D get BC’s from the same VGRID mapbc file and can 
generally avoid having to explicitly set any BC’s for SUGGAR++ 

 

FUN3D Training Workshop 
June 20-21, 2015  8 
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Overset – Namelist Input 
•  Control of overset operations - primarily for dynamic grids - set in the 
&overset_data namelist in fun3d.nml 

     overset_flag        = .true. turn on overset  (default: .F.) 

dci_on_the_fly      = .true. compute connectivity during flow solve (.F.) 
reuse_exisiting_dci = .true. if dci file for this step already exists, use it 
                                                               instead of computing on the fly  (.F.) 
dci_period          =  N     dci data repeats every N steps  (huge no.) 
reset_dci_period    =  L     now repeats every L steps  (huge no.) 
                             …used for time-step change at restart 
dci_freq            =  M     compute dci data every M steps (1) 

dci_dir             = ‘dir’  look for or put dci files in this dir (./) 
skip_dci_output     = .true. don’t write dci data after it’s computed (.F.) 
                                                               …maybe this data won’t be needed again 
dci_io              = .true. use dedicated proc(s) for fast loading of 
                                                               precomputed dci data (.F.) - more later 
dci_io_npro         =  P     use P procs for dedicated dci loading 

FUN3D Training Workshop 
June 20-21, 2015  9 

http://fun3d.larc.nasa.gov 

Overset Mesh Simulations – Static (1/2) 
•  Running FUN3D with static overset meshes:!

–  Set overset_flag = .true. in the &overset_data namelist in 
fun3d.nml (Alt.: use the CLO  --overset)  

–  In screen output, should see something like: 
dirtlib:init_overset Reading DCI data: ./[project].dci 

Loading of dci file header took Wall Clock time = 0.002223 seconds 

Loading of dci file took Wall Clock time = 0.005657 seconds 

Using DiRTlib version 1.49 for overset capability 

DiRTlib developed by Ralph Noack, Penn State University Applied Research 
Laboratory 

–  If you request visualization output data for an overset case, “iblank” 
data will automatically be output to allow blanking of the hole / out 
points for correct visualization of the solution / grid in Tecplot 

FUN3D Training Workshop 
June 20-21, 2015  10 
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Overset Mesh Simulations – Static (2/2) 

FUN3D Training Workshop 
June 20-21, 2015  11 

without iblank 

•  Wind-turbine airfoil in tunnel    

with iblank 

http://fun3d.larc.nasa.gov 

Overset Mesh Simulations – Dynamic (1/5) 
•  SUGGAR++ setup (more details in “SUGGAR++” session)!

–  Starting from a static-grid XML file:!
•  Add <dynamic/> to <body> elements that are to move, e.g.  
  <body name=”airfoil"> 
    <dynamic/> 
    <volume_grid name=”airfoil" style=”fvuns"          
                            filename=”airfoil_2p.fvgrid_fmt"/> 
   </body> 

•  Note: use a self-terminated <dynamic/> so that any <transform> 
elements of <body> are applied as static transforms on the 
component grids when assembling the composite grid    

–  Use SUGGAR++ to generate the initial (t = 0) composite grid; lets 
assume you called the XML file Input.xml_0 

FUN3D Training Workshop 
June 20-21, 2015  12 
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Overset Mesh Simulations – Dynamic (2/5) 
•  In the FUN3D moving_body.input file 

–  Define the bodies and specify motion as usual; boundary numbers 
correspond to those in the composite mesh mapbc file, accounting for 
any boundary lumping that may be selected at run time 

–   Use the component body names from the Input.xml_0 file 
–  Add name of the xml file used to generate the t = 0 composite mesh: 

&composite_overset_mesh 
  input_xml_file = 'Input.xml_0' 
/ 

•  Running FUN3D 
–  Set moving_grid = .true. in &global namelist and 
overset_flag=.true. dci_on_the_fly = .true. in 
&overset_data namelist 

–  When dci_on_the_fly = .T., FUN3D calls libSUGGAR++ to 
compute new  overset data when the grids are moved; if  .false. 
(default), solver will try to read the corresponding dci file from disk 

FUN3D Training Workshop 
June 20-21, 2015  13 
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Overset Mesh Simulations – Dynamic (3/5) 
•  Running FUN3D (cont) 

–  Note: when dci_on_the_fly = .true., the component grids and 
mapbc files must be available (can be soft linked) in the FUN3D run 
directory, in addition to the t = 0 composite-grid and mapbc files 

–  When using --dci_on_the_fly, specify one additional processor for 
SUGGAR++  

•  The last processor gets assigned the SUGGAR++ task 
•  This processor must have enough memory for entire overset problem 

(same as needed for SUGGAR++ alone) 
–  There are a number of other overset-grid CLOs that may be useful for 

dynamic overset meshes (see “Overset – Namelist Input” slide).  

FUN3D Training Workshop 
June 20-21, 2015  14 
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Overset Mesh Simulations – Dynamic (4/5) 
•  Another option, in the &global_data namelist in fun3d.nml 
     grid_motion_and_dci_only   = .true. (default: .F.) step through the 
                                                                                   mesh motion and compute dci 
                                                                                   data but don’t solve flow eqns.   

-  Useful as an easy (not the most efficient) way to precompute dci data 
while ensuring the motion will match exactly with FUN3D 

•  Solution data in hole points (governing equations not solved at hole pts.) 
-  Starts at freestream 
-  FUN3D will “fill in” flow data at hole points at each time step by 

averaging data at surrounding points - eventually replaces freestream 
-  Averaging is important for dynamic case so a hole point that suddenly 

becomes a solve point has something better than freestream as an IC 
-  Best Practice: use “keep inner fringe” option in SUGGAR++ XML file - 

retains extra fringe (interpolated) points near hole edges as a buffer of 
points that become exposed before hole pts. - interp. better than avg. 

FUN3D Training Workshop 
June 20-21, 2015  15 
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Overset Mesh Simulations – Dynamic (5/5) 
•  Wind-turbine airfoil in tunnel    

FUN3D Training Workshop 
June 20-21, 2015  16 
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Example – Store Separation (1/5) 
•  Test case located in: tutorials/flow_overset_grids 
•  Super-coarse grid for a 4-finned store magnetically suspended below a 

semi-span wing. Could be hooked up to 6DOF library but here we specify 
the motion for t > 0 as a constant downward velocity 

•  run_tutorial.sh 
–  First runs stand-alone SUGGAR++ executable to generate a dci file for 

a static-grid / steady-state solution 
–  Next runs nodet_mpi to give a steady-state solution on composite 

mesh - this will become the starting solution (t=0) for the moving-grid / 
unsteady case 

–  Finally runs moving-grid case in which dci data generated “on the fly” 
for each of 50 time steps 

!

FUN3D Training Workshop 
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Example – Store Separation (2/5) 
•  Set up SUGGAR++ xml file wingstore.xml 
<global> 
  <symmetry_plane axis="Y"/> 
  <minimize_overlap keep_inner_fringe="yes"/> 
  <output> 
  <composite_grid style="unsorted_vgrid_set" filename="wingstore"/> 
  <domain_connectivity style="ascii_gen_drt_pairs" filename="wingstore.dci"/> 
  </output> 
  <body name="wingstore"> 
    <body name="wing"> 
      <volume_grid name="wing" style="vgrid_set" filename="wing"/> 
    </body> 
    <body name="store"> 
      <dynamic/> 
      <volume_grid name="store" style="vgrid_set" filename="store"> 
      </volume_grid> 
    </body> 
  </body> 
</global> 

•  Add <dynamic/> tag since we will ultimately be doing moving-grid case  
•  Component grids are VGRID – don’t need explicit BCs in the xml file 

! FUN3D Training Workshop 
June 20-21, 2015  18 
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Example – Store Separation (3/5) 
•  Relevant fun3d.nml data (static grid / steady state) 

 &overset_data 
    overset_flag = .true. 
 / 
 &project 
    project_rootname = “wingstore”  ! same as <composite_grid> filename 
 /                                  ! we set in wingstore.xml 

•  Relevant fun3d.nml data ( moving / unsteady) 
 &overset_data 
    overset_flag = .true. 
    dci_on_the_fly = .true.   ! Must have composite (“wingstore”) and 
 /                            ! Component grids (“wing” and “store”)in 
 &global                      ! in the run directory 
    moving_grid = .true. 
 / 
 &project 
    project_rootname = “wingstore” 
 /                                

!

FUN3D Training Workshop 
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Example – Store Separation (4/5) 
•  Relevant moving_body.input data ( moving / unsteady)) 

 &body_definitions 
    n_moving_bodies    = 1 
    body_name(1)       = “store”  ! same name used in xml file 
    n_defining_bndry(1)= 1 
    defining_bndry(1)  = 4 
    mesh_movement(1)   = “rigid” 
    motion_driver(1)   = “forced” 
 / 
 &forced_motion 
    translate(1) = 1            ! constant-rate translation 
    translation_rate(1) = -0.2  ! Mach 0.2 downward 
 / 
 &composite_overset_mesh 
    input_xml_file = “wingstore.xml” 
 / 

 
!

FUN3D Training Workshop 
June 20-21, 2015  20 
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Example – Store Separation (5/5) 

 
!

FUN3D Training Workshop 
June 20-21, 2015  21 

Hole Cutting 
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Pressure Coefficient  
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DCI_IO For Large-Scale Simulations 
•  Some applications are now run on many-thousand core architectures. 

Suggar++ does not scale well, but for rigid meshes with prescribed motion, 
it is possible to precompute the connectivity data in an “embarrassingly 
parallel” fashion, avoiding a bottleneck during FUN3D execution 

•  Normally FUN3D calls DiRTlib routines to load and parse this precomputed 
dci data. But DiRTlib reads and parses the dci file from every processor, 
which prohibits scalability beyond ~1k cores 

•  Instead, use dci_io = .true. and use dci_io_nprocs = P to assign P 
processes to read and distribute the dci data - circumvents DiRTlib 
-  this is the only job for these processors - they operate 1 to P time steps 

ahead; regular flow-solve ranks work to advance flow in current step 
•  DCI_IO utilizes a special file containing a subset of dci data - “dcif” file 
-  Convert dci generated by SUGGAR++ to dcif using utils/dci_to_dcif 

•  Linear scaling demonstrated up ~4K cores; P = 1 sufficient for this size 

FUN3D Training Workshop 
June 20-21, 2015  22 
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Overset Mesh Simulations – Examples 
•  As always, can use animation to verify; these were done using Tecplot 

output from FUN3D  

FUN3D Training Workshop 
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Troubleshooting 
•  Orphan count is an indicator (though hardly precise) of problems -

either in setup of SUGGAR++ or a poor mesh 
–  Both standalone SUGGAR++ and FUN3D (“on the fly”) report 

orphan counts 
•  should have none “due to hole-cut failures”; nonzero count a 

good indicator of setup issues 
•  orphans “due to donor quality” perhaps an indicator or grid 

quality or setup 
–  Visualization often the best tool to remedy 
–  Celeritas’ GVIZ or Tecplot output from FUN3D can help sort out 

overset connectivity issues 

FUN3D Training Workshop 
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Learning Goals

• The challenges of unsteady adjoint-based design

• Additional inputs for unsteady design

• Example problem: Maximize L/D for a pitching wing

• Application examples

What we will not cover

• Extensive details on setting up the most general problems

2
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The Challenges of Unsteady Adjoint-Based Design
Sheer Expense

• The adjoint approach still provides all of the sensitivities at the same 

cost as analysis, and the 20x estimate still applies for the expense 

of an optimization

• But every simulation is now an unsteady problem

• Where the steady adjoint solver linearized about a single solution 

(the steady-state), the unsteady adjoint solver must essentially do 

this at every physical time step

3
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The Challenges of Unsteady Adjoint-Based Design
Big Data

• Since the adjoint must be integrated backwards in time, this implies 

that we have the forward solution available at every time plane

– Brute force it: Store the entire forward solution

– Recompute it: Store the forward solution periodically and recompute

intermediate time steps as needed

– Approximate it: Store the forward solution periodically and interpolate 

intermediate time planes somehow

4
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The Challenges of Unsteady Adjoint-Based Design
Big Data

• The amount of data adds up fast – consider an example:
– 50,000,000 grid points and 10,000 physical time steps

– Using a 1-equation turbulence model (6 unknowns per grid point)

– Dynamic grids (3 additional unknowns per grid point)

→ 50,000,000 x 10,000 x (6+3) x 8 bytes = 36 Terabytes

• So far, this amount of data has not been prohibitively large for our 

resources, but it is a lot (and we need to go bigger)
– Will need to tackle this in the long-term

• So far, the challenge has been efficiently getting the data to/from 

the disk at every single time step

5

In FUN3D, we store all of the forward data to disk
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The Challenges of Unsteady Adjoint-Based Design
Big Data

• Conventional approaches used to                                                     

write restart files are prohibitively                                              

expensive

• System should have a parallel file                                                  

system

• FUN3D uses parallel, asynchronous,                                     

unformatted direct access read/writes                                                

from every rank
– Flow solver is writing the previous time                                                                

plane while the current time step is                                                               

computing

– Adjoint solver is pre-fetching earlier time planes while the current time step is 

computing

• This strategy performs well for the problems we have run, but is 

not infinitely scalable

6
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The Challenges of Unsteady Adjoint-Based Design
Extensive Linearizations

• If dynamic grids are involved, all of the unsteady metrics and mesh 

motion/deformations must be differentiated at each time step

• If overset dynamic grids are involved, the relationship between the 

component grids must also be differentiated at each time step –

both motion and interpolants

• If another disciplinary model impacts the CFD model, then that other 

discipline must also be differentiated, as well as the coupling 

procedure between the two

7
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The Challenges of Unsteady Adjoint-Based Design
The Chaos Problem

• Theory exists that states these sensitivities are well-defined and bounded

Why does conventional approach not work?

For chaotic flows:

• The finite time average approaches the infinite time average

• The sensitivity for a finite time average does not approach the sensitivity for the 
infinite time average

Wish to compute sensitivities of infinite time
averages for chaotic flows (DES, HRLES, LES…)

Chaotic shedding for 0012

M∞=0.1  Re=10,000  =20

10-10

10-5

1010

105

1015

100

Adjoint solution grows

exponentially in reverse time
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The Challenges of Unsteady Adjoint-Based Design
The Chaos Problem

• Least-Squares Shadowing (LSS) method proposed by Wang (MIT) and 
Blonigan (MIT; former LaRC student)

• Key assumption is ergodicity of the simulation: long time averages 
are essentially independent of the initial conditions

• Also assumes existence of a shadowing trajectory

• The LSS formulation involves a linearly-constrained least squares 
optimization problem which results in a set of optimality equations

• The LSS adjoint equations are a globally coupled system in 
space-time

• To date, work at MIT has focused on solutions of this system for 
academic dynamical systems containing O(1) state variables

• Close collaboration between LaRC and MIT is exploring the extension 
to CFD systems: enormous computational challenge for even the 
smallest of problems

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
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The Challenges of Unsteady Adjoint-Based Design
The Chaos Problem

Shedding NACA 0012

M∞=0.1  Re=10,000  =20

102,940 grid points

Instantaneous Lift vs Time

Averaging
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• Goal is to compute an AOA 
sensitivity that would allow us to 
maximize the time-averaged lift over 
final 1,000 time steps
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The Challenges of Unsteady Adjoint-Based Design
The Chaos Problem

• FUN3D used to output data for use in LSS solver

• Nonlinear residual vectors; Jacobians of residual, objective function

• For this tiny problem, this is 1.1 TB of raw data

• Dimension of the resulting LSS
matrix problem:

102,940 grid points x 5 DOFs
x 2,000 time planes = 1.03 billion

• Stand-alone LSS solver has been
developed where decomposition is
performed in time with a single time
plane per core

• Global GMRES solver used with a
local ILU(0) preconditioner for each
time plane

Just tip of the iceberg – desired simulations are 106 larger!

Desired matrix dimension = 109 x 106 = 1015

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
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Additional Inputs For Unsteady Design
Design Variables

• All design variables available for steady flows are also available for 
unsteady flows

• Design variables for a body may now also include FUN3D’s rigid 
motion parameters

• Also have infrastructure for other variables such as boundary 
condition parameters (e.g., blowing/suction rates), pilot inputs 
(collective, cyclics) for rotor trimming, etc

12
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Additional Inputs For Unsteady Design
Custom Kinematics

• Design of custom kinematics: users may provide their own routine 
with a time-dependent T(D) matrix governing an individual body’s 
motion
– Written in complex-variable form, FUN3D will determine its Jacobians

automatically

13

!================================ USER_SUPPLIED_T ============================80

!

!  Provides route for user to supply a custom T matrix as a function of time

!  and design variables.  Complex-valued variables enable automated jacobian

!  evaluation.

!

!=============================================================================80

subroutine user_supplied_t(ndv,current_time,dvs,t,xcg,ycg,zcg)

use kinddefs, only : dp

integer, intent(in) :: ndv

complex(dp), intent(in)  :: current_time

complex(dp), intent(out) :: xcg, ycg, zcg

complex(dp), dimension(ndv), intent(in)  :: dvs

complex(dp), dimension(4,4), intent(out) :: t

continue

end subroutine user_supplied_t

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
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Additional Inputs For Unsteady Design
Objective/Constraint Functions

• The unsteady implementation supports two forms of 
objective/constraint functions

• The first is based on an integral of the functional form f introduced 
for steady flows:

• The second form is similar, but is based on time-averaged 
quantities:

14
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Additional Inputs For Unsteady Design
Objective/Constraint Functions

• The sign of the cost function/constraint input toggles between the 
two unsteady function forms

– Positive sign indicates form #1, negative sign indicates form #2

• In addition to the inputs required for steady simulations, the user 
must now also provide the time interval over which to accumulate 
the cost function

15

##############################################################################

############################ Function Information ############################

##############################################################################

Number of composite functions for design problem statement

1

##############################################################################

Cost function (1) or constraint (2)

1

If constraint, lower and upper bounds

0.0 0.0

Number of components for function   1

1

Physical timestep interval where function is defined

1 1

Composite function weight, target, and power

1.0 0.0 1.0

Components of function   1: boundary id (0=all)/name/value/weight/target/power

0 clcd 0.000000000000000           1.000   20.00000 2.000

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

Maximize Time-Averaged L/D for a Pitching Wing

• FUN3D’s design driver and the optimization packages themselves 
don’t distinguish between steady and unsteady CFD problems –
they just see f and f

• The problem setup is very similar to steady design cases; will only 
highlight the differences here

16
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• Tell the solvers that it is a moving grid case

• Also specify that we want to do a time-dependent adjoint

– This kicks in the I/O mechanisms, among other things

command_line.options

2

2 flow

‘--moving_grid’

‘--timedep_adj_frozen’

2 adjoint

‘--moving_grid’

‘--timedep_adj_frozen’

Maximize Time-Averaged L/D for a Pitching Wing

http://fun3d.larc.nasa.gov
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• Body names must match those specified in rubber.data

moving_body.input

&body_definitions

n_moving_bodies = 1,         ! number of bodies in motion

body_name(1) = 'domain',     ! name must be in quotes

parent_name(1) = '',         ! '' means motion relative to inertial ref frame

n_defining_bndry(1) = -1,    ! shortcut to specify all solid surfaces

defining_bndry(1,1) =  1,    ! index 1: boundary number 2: body number; use any number for shortcut

motion_driver(1) = 'forced', ! 'forced', '6dof', 'file', 'aeroelastic'

mesh_movement(1) = 'rigid',  ! 'rigid', 'deform'

x_mc(1) = 0.25,              ! x-coordinate of moment_center

y_mc(1) = 0.0,               ! y-coordinate of moment_center

z_mc(1) = 0.0,               ! z-coordinate of moment_center

move_mc(1) = 1               ! move mom. cntr with body/grid: 0=no, 1=yes

/

&forced_motion

rotate(1) = 2,                  ! rotation type: 1=constant rate 2=sinusoidal

rotation_freq(1) = 0.009000,    ! reduced rotation frequency

rotation_amplitude(1) = 5.00,   ! max rotational displacement

rotation_origin_x(1) = 0.25,    ! x-coordinate of rotation origin

rotation_origin_y(1) = 0.0,     ! y-coordinate of rotation origin

rotation_origin_z(1) = 0.0,     ! z-coordinate of rotation origin

rotation_vector_x(1) = 0.0,     ! unit vector x-component along rotation axis

rotation_vector_y(1) = 1.0,     ! unit vector y-component along rotation axis

rotation_vector_z(1) = 0.0,     ! unit vector z-component along rotation axis

/

Maximize Time-Averaged L/D for a Pitching Wing
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• Body names must match those specified in moving_body.data

rubber.data

################################################################################

######################## Design Variable Information ###########################

################################################################################

Global design variables (Mach number / angle of attack)

Index Active         Value               Lower Bound            Upper Bound

Mach    0   0.000000000000000E+00  0.000000000000000E+00 0.000000000000000E+01

AOA    0   0.000000000000000E+00  0.000000000000000E+00  0.000000000000000E+01

Number of bodies

1

Rigid motion design variables for 'domain'

Var Active         Value               Lower Bound            Upper Bound

RotRate 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

RotFreq 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

.

.

TrnVecy  0   0.000000000000000E+00  0.000000000000000E+00  0.500000000000000E+01

TrnVecz 0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

Parameterization Scheme (Massoud=1 Bandaids=2 Sculptor=4)

1

Number of shape variables for 'domain'

166

Index Active         Value               Lower Bound            Upper Bound

1    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

2    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

.

.

164    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

165    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

166    0   0.000000000000000E+00  0.000000000000000E+00 0.500000000000000E+01

Maximize Time-Averaged L/D for a Pitching Wing
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• Negative sign on function/constraint selection indicates time-

averaging form is to be used

• Time step interval for function is also specified

rubber.data

################################################################################

############################ Function Information ##############################

################################################################################

Number of composite functions for design problem statement

1

################################################################################

Cost function (1) or constraint (2)

-1

If constraint, lower and upper bounds

0.0 0.0

Number of components for function   1

1

Physical timestep interval where function is defined

51    100

Composite function weight, target, and power

1.0 0.0 1.0

Components of function   1: boundary id (0=all)/name/value/weight/target/power

0 clcd 0.000000000000000           1.000   20.00000 2.000

Maximize Time-Averaged L/D for a Pitching Wing
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• The optimization is executed 

just as in the steady flow case

• Here, the time-averaged value 

of L/D has been raised from its 

nominal baseline value of 0 to 
an optimized value of 6.8

Maximize Time-Averaged L/D for a Pitching Wing

http://fun3d.larc.nasa.gov
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• This capability is very advanced and can require extensive problem setup for 

more general, complex applications

• Willing to work closely with someone interested in using it, but fire-hosing you 

with the intimate details at this point is probably not productive

• Instead, consider some of these prior applications to perhaps spur some ideas 

on future uses...

Unsteady Design Applications

Adjoint Propagating Upstream

of Wind Turbine
Design of Tilt Rotor

During Pitch-Up
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F-15 Configuration
Modify Shape to Maximize L/D Subject to Prescribed Oscillations
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Active Flow Control Study

Shape Deformation

Jet Sliding Relative Translation

And Rotation

Jet Incidence

• Objective: Maximize lift using all 
available parameters

• Design variables include
– External wing shape
– Jet blowing parameters
– Jet incidence and location
– Relative location of slat/main/flap

• Scaling study also performed for very 
frequent massively parallel I/O

• Designs performed using 2,048 cores 
for ~5 days per run

• Mean value of lift increased by 27%
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Flapping Wing Shape & Kinematics

Baseline Optimal
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UH-60 Black Hawk
Maximize Lift Subject to Trimming Constraints

1 1cos sinc c s       

Blade

pitch Collective Lateral cyclic
Longitudinal cyclic

View of Blade Articulation from

Blade Reference Frame

• Design variables include blade shape and collective/cyclics

• Three unsteady adjoints computed simultaneously (lift, long/lat moments)

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
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• Adjoint shows sensitivity of objective function to local disturbances in space and time

• May also be used to perform rigorous error estimation and mesh adaptation

– Traditional feature-based techniques do not identify such regions

UH-60 Black Hawk
Maximize Lift Subject to Trimming Constraints
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List of Key Input/Output Files

Input

• Same as for steady flows, plus

• moving_body.input

Output

• Same as for steady flows

29

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
June 20-21, 2015

What We Learned

• Challenges involved with adjoint-based unsteady design

• Additional inputs required for unsteady design

• Simple design example for pitching wing

• Previous applications

30

Many aspects of this capability are “researchy” and 

applications of it would benefit from close collaboration
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Session Scope 
•  What this will cover 

–  The two methods of aeroelastic coupling with FUN3D 
•  Static coupling with an external structural solver (linear or nonlinear 

structures) 
•  Dynamic coupling to a self-contained, mode-based, linear 

structures model 
•  What will not be covered 

–  Projection of mode shapes and forces/displacements to/from CFD 
and FEM 

–  Structural modeling or FEM usage 
•  What should you already be familiar with 

–  Basic steady-state, time-dependent, and dynamic-mesh  solver 
operation and control, especially as pertains to deforming meshes  

–   Basic flow visualization 

FUN3D Training Workshop 
June 20-21, 2015  2 
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Introduction 
•  Background  

–  Aeroelastic problems of interest that can be tackled with FUN3D 
fall into 2 general categories 
•  Static: structural displacement asymptotes to a fixed level; 

coupling between CFD and CSD can be done infrequently - 
typically interested in accounting for the structural displacement 
on (say) cruise performance 

•  Dynamic: the change in aero affects the structural deformation to 
the extent that there is an unsteady coupling between the two;  
coupling between CFD and CSD must be done frequently - 
prediction of flutter onset is the classic example 

•  Compatibility 
–  Compatible with compressible flow; mixed elements; 2D/3D 

•  Status 
–  Modal (flutter) analysis fairly routine; static FEM coupling much 

less so - still evolving; dynamic FEM coupling needs “framework” 
 FUN3D Training Workshop 

June 20-21, 2015  3 
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Static Aeroelastics - Overview 
•  Basic process (not a moving_grid problem - no moving_body.input ) 

1. Solver starts with an initial grid and solution 
2. Solver reads in a new surface shape and deforms the mesh to fit 
3. Solver performs the requested number of iterations, and outputs 

aerodynamic loads to a file 
4. Middleware maps aerodynamic loads at CFD grid points onto FEM grid 
5. Structural solver computes new displacements from the airloads 
6. Middleware maps structural displacements onto new surface 
7. Back to step 2; repeat until converged - airloads and displacements 

•  Historically, Jamshid Samareh of NASA Langley provided middleware 
(“DDFdrive”) for this loads and deflection transfer; release of this software 
transitioning to FUN3D team – contact FUN3D-Support@lists.nasa.gov  

•  In principle, the above could be applied every time step of a dynamic 
aeroelastic case; however, file I/O is very inefficient for this 

 
FUN3D Training Workshop 
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Static Aeroelastics - New Surface Shape 
•  Reading of the updated surface(s) is triggered by the CLO                                 
--read_surface_from_file  
–  File(s) read once at the start of solver execution (steady-state mode) 
–  File root name must be of the form [project]_bodyN (for body N) 
–  File extensions: .dat or .ddfb  

•  [project]_bodyN.dat  ASCII Tecplot file, “FEPOINT” style 
•  [project]_bodyN.ddfb  Binary (“stream”) DDFdrive style 
•  DDFdrive middleware supports both - .ddfb preferred 

–  File provides new x,y,z coordinates for each surface point plus an 
integer that identifies the point in the volume-mesh numbering system 

–  Options for this input surface file input are specified in the 
&massoud_output namelist (details later) 

FUN3D Training Workshop 
June 20-21, 2015  5 
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Static Aeroelastics - Aero Loads Output 
•  Output is triggered by the CLO  --write_aero_loads_to_file  

–  File(s) written at a user-controlled frequency 
–  File root name of the form [project]_ddfdrive_bodyN (Nth body) 
–  File extensions: .dat or .ddfb  

•  [project]_ddfdrive_bodyN.dat  ASCII Tecplot file, “FEPOINT” 
style 

•  [project]_ddfdrive_bodyN.ddfb  Binary (“stream”) DDFdrive 
style 

•  DDFdrive middleware supports both 
–  File provides current Cp, Cfx, Cfy, Cfz for each surface point plus an 

identifier that maps the point in the volume mesh 
–  Options for this output surface file input are specified in the 
&massoud_output namelist (next) 

FUN3D Training Workshop 
June 20-21, 2015  6 
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Static Aeroelastics - &massoud_output (1/2)  
•  The &massoud_output namelist serves several closely-related 

purposes, and the name is not especially well-suited to any of them… 
•  For static aeroelastics, it is used to 

–  Define the aeroelastic body(s) as a collection of boundary surfaces 
–  Specify the format of the new surface file and the output aero loads file 
–  Specify the frequency of the aero loads output 

•  Naming convention: [project]_ddfdrive_bodyN.dat 
•  Example: 

&massoud_output 
  aero_loads_file_format = 'stream’ (default = ‘ascii’) 
  massoud_file_format    = 'stream’ (default = ‘ascii’) 
  aero_loads_output_freq = -1       (if +n…output every n steps) 
  n_bodies               = 1        (default = 0) 
  nbndry(1)              = 3        (default = 0) 
  boundary_list(1)       = '1,2,3’  (default = ‘’) 
/ 

 
FUN3D Training Workshop 
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Static Aeroelastics - &massoud_output (2/2)  
•  The &massoud_output namelist has additional options 
-  rotate, translate and scale the geometry written to the aero loads file 
-  multiply the aero coefficients by the dynamic pressure to get forces 
-  rotate, translate and scale the geometry read from the new surface file 
-  output aero loads on either the deflected or undeflected surfaces 
-  See Manual for these infrequently-used options 

 

FUN3D Training Workshop 
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Static Aeroelastics - Towards Automation  
•  As outlined, the process is rather cumbersome, with multiple separate 

steady-state runs of the flow solver, the FEM and middleware 
–  For our own in-house work we have written a few scripts to orchestrate 

these steps using DDFdrive 
–  Contact FUN3D-Support@lists.nasa.gov if interested (scripts are not 

part of standard distribution) 
•  Longer term, we plan on a “framework” to allow direct access of data 

between CFD, FEM and middleware to avoid file I/O 
–  Helpful for static coupling with an FEM; essential for dynamic coupling 
–  Stay tuned for development along these lines 

FUN3D Training Workshop 
June 20-21, 2015  9 
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Static Aeroelastic Coupling Example 

FUN3D Training Workshop 
June 20-21, 2015  10 

Recent Application: Inflatable Decelerator - Low Speed Test  
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“Bootstrapping” Aeroelastic Problems (1/2)  
•  All aeroelastic problems, (except highly-specialized rotorcraft problems), 

utilize either an ASCII Tecplot (.dat) or stream DDFdrive (.ddfb) file to 
define either a new surface or a set of mode shapes 
-  These files need to have the correct surface points for the surface/

body in question, plus an integer tag for each point that maps the 
surface point in the corresponding volume grid. 

-   The tag must be preserved throughout any external manipulation of 
these files (when shape is updated or modes mapped onto surface) 

•  How does one generate this surface info?  
-  Use the CLO --write_massoud_file and  &massoud_output 

namelist input during an initial run (perhaps when generating a rigid 
steady-state solution) 

-  This will generate a [project]_massoud_bodyN.(dat or ddfb) 
file for input to DDFdrive or as a template for some other middleware. 

-  Rename as needed (e.g. [project]_bodyN for static AE) 

 

FUN3D Training Workshop 
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“Bootstrapping” Aeroelastic Problems (2/2)  
•  Example 

&massoud_output 
  n_bodies  = 2 
  nbndry(1) = 3 
  boundary_list(1) = ‘5 7 9’ 
  nbndry(2) = 2 
  boundary_list(2) = ‘3 4’ 
/ 

•  Also need CLO --write_massoud_file 

 

FUN3D Training Workshop 
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Dynamic Aeroelastic Coupling 
•  For time-accurate aeroelastic modeling, FUN3D currently relies on a modal 

decomposition approach 
–  Linear structural dynamics equation (see AIAA 2009-1360) - appropriate 

for small deflections (e.g. during flutter onset) 
–  Deflection assumed a linear combination of eigenmodes (mode shapes) 

•  FEM model used a priori to extract eigenmodes / frequencies  
•  Deflection represented as linear combination of eigenmodes (mode 

shapes) 
•  Typically only a limited set of the “important” eigenmodes retained 

–  A nonlinear aerodynamics model is used (FUN3D), so effects of shocks 
and viscosity can be captured in the flow field 

–  Middleware (e.g. DDFdrive) maps eignenmodes onto CFD surface in a 
one-time preprocessing step; at startup FUN3D reads these 

–  Aerodynamics at current time step determine the weight applied to each 
eigenmode; current shape is weighted sum of eigenmodes 
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Dynamic Aeroelastic Coupling 

FUN3D Training Workshop 
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Vertical Scale 
Arbitrary 

First 4 Mode Shapes AGARD 445 Wing 
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Dynamic Aeroelastic Coupling 
•  Typical flutter assessment process 

1.  Run FEM to extract and output the desired modes 
2.  Run FUN3D in steady-state mode with --write-massoud CLO to 

generate a steady-state solution and provide a file(s) that will serve 
as a template for subsequent mode-shape files 

3.  Map the FEM modes onto the template (DDFdrive can be used) to 
generate one surface file per mode 

4.  Run FUN3D in moving-grid, time-dependent mode, using modal 
aeroelastic inputs (upcoming slides) with critical damping ratio ~1 

–  This yields a static aeroelastic deflection, the starting point for 
flutter assessment 

–  Symmetric configuration at zero AoA can skip this step (as in the 
case in tutorial example covered later) 

5.  Run FUN3D in moving-grid, time-dependent mode, using modal 
aeroelastic inputs with a initial perturbation to “kick” elastic response; 
does response grow or decay? 
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Dynamic Aeroelastic Coupling  
•  Steps 4&5 require command-line “option”: --aeroelastic_internal 
•  File nomenclature / format for mode shape input files 

–  For every aeroelastic body B, each mode shape M is in a different file: 
[project]_bodyB_modeM.dat (.ddfb) 

–  Files are once again either ASCII Tecplot files (.dat) or stream 
DDFdrive files (.ddfb), similar to those input for static aeroelastic 
analysis, only now have modal amplitudes as well: 

 TITLE="wing-445.6 Mode 1" 

 VARIABLES= "x" "y" "z" "id" "xmd" "ymd" "zmd" 

 ZONE  I= 57286 ,  J= 101359 , F=FEPOINT 

  0.109050E+01 -0.650348E+00 -0.294021E-01 17  0.000000E+00  0.000000E+00  0.869050E-01 

  0.691189E+00 -0.650348E+00  0.000000E+00 18  0.000000E+00  0.000000E+00  0.448300E-01 

  0.000000E+00  0.000000E+00  0.000000E+00 23  0.000000E+00  0.000000E+00 -0.276958E-02 

•  Can output a “massoud file” from FUN3D (see “Bootstrapping” slide) to 
use as a template file with x,y,z, and id to which the middleware can add 
modal amplitudes 
 

 
 

FUN3D Training Workshop 
June 20-21, 2015  16 



6/9/15	
  

FUN3D	
  Training	
  Workshop	
   9	
  

http://fun3d.larc.nasa.gov 

Tutorial Case: AGARD 445 Wing (1/8) 
•  Test case located in: tutorials/flow_modal_aeroelasticity 
-  run_tutorial.sh script performs steps 2,3, and 5 of the typical 

flutter assessment process 
•  FEM mode shapes (Step 1) are given in Modes/445.6-mode.dat 
•  No need for Step 4: symmetric airfoil at 0 deg. AoA 
•  This tutorial case takes several hours to run 

•  Well-known test case for flutter prediction 
–  Tested in NASA Langley Transonic Dynamics Tunnel c. 1960 
–  Often run as inviscid (as we do here) 
–  Typically run over a range of transonic Mach numbers to see at what 

dynamic pressure the wing begins to flutter (and with what frequency): 
here we consider only Mach 0.9 and q = 75 psf 

!
FUN3D Training Workshop 

June 20-21, 2015  17 
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Tutorial Case: AGARD 445 Wing (2/8) 
•  Step 2: Generate template for FUN3D mode-shape files 
-  Typical steady-state run, but with CLO --write_massoud_file, and 

fun3d.nml namelist input: 
   &massoud_output 
     n_bodies         = 1 
     nbndry(1)        = 1   ! Note:family lumping -> 1 boundary 
     boundary_list(1) = ‘3’ ! Lumped wing is now boundary no. 3 
   / 

–  Generates file wing-445.6_massoud_body1.dat: 
title="surface points and l2g id for massoud" 
variables="x","y","z","id" 
zone t="mdo body 1", i=50827, j=101359, f=fepoint,  solutiontime= 0.8000000E+03, 
strandid=0 
   0.294576800000000E+001 -0.250000000000000E+001  0.212627299999966E-001          1 
   0.386499999999999E+001 -0.250000000000000E+001  0.000000000000000E+000          2 
   0.254080100000000E+001 -0.209625900000000E+001  0.230393900000010E-001          3 
   0.222790400000000E+001 -0.209625900000000E+001  0.000000000000000E+000          4 
   ... 
–  FUN3D mode files must preserve these x,y,z and id values, and append 

the x,y,z modal amplitude at the end of each line – Mode.f does this    

!

FUN3D Training Workshop 
June 20-21, 2015  18 
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Tutorial Case: AGARD 445 Wing (3/8) 
•  Step 3: Map FEM modal data onto template file generated in Step 2 (one 

file per mode). In this case we use the custom code Mode.f but could 
alternatively use a more general tool like DDFdrive 
-  In this case we end up with 4 files, e.g. 
wing-445.6_body1_mode1.dat 

 TITLE="wing-445.6 Mode 1" 
 VARIABLES= "x" "y" "z" "id" "xmd" "ymd" "zmd" 
 ZONE  I=       50827 ,  J=      101359 , F=FEPOINT 
  0.294577E+01 -0.250000E+01  0.212627E-01     1  0.000000E+00  0.000000E+00  0.182049E+01 
  0.386500E+01 -0.250000E+01  0.000000E+00     2  0.000000E+00  0.000000E+00  0.239954E+01 
  0.254080E+01 -0.209626E+01  0.230394E-01     3  0.000000E+00  0.000000E+00  0.131437E+01 
  0.222790E+01 -0.209626E+01  0.000000E+00     4  0.000000E+00  0.000000E+00  0.114554E+01 

   ... 
–  Mode.f has lost a few digits of precision relative to the template, but 

otherwise preserves the x,y,z and id values; xmd, ymd, and zmd are the 
mode amplitudes at each point 

!
FUN3D Training Workshop 
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Tutorial Case: AGARD 445 Wing (4/8) 
•  Step 5:  moving_body.input file: 

&body_definitions 

 n_moving_bodies   = 1               ! define bodies as collection of surfaces 
  body_name(1)     = ‘airfoil’      ! some name 
  n_defining_bndry(1) = -1          ! use all solid surfaces 
  motion_driver(1) = 'aeroelastic’ 
  mesh_movement(1) = 'deform’ 
/ 
&aeroelastic_modal_data  ! below, b = body #, m = mode number 
  plot_modes   = .true.    ! can tecplot to verify mode shapes read correctly 
  nmode(1)     = 4         ! 4 modes for this body 
  uinf(1)      = 973.4     ! free stream velocity (ft/s) 
  grefl(1)     =   1.00       ! scale factor between CFD and FEM models    
  qinf(1)      =  75.0        ! free stream dynamic pressure, psf 
  freq(1,1)    =  60.3135016  ! mode frequency (rad/s) 
  freq(2,1)    = 239.7975647 
  freq(3,1)    = 303.7804433 
  freq(4,1)    = 575.1924565 
  gmass(1:4,1) = 4*0.08333  ! generalized mass (nondim) 
  gvel0(1:4,1) = 0.1        ! nonzero initial velocity to kick off dynamic 

                                         ! response; set = 0 on restart - don’t kick 
 /                          ! me twice 
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Tutorial Case: AGARD 445 Wing (5/8) 
•  Step 5 (cont) Setting the FUN3D timestep 

–  From experiment, the flutter frequency at Mach 0.9 is      ~ 120 rad/
sec, so we’ll assume we need to resolve at least up to this frequency 

–  From nondimensionalization slides, have 
•   tchr = (1/ f *) a*inf (Lref/L*ref) = (2    /     ) a*inf (Lref/L*ref)                                                  
•     t = tchr /N 

–  Take 200 steps to resolve this frequency; from previous slide have  
•   U*inf  =  973 ft/sec so at M=0.9, a*inf = 1081 ft/sec 
•   The grid is in ft so Lref/L*ref = 1 
•      t = (6.28/120) 1081 (1) / 200 = 0.283  (tutorial uses 0.3) 
•  In practice, would need to do a time step refinement to verify this 
time step is adequate (at this time step, mode 4 resolved with only 
~42 steps/period) 

FUN3D Training Workshop 
June 20-21, 2015  21 

€ 

Δ

€ 

Δ

€ 

ω*

€ 

π

€ 

ω*

http://fun3d.larc.nasa.gov 

Tutorial Case: AGARD 445 Wing (6/8) 
•  Output of generalized force, displacement and velocity into files, e.g. 
aehist_bodyN_modeM.dat (ASCII Tecplot) 

#  qinf =  7.50000E+01  uinf =  9.73400E+02  Mach =  9.00000E-01 
variables = "Simulation_Time", "gdisp", "gvel", "gforce" 
zone t = "modal history for airfoil, mode   1" 
    0.00000000E+00    0.00000000E+00    1.00000000E-01    0.00000000E+00 
    3.00000000E-01    2.77176987E-05    9.98502122E-02   -8.15943032E-02 
    6.00000000E-01    5.53732953E-05    9.95522312E-02   -7.22530082E-02 

… 
!

 

 
 

FUN3D Training Workshop 
June 20-21, 2015  22 

Typical plot to 
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0.1 perturbation in gvel) 
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Tutorial Case: AGARD 445 Wing (7/8)  

FUN3D Training Workshop 
June 20-21, 2015  23 

•  The dynamic pressure (q = 75 psf ) in the tutorial does not lead to flutter 
at M = 0.9 – so we would need to increment q and repeat until we found 
a response that grows with time (M = 78.6 psf) – then repeat over the 
Mach range 

•  Pawel Chwalowski, Aeroelasticity Branch, NASA Langley has carried out 
this exercise and provided these plots (not part of tutorial): 

http://fun3d.larc.nasa.gov 

Tutorial Case: AGARD 445 Wing (8/8)  

FUN3D Training Workshop 
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Results Courtesy Pawel Chwalowski, Aeroelasticity Branch, NASA Langley 
(These animations not generated as part of the tutorial) 

 
Inviscid Flow Mach=0.9, Flutter condition, Q = 78.6 psf 
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Additional Considerations 
•  Be especially careful with dimensions and coordinate systems since at 

one point or another exchange must be done between CFD and FEM - 
need to ensure consistency! 

•  Note that frequencies increase in the higher modes; choose time steps 
accordingly  
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List of Key Input/Output Files 
•  Beyond basics like fun3d.nml, [project]_hist.tec, etc.: 
•  Input 

–   moving_body.input 
–  [project]_body1.dat (.ddfb) (external FEM / static AE) 
–  [project]_bodyB_modeM.dat (.ddfb) (modal structures) 

•  Output 
–  aehist_bodyB_modeM.dat (modal structures only) 
–  [project]_ddfdrive_bndryN.dat (with CLO) 

FUN3D Training Workshop 
June 20-21, 2015  26 
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Session Scope 
•  What this will cover 

–  Overview of actuator-disc models for rotorcraft 
–  Overview of setup for “first principles” articulated-blade rotorcraft 

simulations using overset grids 
•  Rigid Blades 
•  Elastic Blades / Loose Coupling to Rotorcraft Comprehensive Codes 

•  What will not be covered 
–  Rotorcraft Comprehensive Code set up and operation 
–  All the many critical setup details for the “first principles” approach 

•  What should you already know 
–  Basic time-accurate and dynamic-mesh solver operation and control 
–  Rudimentary rotorcraft aeromechanics (collective, cyclic…) 

FUN3D Training Workshop 
June 20-21, 2015  2 
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Introduction 
•  Background 

–  FUN3D can model a rotor with varying levels of fidelity/complexity 
•  As an actuator disk – low-fidelity representation of the rotor - when 

only the overall rotor influence on the configuration is needed 
•  As rotating, articulated-blade system (cyclic pitch, flap, lead-lag), 

with or without aeroelastic effects - if detailed rotor airloads are 
needed 

–  Trim and aeroelastic effects require coupling with a rotorcraft 
“comprehensive” code 

•  As a steady-state problem for rigid, isolated, fixed-pitch blades in a 
rotating noninertial frame 

•  Compatibility 
–  Coupled to the CAMRAD II and RCAS comprehensive codes 

•  Status 
–  Far less experience / testing with RCAS than with CAMRAD II 
–  Near future: hooks to US Army’s HELIOS rotorcraft framework 

FUN3D Training Workshop 
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Time-Averaged Actuator-Disk Simulations (1/3) 
•  Actuator disk method utilizes momentum and energy equation source 

terms to represent the influence of the disk 
– Original implementation by Dave O’Brien (GIT Ph.D. Thesis) 
– HI-ARMS implementation (SMEMRD) by Dave O’Brien ARMDEC 

adds trim and ability to use C81 airfoil tables (Not covered ) 
•  Simplifies grid generation – actuator disk is automatically embedded in 

computational grid (refinement in the vicinity of actuator surface improves 
accuracy) 

•  Any number of actuator disks can be modeled 
•  Requires the --rotor  command line option (--hiarms_rotor  for 

SMEMRD). See rotor.input section in user manual for full details 
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Time-Averaged Actuator-Disk Simulations (2/3) 
•  Different disk loading models available 

–  RotorType = 1 actuator disk 
•  LoadType = 1 constant (specified thrust coefficient CT) 
•  LoadType = 2 linearly increasing to blade tip (specified CT ) 
•  LoadType = 3 blade element based (computed CT ) 
•  LoadType = 4 not recommended, user specified sources 
•  LoadType = 5 CT and CQ radial distributions proved in a file 
•  LoadType = 6 Goldstein distribution with optional swirl (specified 

CT and CQ) 
–  RotorType = 2 actuator blades (time-accurate) Not Functional 
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Time-Averaged Actuator-Disk Simulations (3/3) 
•  Actuator disk implementation compatible with the standard steady-state 

flow solver process (compressible and incompressible) 
– Standard grid formats for the volume grids 
– Standard solver input deck (fun3d.nml)  
– Standard output is available (project.forces, 
project_hist.tec, project_tec_boundary.plt)  

– Want similar solution convergence as a standard steady-state case 
•  Standard actuator disk model is activated in the command line by        
-–rotor 

– Rotor input deck file (rotor.input) is required in the local directory 
– rotor.input contains disk geometry and loading specifications 
– The disk geometry and loading are output in plot3d format in files 
source_grid_iteration#.p3d and 
source_data_iteration#.p3d 
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 rotor.input File 
•  Constant/linear loading needs only a subset of the data in the file data 

(manual defines variables) 
  # Rotors   Uinf/Uref  Write Soln   Force Ref  Moment Ref    ! Below we set Uref = Uinf 
         1       1.000        1500    0.001117    0.001297    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Utip/Uref = 1/AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           2          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
     0.696         0.0       0.322        0.00        -0.0        0.00 
 Utip/Uref  ThrustCoff  TorqueCoff        psi0 PitchHing/R      DirRot 
     19.61      0.0064        0.00         0.0         0.0           0 
  # Blades   TipRadius  RootRadius  BladeChord FlapHinge/R  LagHinge/R 
         4       0.861       0.207       0.066       0.051       0.051 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
       0.0        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      0.00        0.00        0.00        0.00           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 

•  Vref=Vtip a bad choice for incompressible – use rotor induced velocity 
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Key: 
Required for constant/linear actuator disk 
Addt’l data for blade element or “first 
principles” simulations 
(all items must have a value, even if 
unused)   
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Robin Fuselage with Actuator Disk  
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Green: surface mesh from  
FUN3D input mesh 

Red: disk mesh generated with resolution 
#Radial x #Normal (azimuthal!!) from rotor.data 
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Incompressible Robin/Actuator Disk 
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Advance Ratio = 0.051 (Vinf/Vtip) 
Thrust coefficient CT = 0.0064 
Angle of attack = 0o Shaft angle = 0o 
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Articulated-Blade Simulations 
•  “First Principles” – rotor flow is computed, not modeled 

–  Requires moving, overset grids; blades may be rigid or elastic 
•  Elastic-blade cases (or trimmed rigid-blade cases) must be coupled to a 

rotorcraft Computational Structural Dynamics (CSD, aka comprehensive) 
code such as CAMRAD or RCAS 

– The CSD code provides trim solution in addition to blade deformations  
– The interface to the CSD code is through standard OVERFLOW 
rotor_N.onerev.txt and motion.txt type files 

– Interface codes for CAMRAD are maintained and distributed by Doug 
Boyd, NASA Langley (contact d.d.boyd@nasa.gov) 

– RCAS coupling does not require any interface codes (RCAS API) 
– FUN3D has several postprocessing utility codes tailored to CAMRAD 

•  Coupled simulations are about as complicated as it gets with the basic 
FUN3D flow solver 

– There are many small details that must be done correctly; we don’t 
have time to cover them all here 
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CFD/CSD – Loose (Periodic) Coupling 
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Coupling Process CSD -> CFD 

CFD -> CSD 

CFD/CSD loose coupling implemented via shell 
script with error checking  

motion.txt file (blade elastic motion) and 
 rotor_onerev.txt file (aero loads) common to 

FUN3D and OVERFLOW 
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•  Typically define the flow reference state for rotors based on the tip 
speed; thus in rotor.input, set Utip/Uref = 1.0 (data line 4) 

•  This way, Uinf/Uref (data line 1) is equivalent to Uinf/Utip, which is the 
Advance Ratio, and is usually specified or easily obtained 

•  Since the reference state corresponds to the tip, the mach_number in 
the fun3d.nml file should be the tip Mach number, and the 
reynolds_number should be the tip Reynolds number 

•  Nondimensional rotation rate: not input directly, but it is output to the 
screen; you might want to explicitly calculate it up front as a later check: 

                         (rad/s,       the rotor radius)                                                 

    and recall                                        (compressible) 
    so with                             and taking                         

                                                (compressible) 

                                                (incompressible)       

  !

 

 Rotor-Specific Nondimensional Input (1/2) 
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 Rotor-Specific Nondimensional Input (2/2) 
•  Nondimensional time step: 

    time for one rev:                                             (s) 

    and recall                                     (compressible) 

    so with                 we have 

                                                                                       (nondim time / rev)      

    For N steps per rotor revolution: 

                                                      (compressible) 

                                                      (incompressible) 

•  Note: the azimuthal change per time step is output to the screen in the 
Rotor info section. Make sure this is consistent, to a high degree of 
precision (say at least 4 digits), with your choice of N steps per rev – 
you want the blade to end up very close to 360 deg. after multiple revs! 

•  Formulas above are general, but recall we usually have ref = tip, at 
least for compressible flow 

  !
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T* = 2π /Ω* = 2π R* /Utip
*
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* )
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* /Uref

* )
€ 
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* = R*

€ 

Δ t = 2π R /(NUtip
* /Uref

* )
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dci_gen Preprocessor (1/8) 
•  A rudimentary code to simplify rotorcraft setup (/utils/Rotocraft/dci_gen) 

–  Uses libSUGGAR++ routines 
–  Takes a single blade grid and a single fuselage / background grid 

(extending to far field) and assembles them into an N-bladed rotorcraft 
–  Requires rotor.input file 
–  Creates the SUGGAR++ XML file (Input.xml_0) needed by FUN3D 
–  Generates, using libSUGGAR++ calls, the initial (t = 0) dci file and 

composite grid needed by FUN3D 
–  Generates the composite-grid “mapbc” files needed by FUN3D 
–  Component grids must be oriented as shown on following slide 

•  Blade must have any “as-built” twist incorporated 
•  If grids do not initially meet the orientation criteria, can use     

SUGGAR++ to rotate them before using dci_gen 
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dci_gen Preprocessor (2/8) 

HART II Component Grids 
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dci_gen Preprocessor (3/8) 
HART II Composite Grid 
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 rotor.input File 
•  Articulated rotors need only a subset of the data (manual defines variables) 

  # Rotors   Uinf/Uref  Write Soln   Force Ref Momment Ref    ! Below we set Uref = Utip 
         1       0.245        1500         1.0         1.0    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Uinf/Uref = AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           1          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
       0.0         0.0         0.0        0.00         0.0        0.00 
 Utip/Uref  ThrustCoff  TorqueCoff        psi0  PitchHinge      DirRot 
       1.0      0.0064        0.00         0.0      0.0466           0 
  # Blades   TipRadius  RootRadius  BladeChord   FlapHinge    LagHinge 
         4     26.8330      2.6666       1.741      0.0466      0.0466 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
      6.28        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      1.50       -1.50        1.50       -1.50           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 
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Key: 
Required for rigid and elastic 
Required for untrimmed rigid 
Unused (must have a value)   
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 Input For Articulated-Blade Simulations (1/2) 
•  Except as noted, inputs pertain to both untrimmed/rigid-blades and 

trimmed/elastic blades 

•  Run as time-dependent, so will need to set time step as per slide 13 

•  Required additional fun3d.nml input 
  &global 
   moving_grid = .true. 
   slice_freq  = 1             (optional if rigid untrimmed) 
/ 
&rotor_data 
   overset_rotor = .true. 
/ 
&overset_data 
   overset_flag       = .true. 
   dci_on_the_fly     = .true.  (potentially optional if rigid) 
   dci_period         = 360     (assuming 1 deg. per time step)  
   reuse_existing_dci = .true.  
/ 
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 Input For Articulated-Blade Simulations (2/2) 
•  The moving_body.input file is somewhat simplified since much of the 

motion description is handled by rotor.input – all we need do is define 
the moving bodies and provide the SUGGAR++ xml file if required 
  &body_definitions 
   n_moving_bodies     = 4 (e.g. for 4-bladed rotor) 
   body_name(1)        = ‘rotor1_blade1’ (same as in xml file) 
   n_defining_bndry(1) = 2 
   defining_bndry(1,1) = 3 
   defining_bndry(1,2) = 4 
   mesh_movement(1)    = ‘rigid+deform’ (or just ‘rigid’ for 

                                        for rigid blade case) 
   …             (etc. for blades 2-4) 
/ 
&composite_overset_mesh 
   input_xml_file = “Input.xml_0”  (potentially optional if rigid  
/                                   and have precomputed dci) 

•  Note: motion_driver not set in  &body_definitions (in contrast to 
any other moving grid case); also no &forced_motion input 
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 CAMRAD Considerations 
•  User must set up basic CAMRAD II scripts; the RUN_LOOSE_COUPLING 

script provided with FUN3D requires 3 distinct, but related CAMRAD scripts 
–  basename_ref.scr  

•   Used to generate the reference motion data used by CAMRAD 
•   Set this file to use rigid blades; zero collective/cyclic; no trim 

–   basename_0.scr 
•  Used for coupling/trim cycle “0”  
•  Set up for elastic blades with trim; use CAMRAD aerodynamics 

exclusively (no delta airloads input); simplest aero model will suffice 
–  basename_n.scr 

•   Used for all subsequent coupling/trim cycles 
•   Set up for elastic blades with trim; use same simple CAMRAD 

aerodynamics but now with delta airloads input 
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 Blade Surface “Slicing” 
•  Boundary surface (rotor blade) slicing is required for coupled CFD/CSD 

simulations; also useful for rigid-blade cases -  this is what generates the 
data in rotor_1.onerev.txt  

$slice_data 

 replicate_all_bodies    = .true.           ! do the following the same on all blades  

 output_sectional_forces = .false.          ! just lots of data we usually don’t need 

 tecplot_slice_output    = .false.          ! ditto 

 slice_x(1)              = .true.,          ! x=const slice – in original blade coords  

 nslices                 = -178,            ! no. slices; “-” means give start and delta 

 slice_location(1)       = 2.8175,          ! x-location to slice (starting slice) 

 slice_increment         = .13416666666     ! delta slice location each successive slice 

 n_bndrys_to_slice(1)    = 1,               ! 1 bndry to search 

 bndrys_to_slice(1,1)    = 2,               ! indicies:(slice,bdry) lumping made life easy 

 slice_frame(1)          = 'rotor1_blade1', ! ref. frame in which to slice - use body name 

 te_def(1)               = 20,              ! look for 2 corners in 20 aft-most segments 

 le_def(1)               = 30,       ! search 30 fwd-most pts for one most distant from TE  

 chord_dir(1)            = -1,              ! Recall goofy original blade coord system  

/ 
•  Note: “slicing” useful for applications other than rotorcraft; see website 
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 Untrimmed Rigid-Blade Simulations 
•  Overview of the basic steps 

1. Prepare rotor blade and fuselage grids, with proper axis orientation 

2. Set up the rotor.input file based on flight conditions 

3. Run the dci_gen utility to create a composite mesh and initial dci data 

4. Set up fun3d.nml and moving_body.input files 

5. Optionally set up the &slice_data namelist  in the fun3d.nml file 

6. Run the solver; the number of time steps required is case dependent – 
usually at least 3 revs for rigid blades 
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 Trimmed, Elastic-Blade Simulations 
•  Overview of the basic steps; steps 1-4 are the same as for the untrimmed 

rigid-blade case; use of CAMRAD is assumed 
5. Set up the &slice_data namelist; set slice_freq = 1 not optional 
6. Set up the 3 CAMRAD run-script templates 
7. Set up the RUN_LOOSE_COUPLING run script (a c-shell script geared to 

PBS environments); user-set data is near the top – sections 1 and 2 
8. Set up the fun3d.nml_initial and fun3d.nml_restart files 

used by the run script; typically set the time steps in the initial file to 
cover 2 revs, and 2/Nblade revs in restart version 

9. Before using the run script make sure all items it needs are in place; 
script checks for missing items, but it gets old having to keep restarting 
because you forgot something! 

10. Number of coupling cycles required for trim will vary, but 8-10 is typical 
for low-moderate thrust levels; high thrust cases near thrust boundary 
may require 10-15; user judges acceptable convergence 
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  RUN_LOOSE_COUPLING Directory Tree 
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 Postprocessing  
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 Non-Inertial Reference Frame (1/2) 
•  For isolated, rigid an improvement in solution efficiency may be obtained 

by transforming to a coordinate system that rotates with the rotor 

•  FUN3D implements a very limited subset of possible non-inertial frames: 

–  Constant rotation rate 

–  Free-stream flow limited to  

•  Quiescent (e.g. rotor in hover) 

•  Flow aligned with axis of rotor (e.g ascending/descending rotor; 
prop in forward flight at 0 AoA) 

•  In this noninertial rotating frame, the flow is assumed steady 

•  Can be used in conjunction with overset grids to allow pitch/collective 
changes to rotor without re-gridding 

•  The noninertial capability has other limited applications in addition to 
rotors – e.g. aircraft in a steady loop 
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 Non-Inertial Reference Frame (2/2) 
•  fun3d.nml input for non-inertial frame solutions (example for rotor 

spinning about z-axis) 
  &noninertial_reference_frame 
   noninertial = .true. 
   rotation_center_x = 0.0  !rotation axis passes through this pt. 
   rotation_center_y = 0.0 
   rotation_center_z = 0.0 
   rotation_rate_x   = 0.0 
   rotation_rate_x   = 0.0 
   rotation_rate_z   = 0.2 
/ 

•  The nondimensional rotation rate is determined as shown on slide 11 
•  Flow-visualization output (boundary, volume, sampling) will be relative to 

the non-inertial frame 
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