
Training Workshop
Waikoloa, Hawaii

July 30, 2017

Some images courtesy Ashley Korzun, BMI Corporation, Chris Heath, Karen Deere, Mark Moore, Sally Viken, and US Army

 1

FUN3D Training Evaluation Form

I am a CFD:  Novice  Experienced user  Expert

 I am a FUN3D:  Novice  Experienced user  Expert

Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

1. The training met my expectations.     

2. I will be able to apply the
knowledge learned.

    

3. The training objectives for each
topic were identified and followed.

    

4. The content was organized and
easy to follow.

    

5. The materials distributed were
pertinent and useful.

    

6. The trainers were knowledgeable.     

7. The quality of instruction was
good.

    

8. The trainers met the training
objectives.

    

9. Class participation and interaction
were encouraged.

    

10. Adequate time was provided for
questions and discussion.

    

 11. How do you rate the training overall?

 Excellent Good Average Poor Very poor

     

 12. What aspects of the training could be improved?

 13. Other comments?

 Your name (optional):

THANK YOU FOR YOUR PARTICIPATION!

7/7/2017

FUN3D Training Workshop 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D v13.1 Training

Session 1:

Meet and Greet

1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 2

Who is Here From the NASA Team?

From NASA Langley in Hampton, Virginia:

Eric Nielsen, Computational AeroSciences Branch

• 25 years with the FUN3D effort

• Adjoint-based sensitivity analysis and design

• High-performance computing

• General all-around code monkey

Many other FUN3D team members at LaRC and other sites,

with very diverse expertise, interests, and backgrounds

7/7/2017

FUN3D Training Workshop 2

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 3

Who Are You?

Name

Organization/Company and Location

Any CFD Experience?

Any FUN3D Experience?

Goals/Uses for FUN3D

7/7/2017

FUN3D Training Workshop 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D v13.1 Training

Session 2:

Welcome and Overview

Eric Nielsen

1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 2

FUN3D Training Workshop
July 30, 2017

Session 1: Introductions 8:00-8:15

Session 2 Welcome and Overview 8:15-8:45

Session 3: Compilation and Installation 8:45-9:00

Session 4: Gridding, Solution, and Visualization Basics 9:00-10:30

BREAK 10:30-10:45

Session 5: Adjoint-Based Design for Steady Flows 10:45-12:00

7/7/2017

FUN3D Training Workshop 2

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 3

Administrative Details

• Need to stay on schedule, but please do not hesitate to ask questions

• In-room wireless access:
– Network: Password:

• Please submit your evaluation form at the end of the workshop
– Very interested in your feedback, good or bad!

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 4

All Material Available Online

• For the v13.1 material presented here:
– Slides online in PDF format

– To obtain FUN3D, see website for link to NASA Software Catalog

• A FUN3D v13.1 manual is available as NASA/TM-2017-219580 on
the website
– You should also receive a copy of this with the source code distribution

– Additional material will continue to be added with new releases

– Your feedback/suggestions are extremely helpful

• Extensive material from prior training workshops is available on the
website
– Slides in PDF

– Pro-shot streaming video

– Demo content can be downloaded as a tarball

• We hope to eventually add an extensive tutorials document

7/7/2017

FUN3D Training Workshop 3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 5

The FUN3D Development Team
fun3d-developers@lists.nasa.gov

• Consists of ~15-20 researchers across several branches at Langley
– Computational AeroSciences Branch

– Aerothermodynamics Branch

• Some people are full-time FUN3D, others part-time
– Spectrum runs from full-time development to full-time applications

• Also external groups such as Georgia Tech, National Institute of
Aerospace (NIA)

• Open to other interested parties joining us
– Remote, real-time, read/write access to FUN3D repository is available

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 6

The FUN3D Support Team
fun3d-support@lists.nasa.gov

• Consists of 16 members of the development team

• All are NASA civil servants
– Proprietary/sensitive data can be shared/discussed: all are bound by

Trade Secrets Act

• Members: Kyle Anderson, Bob Biedron, Jan-Renee Carlson,
Cameron Druyor, Peter Gnoffo, Dana Hammond, Bill Jones, Bil
Kleb, Beth Lee-Rausch, Steve Massey, Eric Nielsen, Matt
O’Connell, Mike Park, Kyle Thompson, Aaron Walden, Jeff White

“Who sees my questions to the support alias?”

Myth: Our job is to develop a production-level tool and support users.

Reality: None of us are funded at any level to support users, maintain

documentation, keep up a website, run training workshops, etc. The

team is funded solely to perform their individual research efforts.

mailto:fun3d-developers@lists.nasa.gov
mailto:fun3d-support@lists.nasa.gov

7/7/2017

FUN3D Training Workshop 4

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 7

The FUN3D User Community
fun3d-users@lists.nasa.gov

• FUN3D widely used within NASA for projects across the speed
range
– Both engineering and research applications

– Users routinely running on several thousand cores

• Distributed to hundreds of external organizations across academia,
industry, DoD, and OGAs
– Average about 150 distributions / year

– Wide range of uses including aerospace, automotive, HPC, wind
energy, etc.

– Wide range of hardware being used

– From RC enthusiasts on single workstation to groups generating
matrices of hundreds of solutions on thousands of HPC nodes

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D Core Capabilities

• Established as a research code in late 1980s; now supports
numerous internal and external efforts across the speed range

• Solves 2D/3D steady and unsteady Euler and RANS equations
on node-based mixed element grids for compressible and
incompressible flows

• General dynamic mesh capability: any combination of
rigid / overset / morphing grids, including 6-DOF effects

• Aeroelastic modeling using mode shapes, full FEM, CC, etc.

• Constrained / multipoint adjoint-based design and mesh adaptation

• Distributed development team using agile/extreme software
practices including 24/7 regression, performance testing

• Capabilities fully integrated, online documentation,
training videos, tutorials

US Army

Georgia

Tech

mailto:fun3d-users@lists.nasa.gov

7/7/2017

FUN3D Training Workshop 5

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Courtesy

NASA/Gulfstream

Partnership on Airframe

Noise Research

Angle of Attack, deg.

C
L

0 10 20 30
1

1.5

2

2.5

3

3.5 Workshop Grid

Adapted Grids

Exp. ETW

Airframe Noise

Adjoint-Based

Adaptation for

High-Lift

10

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Aeroelastic Analysis of

the Boeing SUGAR

Truss-Braced Wing

Concept

Courtesy

Bob Bartels

11

Open-Rotor Concepts

Courtesy Bill Jones

7/7/2017

FUN3D Training Workshop 6

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Transonic Buffet

Characterization for

Space Launch System
Courtesy

Greg Brauckmann,

Steve Alter, Bil Kleb

12

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Sonic Boom

Mitigation Mars InSight

Lander

Courtesy Chris Heath

13

7/7/2017

FUN3D Training Workshop 7

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Courtesy

Ashley Korzun

Mars Ascent Vehicle

for Sample Return

Some Recent NASA Applications
Validation for Full Scale UH60A

• Structural loads

• Sectional airloads/pressures

• Balance loads

Blade Pressures at High Advance Ratio

Inboard Midspan Outboard

• Control settings

• Blade root motions

• Elastic blade deflections

Courtesy

Beth Lee-Rausch,

Bob Biedron

7/7/2017

FUN3D Training Workshop 8

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Courtesy

Mike Park,

Sally Viken,

Karen Deere,

Mark Moore

Distributed Electric

Propulsion

16

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Some Recent NASA Applications

Courtesy

Mike Park, Sally Viken,

Karen Deere, Mark Moore

Distributed Electric

Propulsion

17

Courtesy Bill Jones

7/7/2017

FUN3D Training Workshop 9

Aeroelastic Analysis of

HIADs: Hypersonic

Inflatable Aerodynamic

Decelerators

Courtesy Beth Lee-Rausch,

Bob Biedron, and Bil Kleb

Some Recent NASA Applications

At the Department of Defense

AMRDEC at Redstone Arsenal

• Troop safety: airworthiness qualification

• Dramatic cost savings: fewer tunnel & flight tests

• Intense demand for timely results on massive

computing systems

• Decade of use in direct support of the US warfighter
CH-47

• NAVAIR at Patuxent River

• Air Force Research Laboratory

• HPCMP CREATE-AV

IA-407

V-22

7/7/2017

FUN3D Training Workshop 10

Across the Aerospace Industry

“The FUN3D software suite and development

team have enabled SpaceX to rapidly design,

build, and successfully fly a new generation of

rockets and spacecraft.”

- Justin Richeson

Manager, SpaceX Aerodynamics

• FUN3D used for extensive analysis of Falcon 1

and Falcon 9 rockets, Dragon spacecraft

• Team consults frequently and provides new

features and capabilities as requested

First private company to achieve orbit and dock with the International Space Station

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 20

FUN3D and High-Performance Computing

FUN3D is used on a broad range of HPC

installations around the country

Scaled to 80,000 cores on DoE’s Cray XK7 ‘Titan’

using grids containing billions of elements

Awarded the Gordon Bell Prize in a

past collaboration with Argonne National Lab

7/7/2017

FUN3D Training Workshop 11

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 21

FUN3D Solver on Intel Xeon Phi

• “Works out of the box” paradigm for KNL is encouraging but dangerous: tempting to

declare success before achieving its full potential

• Vector intrinsics on Xeon Phi Knights Landing beat conventional Fortran on 28-core

Xeon Broadwell by 2.5x

• Intrinsics attractive for performance (including Skylake and beyond), but

effort/portability must be considered

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 22

FUN3D Solver on Intel Xeon Phi

FUN3D

Original plot taken from

Jeffers, J., Reinders, J.,

and Sodani, A., “Intel Xeon

Phi High Performance

Programming, Knights

Landing Edition,” 2016.• Using the more common single-socket Haswell benchmark,

Knights Landing is 5.4x faster and 3.6x more power-efficient

• Compares well with other early apps

7/7/2017

FUN3D Training Workshop 12

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 23

FUN3D Solver on NVIDIA GPUs

• FUN3D implicit solver also implemented for GPUs using OpenACC, CUDA,

and PTX

• Up to 7x improvement over existing CUDA libraries for range of block sizes

• NVIDIA Pascal P100 shows 3.9x speedup over 28-core Xeon Broadwell

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 24

• The material that will be shown here represents the current

recommended best practices for the perfect gas option in

FUN3D

• Many topics omitted from what is normally a two-day course:

• Boundary conditions, turbulence models, high-speed

simulations, geometry parameterization, error estimation

and mesh adaptation, time-dependent flows, dynamic and

overset grid simulations, adjoints for unsteady flows,

aeroelastic simulations, rotorcraft simulations, general-gas

simulations

• There are always many research and development efforts taking

place within the code that are not described here

• If you do not see something, please ask about it

Some Final Notes

7/7/2017

1

http://fun3d.larc.nasa.gov

FUN3D v13.1 Training

Session 3:

Compilation and Installation

Eric Nielsen

FUN3D Training Workshop

July 30, 2017

http://fun3d.larc.nasa.gov

2

• What this will teach you
• How to configure and compile the FUN3D suite

• Configuration options

• Enable/Disable capabilities

• Specify the location of 3rd party libraries and tools

• How we do it

• What you will not learn
• How to build/install 3rd party libraries and tools

• How to configure your system to compile Fortran 90/MPI code

• What should you already know
• How to navigate through a *NIX shell

• mkdir

• cd

• Absolute/relative paths

Learning Goals

FUN3D Training Workshop

July 30, 2017

7/7/2017

2

http://fun3d.larc.nasa.gov

• Background

• FUN3D uses the de facto industry standard build environment
provided by GNU Autotools

• Build of the FUN3D distribution does not require Autotools on your
system

• Provides localization through options to a configuration script

• Compatibility
• Requires a Bourne Shell derivative (*NIX, OS X, MinGW, etc.)

• Requires GNU `make`

• Requires a functioning Fortran 95 compliant compiler (some
optional capabilities rely on Fortran 2003 additions)

• May not work with non-standard installation of 3rd party libraries

• DiRTLib and SUGGAR++ assumptions for overset support

• Required library names: libp3d.a, libdirt.a,
libdirt_mpich.a, libsuggar.a, and libsuggar_mpi.a

• Developers will need GNU Autotools installed

Setting

FUN3D Training Workshop

July 30, 2017

3

http://fun3d.larc.nasa.gov

• Two step process
• `configure` selects capabilities and localizes to system

• `make` creates executables

• Distribution contains a `configure` script
• Familiar to Linux users/administrators who have built open source

packages

• Must NOT be edited by hand

• Custom localization through command line options

• The `configure` script creates Makefiles
• Makefiles are customized/localized for a specific configuration

• Not practical for human consumption

• Must NOT be edited by hand

• All localization is managed through the `configure` script

• Checks various details required by compilation

• Fails fast (prior to compilation of FUN3D) if problems are detected
with the configuration options (no compiler, missing libraries, etc.)

Nuts and Bolts (1 of 4)

FUN3D Training Workshop

July 30, 2017

4

7/7/2017

3

http://fun3d.larc.nasa.gov

• `configure --help` will show a list of all options

• Command line options

• Environment variables

• Order independent (uses last value if specified multiple times)

• FUN3D optional Features of general interest
--disable-FEATURE do not include FEATURE

(same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-hefss build with High Energy Physics [no]

--enable-ftune tailor Fortran compiler options for FUN3D [yes]

Nuts and Bolts (2 of 4)

FUN3D Training Workshop

July 30, 2017

5

http://fun3d.larc.nasa.gov

• FUN3D optional Packages of general interest
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-mpi[=ARG] Path to MPI library (installation root)

--with-mpibin[=ARG] MPI binary directory (relative, absolute, without)

--with-mpif90[=ARG] MPI Fortran compiler wrapper (relative, absolute, without)

--with-mpicc[=ARG] MPI C compiler wrapper (relative, absolute, without)

--with-mpiexec[=ARG] MPI execution startup script (relative, absolute, without)

--with-mpibin[=ARG] MPI bin directory (relative, absolute, without)

--with-mpiinc[=ARG] Path to “mpif.h” (relative, absolute, without)

--with-parmetis[=ARG] ParMetis install path (contains lib/libparmetis.a)

--with-dirtlib[=ARG] use DiRTlib overset library (contains lib/libdirt.a)

--with-suggar[=ARG] use SUGGAR overset library (contains lib/libsuggar.a)

--with-tecio[=ARG] Tecplot I/O library install path (contains lib/libtecio.a)

--with-refine[=ARG] use refine adaptation package (installation root)

--with-refineFAKEGeom[=ARG] to specify refine FAKEGeom libs [-lFAUXGeom]

--with-knife[=ARG] use Knife cut cell package (installation root)

--with-CGNS[=ARG] CGNS library path (installation root)

--with-PORT[=ARG] use PORT optimization library (contains lib/libport.a)

--with-KSOPT[=ARG] use KSOPT optimization library (contains lib/libksopt.a)

--with-SNOPT[=ARG] use SNOPT optimization library (contains lib/libsnopt.a)

Nuts and Bolts (3 of 4)

FUN3D Training Workshop

July 30, 2017

6

7/7/2017

4

http://fun3d.larc.nasa.gov

• FUN3D environment variables of general interest
FC Fortran compiler command

(overridden by `--with-mpif90`)
FCFLAGS Fortran compiler flags

(adds to default unless --disable-ftune)
LDFLAGS linker flags, e.g. -L<libdir>

if you have libraries in a nonstandard directory
<libdir>

CC C compiler command

CFLAGS C compiler flags

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CPPFLAGS C/C++ preprocessor flags,e.g. -
I<incdir>

if you have headers in a nonstandard directory
<incdir>

CPP C preprocessor

• `make` is used to build the executables
• Will reside in respective directories (e.g. nodet is in FUN3D_90)

Nuts and Bolts (4 of 4)

FUN3D Training Workshop

July 30, 2017

7

http://fun3d.larc.nasa.gov

• Construct the vanilla serial executable

• Unpack your FUN3D distribution
• Creates a directory “fun3d-12.7-74063”

• Enter the FUN3D distribution directory

• Run the `configure` script and build executables with `make`

$ mkdir serial

$ cd serial

$../configure

$ make

• Note that this will search for a supported compiler in your path

• Chooses the first one found based on pre-defined order

• Override this with the FC=mycompiler option

• MPI configurations will use the ̀ --with-mpif90` wrapper if
given

Basic Operation

FUN3D Training Workshop

July 30, 2017

8

7/7/2017

5

http://fun3d.larc.nasa.gov

…

Configuration (FUN3D):

Source code location: ..

Version: 12.7-74063

Fortran Compiler: ifort

Fortran basis: ifort

Fortran flags: -O2 -ip –align

-fno-alias -g -traceback

C Compiler: gcc

C flags: -g –O2

C++ Compiler: g++

C++ flags: -g –O2

Linker flags: –lm

Dependencies:

build:

High Energy Physics: no

Cmplx Variable Tools: no

Python bindings: no

FCCHT support: no

FSI support: no

PDF documentation: yes

bindings:

Libcore: internal

refine: subpackage

CAPRI support: no

knife: subpackage

MPI support: no

CUDA support: no

Zoltan: no

ParMETIS: no

Tecplot I/O: no

6DOF libraries: no

DiRTlib support: no

SUGGAR support: no

DYMORE support: no

RCAS_SDX support: no

CGNS support: no

PORT support: no

NPSOL support: no

DOT support: no

KSOPT support: no

SNOPT support: no

SMEMRD support: version 1.3.1

IRS support: no

SSDC support: no

SFE support: no

SPARSKIT support: no

SBOOM support: no

VisIt support: no

page 1 page 2

Did It Work? Expected Output

FUN3D Training Workshop

July 30, 2017

9

• Executables created relative to the serial sub-directory
– FUN3D_90/nodet, Adjoint/dual, Design/opt_driver

http://fun3d.larc.nasa.gov

• Create a parallel version of the code

• Build in a separate configuration subdirectory

• Stores object code and executables only

• Does not pollute the source tree with object code

• Multiple configurations utilize the same source

$ mkdir mpi

$ cd mpi

$../configure --with-mpi=/path/to/mpi \

--with-parmetis=/path/to/parmetis

$ make

Extended Operation
(How we do it)

FUN3D Training Workshop

July 30, 2017

10

7/7/2017

6

http://fun3d.larc.nasa.gov

…

Configuration (FUN3D):

Source code location: ..

Version: 12.7-74063

Fortran Compiler: /path/to/mpi/bin/mpif90

Fortran basis: ifort

Fortran flags: -O2 -ip –align

-fno-alias -g -traceback

C Compiler: /path/to/mpi/bin/mpicc

C flags: -g –O2

C++ Compiler: g++

C++ flags: -g –O2

Linker flags: –lm

Dependencies:

build:

High Energy Physics: no

Cmplx Variable Tools: no

Python bindings: no

FCCHT support: no

FSI support: no

PDF documentation: yes

bindings:

Libcore: internal

refine: subpackage

CAPRI support: no

knife: subpackage

MPI support: no

CUDA support: no

Zoltan: no

ParMETIS: /path/to/parmetis

Tecplot I/O: no

6DOF libraries: no

DiRTlib support: no

SUGGAR support: no

DYMORE support: no

RCAS_SDX support: no

CGNS support: no

PORT support: no

NPSOL support: no

DOT support: no

KSOPT support: no

SNOPT support: no

SMEMRD support: version 1.3.1

IRS support: no

SSDC support: no

SFE support: no

SPARSKIT support: no

SBOOM support: no

VisIt support: no

page 1 page 2

Did It Work? Expected Output

FUN3D Training Workshop

July 30, 2017

11

• Executables created relative to the mpi sub-directory
– FUN3D_90/nodet, Adjoint/dual, Design/opt_driver

http://fun3d.larc.nasa.gov

• Problems
• “checking for Fortran compiler default output file
name... configure: error: Fortran compiler cannot

create executables

See `config.log` for more details.”

• Make sure that Fortran compiler works in your environment

• Adjust PATH, load appropriate GNU modules, MPI installation, etc.

• Limited check of `configure` options
• Bad “--enable-*” and “--with-*” options silently ignored

• Option values containing spaces must be quoted from shell
• e.g. FCFLAGS=“-g –O2 –m32 -fno-common”

• Do NOT configure in top level distribution directory and then try to
make individual configuration directories

• `make distclean` to clean a previous configuration of the source

• Look/send “config.log” file

• Also includes configuration options at the top (less quoted values w/
spaces)

Troubleshooting/FAQ (1 of 3)
fun3d-support@lists.nasa.gov

FUN3D Training Workshop

July 30, 2017

12

7/7/2017

7

http://fun3d.larc.nasa.gov

• Can I…
• Override the default compiler options?

• Yes, --disable-ftune FCFLAGS=“-what-ever-you-want”

• Remember some compilers always need certain options

• Explicitly specify my compiler?
• You can, with FC=compiler, but this will be overridden if using

“--with-mpif90”

• Fix anything by manually editing the `configure` script or
Makefiles?

• NO! and we cannot support any such action

• Anything that you can safely change is governed by a configure
option

• Install the executables in a central location?
• Yes, `make install` will install executables, etc. under the

location given by the “--prefix=/your/path” option to
`configure`

Troubleshooting/FAQ (2 of 3)
fun3d-support@lists.nasa.gov

FUN3D Training Workshop

July 30, 2017

13

http://fun3d.larc.nasa.gov

• What if I…

• Have a proprietary MPI installation?

• Some HPC resources have proprietary MPI installations using non-
standard paths and names

• Use “--with-mpibin”, “--with-mpiinc”, “--with-mpif90”, and
“--with-mpiexec” along with their “--without-*” counterparts as
needed to specify the binary and include paths as well as the name for
the `mpif90` compiler wrapper and, if needed, the `mpiexec` script

• Paths can be absolute or relative to the “--with-mpi” and “--with-
mpibin” values

$./configure --with-mpi=/path/to/mpi

--with-mpif90=my_mpif90

--without-mpiexec

…

• My MPI executables will not run

• Check the consistency of your MPI compilation/runtime installations

• The MPI installation used for compilation is available as MPI Prefix:
from

$ /path/to/nodet/nodet_mpi --version

Troubleshooting/FAQ (3 of 3)
fun3d-support@lists.nasa.gov

FUN3D Training Workshop

July 30, 2017

14

7/7/2017

8

http://fun3d.larc.nasa.gov

• How to configure and compile the FUN3D suite

• Execute `configure` to localize a configuration

• Build the executables with `make`

• Configuration options

• Enable/Disable Features

• With/Without Packages (3rd party libraries and tools)

• Custom environment variables

• Use separate configuration subdirectories

• Keeps source and object code separate

• Allows multiple configurations under one source

• Invoke as `../configure …`

What We Covered

FUN3D Training Workshop

July 30, 2017

15

7/7/2017

FUN3D Training Workshop 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D v13.1 Training

Session 4:

Gridding, Solution, and

Visualization Basics

Eric Nielsen

1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Learning Goals

What we will cover

• Basic gridding requirements and formats

• Nondimensionalizations and axis conventions

• Basic environment for running FUN3D

• FUN3D user inputs

• Running FUN3D for typical steady-state RANS cases

– Compressible transonic turbulent flow over a wing-body using a
tetrahedral VGRID mesh

– Turbulent flow over a NACA 0012 airfoil section

• Things to help diagnose problems

• Visualization overview

What we will not cover

• Other speed regimes

• Unsteady flows

2

7/7/2017

FUN3D Training Workshop 2

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Gridding Considerations

• FUN3D is a node-based discretization
– To get similar resolution when comparing with a cell-centered code, you must

use a finer grid
• E.g., on a tetrahedral grid, the grid for FUN3D must be ~2 times finer on the surface,

and ~6 times finer in the volume mesh to be fair

– This is critical when comparing with cell-centered solvers
– Hanging nodes are not currently supported

• FUN3D integrates all of the way to the wall for turbulent flows
– Wall function grids are not adequate
– Goal is to place first grid point at y+=1

• Base y on a flat plate estimate using your Reynolds number; can examine result in
solver output and tweak as necessary

• Users employ all of the common grid generators – VGRID,
AFLR2/AFLR3/SolidMesh, ICEM, Pointwise, etc.

• FUN3D also supports point-matched, multiblock structured grids through
Plot3D file input

– Subject to certain grid topologies:
• Singularities treated – i.e., hexes with collapsed faces converted to prisms
• But hexes with 180 internal angles cause FUN3D discretization to break down (LSQ)

• FUN3D can convert tetrahedral VGRID meshes to mixed elements
• FUN3D can convert any mixed element grid into tetrahedra using command

line option ‘--make_tets’

3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Supported Grid Formats

4

Grid Format Formatted Unformatted
Supports mixed

elements

Direct load or

converter
File extension(s)

FAST X X Direct .fgrid, .mapbc

VGRID
(single or multisegment)

X Direct .cogsg, .bc, .mapbc

AFLR3 X
X

Also Binary
X Direct

.ugrid/.(l)r8.ugrid/.(l)b8.ugrid,

.mapbc

FUN2D X Direct .faces

Fieldview v2.4,

v2.5, v3.0
X X X

Direct
(Some details of format

not supported)

.fvgrid_fmt, .fvgrid_unf,

.mapbc

Felisa X Direct .gri, .fro, .bco

Point-matched,

multiblock Plot3D
X X

Hexes,

degenerates
Converter .p3d, .nmf

CGNS Binary X Converter .cgns

The development team can work with you to handle other formats as needed

7/7/2017

FUN3D Training Workshop 3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Boundary Condition Input File

5

• Where required, the FUN3D .mapbc file takes the form:

Number of boundary patches

Boundary patch index BC index Family name

• The BC index may be either a 4-digit FUN3D-style index or a GridTool-style

index

• The family name is optional, but must be present if the user requests patch

lumping by family

3

1 4000 Wing

2 5000 Farfield

3 6662 Symmetry plane

• Exception: The .mapbc format for VGRID meshes follows the

GridTool/VGRID format

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Nondimensionalization

• Notation: * indicates a dimensional variable, otherwise dimensionless;

the reference flow state is usually free stream (“ “), but need not be

• Define reference values:

– = reference length of the physical problem (e.g. chord in ft)

– = corresponding length in your grid (dimensionless)

– = reference density (e.g. slug/ft3)

– = reference molecular viscosity (e.g. slug/ft-s)

– = reference temperature (e.g. oR, compressible only)

– = reference sound speed (e.g. ft/s, compressible only)

– = reference velocity (e.g. ft/s)

• Space and time are made dimensionless in FUN3D by:

–

(compressible) (incompressible)

6



ref

*



ref

*



Tref

*



x  x * /(Lref

* /Lref)



Lref

*



Lref






aref

*



Uref

*



t  t*aref

* /(Lref

* /Lref)



t  t*Uref

* /(Lref

* /Lref)

7/7/2017

FUN3D Training Workshop 4

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Nondimensionalization (cont)

• For the compressible flow equations the dimensionless variables are:

– so

– so

– so

– so

– so

– so

– From the equation of state and the definition of sound speed:

• The input Reynolds number in FUN3D is related to the Reynolds number

of the physical problem by

reynolds_number = where

i.e. reynolds_number is a Reynolds number per unit grid length

7



a  a* /aref

*



T  T* /Tref

*



e  e* /(ref

* aref

*2)


u  u * /aref

*



P  P* /(ref

* aref

*2)



u
ref
 u

ref

*
/aref

*  Mref



Pref  Pref

* /(ref

* aref

*2) 1/



aref 1



Tref 1



eref  eref

* /(ref

* aref

*2) 1/( ( 1)) Mref

2 /2



T   P /  a2



Reref /Lref



Reref  ref

* Uref

* Lref

* /ref

*



  * /ref

*



ref 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Setting the Reynolds Number Input

8

• Frequent cause of confusion, even for developers

• Need to know what characteristic length your Reynolds number is

based on – mean aerodynamic chord, diameter, etc.

• Your input Reynolds number is based on the corresponding length

of that “feature” in your computational grid

• Example: You want to simulate a Reynolds number of 2.5 million

based on the MAC:

– If the length of the MAC in your grid is 1.0 grid units, you would input

Re=2500000 into FUN3D

– If the length of the MAC in your grid is 141.2 grid units (perhaps these

physically correspond to millimeters), you would input 2500000/141.2,

or Re=17705.4 into FUN3D

7/7/2017

FUN3D Training Workshop 5

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D Axis Convention

9

• FUN3D coordinate system differs from the standard wind coordinate system

by a 180º rotation about the y-axis

• Positive x-axis is toward the “back” of the vehicle (downstream)

• Positive y-axis is out the “right wing”

• Positive z-axis is “upward”

• The freestream angle of attack and yaw angle are defined as shown

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Runtime Environment
• “Unlimit” your shell (also good idea to put this in any queue scripts):

$ ulimit unlimited # for bash

$ unlimit # for c shell

• If unformatted or binary, what “endianness” does your grid file have?

– E.g., VGRID files are always big endian, regardless of platform

– If your compiler supports it, FUN3D will attempt to open files using an
open(convert=…) syntax

– Most compilers support some means of conversion

• Either an environment variable or compile-time option, depending on what

compiler you’re using

• E.g., Intel compiler can be controlled with an environment variable
F_UFMTENDIAN = big

• Memory required by solver: rough rule of thumb is 3-3.5 GB per million

points (not cells!)

– Conversely, 200k-300k points per 1 GB of memory

• Users generally partition into smaller domains than this, but be aware of these

numbers

– This memory estimate will be higher if visualization options are used, etc

10

7/7/2017

FUN3D Training Workshop 6

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

User Inputs for FUN3D

11

Input deck fun3d.nml

• The user is required to supply an input deck for FUN3D named fun3d.nml

(fixed name)

• This filename contains a collection of Fortran namelists that control FUN3D

execution – all namelist variables have default values as documented

• But user will need to set at least some high-level variables, such as the project

name

Command Line Options (CLOs)

• CLOs always take the form --command_line_option after the executable

name

– Some CLOs may require trailing auxiliary data such as integers and/or reals

• User may specify as many CLOs as desired

• CLOs always trump fun3d.nml inputs

• CLOs available for a given code in the FUN3D suite may be viewed by using
--help after the executable name

• Most CLOs are for developer use; namelist options are preferred where

available

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

• For this case, we will assume that someone has provided a set of

VGRID files containing the mesh

– f6fx2b_trn.cogsg, f6fx2b_trn.bc, and f6fx2b_trn.mapbc

• It is always a good idea to examine the .mapbc file first to check the

boundary conditions and any family names
– Note that specific boundary conditions will be covered in a separate session

12

7/7/2017

FUN3D Training Workshop 7

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

13

#Thu Mar 11 13:42:40 2010

#bc.map

Patch # BC Family #surf surfIDs Family

#---

1 3 3 0 0 Box

2 3 3 0 0 Box

3 3 3 0 0 Box

4 3 3 0 0 Box

5 3 3 0 0 Box

6 4 4 1 15 Wing

7 4 4 1 15 Wing

8 4 4 1 17 Wing

9 4 4 1 17 Wing

10 4 4 1 15 Wing

11 4 4 1 13 Fuselage

12 4 4 1 21 Fuselage

13 4 4 1 11 Fuselage

14 4 4 1 11 Fuselage

15 4 4 1 12 Fuselage

16 4 4 1 12 Fuselage

17 4 4 1 15 Wing

18 4 4 1 15 Wing

19 4 4 1 15 Wing

20 4 4 1 15 Wing

21 4 4 1 17 Wing

22 4 4 1 17 Wing

23 4 4 1 16 Wing

24 4 4 1 15 Wing

25 4 4 1 17 Wing

26 4 4 1 8 Fuselage

27 4 4 1 16 Wing

28 4 4 1 16 Wing

29 4 4 1 16 Wing

30 4 4 1 16 Wing

31 4 4 1 18 Wing

32 4 4 1 18 Wing

33 4 4 1 17 Wing

34 4 4 1 18 Wing

35 4 4 1 18 Wing

36 4 4 1 1 Wing

37 4 4 1 18 Wing

38 4 4 1 18 Wing

39 4 4 1 18 Wing

40 4 4 1 22 Fuselage

41 1 1 0 0 Symmetry

42 4 4 1 10 Fuselage

43 4 4 1 9 Fuselage

44 4 4 1 14 Fuselage

45 4 4 1 23 Fuselage

46 4 4 1 19 Wing

47 4 4 1 20 Wing

48 4 4 1 27 Fairing

49 4 4 1 29 Fairing

50 4 4 1 28 Fairing

51 4 4 1 30 Fairing

• For this case, the VGRID/GridTool-style

.mapbc file is as shown

• Surface grid consists of 51 patches

• Note that VGRID/GridTool-style BC’s are

specified

• Family names are also as shown

(required in this format)

• FUN3D does not use the other columns

of data

• If you cannot easily visualize your mesh

to set appropriate boundary conditions,

one easy approach is to set them all to

inflow/outflow, then run a single time step

of FUN3D with boundary visualization

activated – then set patch BC’s as

needed for actual simulation

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

• Now we will look at the minimum set of user inputs needed in
fun3d.nml to run this case

14

7/7/2017

FUN3D Training Workshop 8

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

15

&project

project_rootname = 'f6fx2b_trn’ Project name

/

&raw_grid

grid_format = 'vgrid’ Read a set of VGRID files

/

&reference_physical_properties

mach_number = 0.75 Sets freestream Mach number

reynolds_number = 17705.40 Sets Reynolds number

angle_of_attack = 1.0 Sets freestream angle of attack

temperature = 580.0 Sets freestream temperature

temperature_units = "Rankine” Uses Rankine temperature units for input

/

&code_run_control

restart_read = 'off’ Perform a cold start

steps = 500 Perform 500 time steps
/

&force_moment_integ_properties

area_reference = 72700.0 Sets reference area

x_moment_length = 141.2 Sets length for normalizing y-moments

y_moment_length = 585.6 Sets length for normalizing x-, z-moments

x_moment_center = 157.9 Sets x-moment center

z_moment_center = -33.92 Sets z-moment center

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0 CFL for meanflow is ramped from 10.0 to 200.0

schedule_cflturb = 1.0 30.0 CFL for turbulence is ramped from 1.0 to 30.0
/

All in

grid units

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

16

• We now have the boundary conditions and input deck set up to run
FUN3D

• To execute FUN3D, we use the following basic command line syntax:

mpirun ./nodet_mpi

– Note your environment may require slightly different syntax:

• mpirun vs mpiexec vs aprun vs …

• May need to specify various MPI runtime options:

• -np #

• -machinefile filename

• -nolocal

• Others

7/7/2017

FUN3D Training Workshop 9

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

17

• Using 1 Intel Haswell node (24 cores), this case runs in 2-3 minutes

• The top of the screen output will include an echo of your fun3d.nml, as well

as some preprocessing information:

FUN3D 12.7-74063 Flow started 05/18/2015 at 06:09:15 with 24 processes FUN3D version, start time, job size

[Echo of fun3d.nml]

The default "unformatted" data format is being

used for the grid format "vgrid". VGRID input is being used

... nsegments,ntet,nnodesg 1 2994053 513095 Grid contains 2,994,053 tets and 513,095 points

cell statistics: type, min volume, max volume, max face angle Min/max cell volumes, max internal face angles

cell statistics: tet, 0.41152313E-06, 0.66593449E+11, 179.973678915

cell statistics: all, 0.41152313E-06, 0.66593449E+11, 179.973678915

... PM (64,skip_do_min) : 0 F

... Calling ParMetis (ParMETIS_V3_PartKway) 0 F

... edgeCut 140453 # of edges cut by partitioning (measure of communication)

... Time for ParMetis: .2 s

... Constructing partition node sets for level-0... 2994053 T

... Edge Partitioning

... Boundary partitioning....

... Reordering for cache efficiency....

... Write global grid information to f6fx2b.grid_info

... Time after preprocess TIME/Mem(MB): 1.60 180.52 180.52 1.6 secs required to preprocess the mesh

NOTE: kappa_umuscl set by grid: .00

Grid read complete

Repaired 82 nodes of symmetry plane 6662, max deviation: 0.172E-03

y-symmetry metrics modified/examined: 23601/23601

Distance_function unique ordering T 20000000

construct partial boundary...nloop= 1

find closer surface edge...

find closer surface face...

Wall spacing: 0.766E-03 min, 0.120E-02 max, 0.115E-02 avg Min/max/avg wall spacing statistics

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

18

• At this point, time stepping commences

• For each time step:

– The L2-norm of the density|turbulence equation is red|blue; max and location are also included

– Lift and drag are reported in green

• “Done.” indicates execution is complete

Iter density_RMS density_MAX X-location Y-location Z-location

turb_RMS turb_MAX X-location Y-location Z-location

1 0.567454200028342E+00 0.28035E+02 0.16377E+03 -0.16562E+03 0.20117E+02

0.764159584901741E+04 0.13249E+07 0.79654E+04 -0.88280E+04 0.25675E+02

Lift 0.103222129717669E+00 Drag 0.646514468368827E+00

2 0.300676687726037E+00 0.12718E+02 0.29226E+03 -0.72487E+02 -0.12411E+02

0.753354469872627E+04 0.12868E+07 0.79654E+04 -0.88280E+04 0.25675E+02

Lift 0.146830367737086E+00 Drag 0.721243419758588E+00

.

.

.

499 0.235098406158263E-04 0.44827E-02 0.63496E+04 -0.38199E+04 0.18712E+04

0.799698877237297E-01 0.12961E+02 0.46732E+04 -0.15204E+04 0.26710E+03

Lift 0.556610229549889E+00 Drag 0.388376897833650E-01

500 0.232908407834686E-04 0.44201E-02 0.63496E+04 -0.38199E+04 0.18712E+04

0.789246351974423E-01 0.12785E+02 0.46732E+04 -0.15204E+04 0.26710E+03

Lift 0.556607946389416E+00 Drag 0.388374809483346E-01

Writing f6fx2b_trn.flow (version 11.8) lmpi_io 2

inserting current history iterations 500

Time for write: .0 s

Done.

7/7/2017

FUN3D Training Workshop 10

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Transonic Turbulent Flow on a

Tetrahedral Wing-Body Mesh

19

• FUN3D provides a couple of text files with basic statistics and summary data:

– f6fx2b_trn.grid_info File containing basic mesh statistics and partitioning info

– f6fx2b_trn.forces File containing force breakdowns by boundary and totals

• FUN3D also produces:

f6fx2b_trn_hist.dat Tecplot file with residual, force convergence histories

f6fx2b_trn.flow Solver restart information

• For this particular case, the mean

flow and turbulence residuals are

reduced by ~5 orders of

magnitude over 500 time steps

• Lift and drag come in after a few

hundred time steps

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

20

• For this case, we have been given a set of

binary, big endian AFLR3 files

– 0012.b8.ugrid, 0012.mapbc

– For computations in 2D mode
• Grid must be one-element wide in the y-direction

(except when using FUN2D format)

• Grid must contain only prisms and/or hexes

• First check the .mapbc file
– The y-planes must be separate boundary patches

and should be given BC 6662

4

1 4000

2 5000

3 6662

4 6662

0012.mapbc

7/7/2017

FUN3D Training Workshop 11

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

21

&project

project_rootname = '0012’

/

&raw_grid

grid_format = 'aflr3’ Read an AFLR3 grid

twod_mode = .true. Execute in 2D mode
/

&reference_physical_properties

mach_number = 0.80

reynolds_number = 1.e6

angle_of_attack = 1.25

temperature = 580.0

temperature_units = "Rankine"

/

&code_run_control

restart_read = 'off'

steps = 5000

/

&force_moment_integ_properties

area_reference = 0.1

x_moment_center = 0.25

/

&nonlinear_solver_parameters

schedule_cfl = 10.0 200.0

schedule_cflturb = 1.0 10.0

/

&global

boundary_animation_freq = -1

/

• fun3d.nml is shown here

• FUN2D grid format will

automatically be executed

in 2D mode; all others

must be explicitly put in

2D mode

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

22

FUN3D 12.7-74063 Flow started 05/18/2015 at 09:06:46 with 24 processes

[Echo of fun3d.nml]

The default "stream" data format is being Binary AFLR3 format is the default

used for the grid format "aflr3".

Preparing to read binary AFLR3 grid: 0012.b8.ugrid Binary AFLR3 grid being read

nnodes 116862 Grid contains 116,862 points

ntface,nqface 204510 14607 Grid contains 204,510 tris, 14,607 quads

ntet,npyr,nprz,nhex 0 0 102255 7047 Grid contains 102,255 prisms, 7,047 hexes

cell statistics: type, min volume, max volume, max face angle Cell stats now broken out by cell type

cell statistics: prz, 0.16960303E-06, 0.52577508E-01, 164.861624007

cell statistics: hex, 0.83173480E-09, 0.12843645E-04, 123.906431556

cell statistics: all, 0.83173480E-09, 0.52577508E-01, 164.861624007

... PM (64,skip_do_min) : 0 F

... Calling ParMetis (ParMETIS_V3_PartKway) 0 F

... edgeCut 11490

... Time for ParMetis: .1 s

... checking for spanwise edge cuts.

... Constructing partition node sets for level-0... 109302 T

... Edge Partitioning

... Boundary partitioning....

... Euler numbers Grid:1 Boundary:0 Interior:0

... Reordering for cache efficiency....

... ordering edges for 2D.

... Write global grid information to 0012.grid_info

... Time after preprocess TIME/Mem(MB): 0.31 90.82 90.82

NOTE: kappa_umuscl set by grid: .00

Grid read complete

Using 2D Mode (Node-Centered) Solver running in 2D mode

Distance_function unique ordering T 20000000

construct partial boundary...nloop= 1

find closer surface edge...

find closer surface face...

Wall spacing: 0.100E-03 min, 0.100E-03 max, 0.100E-03 avg

7/7/2017

FUN3D Training Workshop 12

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

NACA 0012 Airfoil

23

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

List of Key Input/Output Files

• Input

– Grid files (prefixed with project name, suffixes depend on grid format)

– fun3d.nml

• Output

– [project].grid_info

– [project].forces

– [project]_hist.dat

– [project].flow

24

7/7/2017

FUN3D Training Workshop 13

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?

Problem

• Common complaint from VGRID meshes during initial preprocessing

phase at front end of solver:

25

Checking volume-boundary connectivity...

stopping...unable to find common element for face 1 of

boundary 3

boundary nd array 46 17368 334315

node,locvc 46******************************

node,locvc_type 46 tet tet tet tet tet

node,locvc 17368************************************

node,locvc_type 17368 tet tet tet tet tet tet

• This is due to a very old VGRID bug that causes an incompatibility
between the .cogsg and .bc files

– Compile and run utils/repair_vgrid_mesh.f90 to generate a valid

.bc file to replace your original one

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?

Problem

• Common complaint from unformatted/binary meshes during initial

preprocessing phase at front end of solver:

26

Read/Distribute Grid.

forrtl: severe (67): input statement requires too much data, unit 16100,

file /misc/work14/user/FUN3D/project.cogsg

• Check the endianness of the grid and your environment/executables

Problem

• Unexpected termination, especially during preprocessing or first time

step

– Are your shell limits set?

– Do you have enough local memory for what you are trying to run?

7/7/2017

FUN3D Training Workshop 14

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?
Problem

• Solver diverges or does not converge

– Problem-dependent, very tough to give general advice here

– Sometimes require first-order iterations (primarily for high speeds)

– Sometimes require smaller CFL numbers

– Sometimes require alternate flowfield initialization (not freestream) in

some subregion of the domain: e.g., chamber of an internal jet

– Check your boundary conditions and gridding strategy

– Perhaps your problem is simply unsteady

Problem

• Solver suddenly dies during otherwise seemingly healthy run

– Sometimes useful to visualize solution just before failure

– Is it a viscous case on a VGRID mesh? Try turning on
large_angle_fix in &special_parameters namelist (viscous flux

discretization degenerates in sliver cells common to VGRID meshes)

– Is it a turbulent flow on a mesh generated using AFLR3? Look for

“eroded” boundary layer grids near geometric singularities – AFLR3

sometimes has trouble adding viscous layers near complex corners, etc

27

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What Could Possibly Go Wrong?

28

In General…

• Do not hesitate to send questions to fun3d-support@lists.nasa.gov ;

we are happy to try to diagnose problems

– Please send as much information about the problem/inputs/environment

that you can, as well as all screen output, any error output, and
config.log

– In extreme cases, we may request your grid and attempt to run a case for

you to track down the problem

– If you cannot send us a case due to restrictions, size, etc, a

generic/smaller representative case that behaves similarly can be useful

– Check the manual for guidance

• Ask the FUN3D user community, fun3d-users@lists.nasa.gov

mailto:fun3d-support@lists.nasa.gov
mailto:fun3d-users@lists.nasa.gov

7/7/2017

FUN3D Training Workshop 15

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Learning Goals

• What this will teach you

– Run-time flow visualization output

• Output on boundary surfaces

• Output on user-specified “sampling” surfaces within the volume

• Output of full volume data

• Output generated by “slicing” boundary data - “sectional” output

• What you will not learn

– The plethora of output options available for visualization

– Tecplot usage

• What should you already know

– Basic flow solver operation and control

29

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Background

• Datasets are getting simply too large to post-process in a traditional

manner

• FUN3D allows visualization data to be generated as the solver is

running

• User specified frequency and output type

• User specified output variables from a fairly extensive list

• Majority of output options are Tecplot-based

– Volume output may also be generated in Fieldview, CGNS

formats

• Note FUN3D also supports true in-situ visualization at scale using

the DoE VisIt package; however, this is not covered here

– Intelligent Light is currently integrating VisIt’s in-situ capabilities

with Fieldview

30

7/7/2017

FUN3D Training Workshop 16

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Selected Visualization Output Examples

31

x

C
p

-0.5 -0.25 0 0.25 0.5 0.75 1

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

y/b = 0.08

y/b = 0.38

y/b = 0.68

y/b = 0.99

Sliced Boundary Output

Iso-surfaces

Schlieren,

boundary output

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview

• All of the visualization outputs require similar namelist-specified

“frequency” N to activate:

– In all cases, N = 0, 1, 2, 3, …

• N = 0 generates no output

• N < 0 generates output only at the end of the run - typically used

for steady-state cases. The actual value of N is ignored

• N > 0 generates output every Nth time step - typically used to

generate animation for unsteady flows; can also be used to

observe how a steady flow converges

32

7/7/2017

FUN3D Training Workshop 17

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview

• Customizable output variables (except sliced boundary data):

– Most variables are the same between the boundary surface, sampling

and volume output options; boundary surface has a few extra

– See manual for lists of all available variables

– Default variables always include x, y, z, and the “primitive” flow

variables u, v, w, and p (plus density if compressible)

– Several “shortcut” variables: e.g.,

primitive_variables = rho, u, v, w, p

– Must explicitly turn off the default variables if you don’t want them
(e.g., primitive_variables = .false.)

– Variable selection for each coprocessing option done with a different

namelist to allow “mix and match”

33

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview
• For boundary surface output, default is all solid boundaries in 3D and

one y=const plane in 2D; alternate output boundaries selected with, e.g.:

&boundary_output_variables

number_of_boundaries = 3

boundary_list = ‘3,5,9’ ! blanks OK as

delimiter too: ‘3 5 9’

! dashes OK as delimiter

too: ‘3-9’

/

• If you already have a converged solution and don’t want to advance the

solution any further, can do a “pass through” run:

– set steps = 0 in &code_run_control

– You must have a restart file ([project].flow)

– Run the solver with the appropriate namelist input to get desired

output

– [project].flow will remain unaltered after completion

34

7/7/2017

FUN3D Training Workshop 18

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview
• Sampling output requires additional data to describe the desired

sampling surface(s)

– Specified in namelist &sampling_parameters

– Surfaces may be planes, quadrilaterals or circles of arbitrary

orientation, or may be spheres or boxes

– Isosurfaces and schlierens also available

– Points may also be sampled

– See manual for complete info

• Sliced boundary surface output requires additional data to describe the

desired slice section(s)

– Specified in namelist &slice_data

– Always / only outputs x, y, z, Cp, Cfx, Cfy, Cfz

– User specifies which (solid) boundaries to slice, and where

– See manual for complete info

35

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Visualization Overview

• Output files will be ASCII unless you have built FUN3D against the

Tecplot library (exception: sliced boundary data is always ASCII)

– ASCII files have .dat extension

– Binary files have .plt extension - smaller files; load into Tecplot faster

– Boundary output file naming convention (T = time step counter):

• [project]_tec_boundary_timestepT.dat if N > 0

• [project]_tec_boundary.dat if N < 0

– Volume output file naming convention (note: 1 file per processor P)

• [project]_partP_tec_volume_timestepT.dat if N > 0

• [project]_partP_tec_volume.dat if N < 0

– Sampling output file naming convention (one file per sampling

geometry G):

• [project]_tec_sampling_geomG_timestepT.dat if N > 0

• [project]_tec_sampling_geomG.dat if N < 0

36

7/7/2017

FUN3D Training Workshop 19

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Boundary Output Visualization Example

37

&global

boundary_animation_freq = -1 Dump boundary vis at end of run

/

&boundary_output_variables

primitive_variables = .false. Turn off rho, u, v, w, p

cp = .true. Turn on Cp

yplus = .true. Turn on y+

/

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Sampling Visualization Example

38

&sampling_parameters

number_of_geometries = 3 Want 3 sampling geometries

type_of_geometry(1) = 'plane‘ First geometry is a plane

plane_center(2,1) = -234.243 Plane y-coordinate

plane_normal(2,1) = 1.0 Plane y-normal

sampling_frequency(1) = -1 Write at end of run

type_of_geometry(2) = 'sphere’ Second geometry is a sphere

sphere_center(1,2) = 74.9 Center x-coordinate

sphere_center(2,2) = -107.7 Center y-coordinate

sphere_center(3,2) = 50.0 Center z-coordinate

sphere_radius(2) = 20.0 Sphere radius

sampling_frequency(2) = -1 Write at end of run

type_of_geometry(3) = 'isosurface’ Third geometry is an isosurface

isosurf_variable(3) = 'mach’ Isosurface will be based on Mach number

isosurf_value(3) = 1.00 Isosurface defined by Mach=1

sampling_frequency(3) = -1 Write at end of run
/

&sampling_output_variables

primitive_variables = .false. Turn off rho, u, v, w, p

mach = .true. Turn on Mach number
/

7/7/2017

FUN3D Training Workshop 20

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Volume Visualization Example

39

&global

volume_animation_freq = -1 Dump output at end of run

/

&volume_output_variables

export_to='tecplot’ Send results to Tecplot file

/

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Slicing Visualization Example

40

&global

slice_freq = -1 Dump output at end of run

/

&slice_data

nslices = 1 Perform one slice

slice_location(1) = -234.243 Coordinate of slice

/

7/7/2017

FUN3D Training Workshop 21

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Troubleshooting/FAQ

• I can see what look like ragged dark lines on sampling surfaces and

volume data – what is that?

– Duplicate information at partition boundaries is not removed; if

surface is not completely opaque, double plotting locally doubles the

opaqueness (duplicate info is removed from boundary surface

output)

– Turn off transparency in Tecplot

• When I dump out volume plot files in Tecplot format, I get a file for every

processor – is there a way around this?

– Yes, in &volume_output_variables add: export_to = ‘tec’

– The team is working with Tecplot to develop their next generation of

I/O APIs, with special focus on massively parallel needs

– Alternative: switch to Fieldview or CGNS output, which uses a single

file

41

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What We Learned

• Basic gridding requirements and file formats

• Runtime environment

• How to set up boundary conditions and very basic FUN3D input decks

• How to run a tetrahedral RANS solution for a wing-body VGRID mesh

• How to perform a 2D mixed element airfoil solution using an AFLR3

grid

• Some unhealthy things to watch for and possible remedies

• Overview of visualization output options and examples

42

Don’t hesitate to send questions our way!

fun3d-support@lists.nasa.gov

mailto:fun3d-support@lists.nasa.gov

7/7/2017

FUN3D Training Workshop 1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

FUN3D v13.1 Training

Session 5:

Adjoint-Based Design for

Steady Flows

Eric Nielsen

1

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Learning Goals

• Introduction and basic approach taken in FUN3D
• Some lingo/nomenclature
• What is an adjoint, and what is it used for?

– Error estimation and mesh adaptation
– Sensitivity analysis for design optimization

• Design variables
• Objective/constraint functions
• Geometry parameterizations
• Setup and execution of a simple unconstrained problem
• Things to watch out for
• How to interpret results

What we will not cover
• Body transforms, body grouping
• Overset grid details
• Multipoint/multiobjective/constrained optimization
• Hooking in your own optimizer, parameterization tools
• Forward-mode differentiation using complex variables
• Design of unsteady flows

– Later session

2

7/7/2017

FUN3D Training Workshop 2

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What to Expect

• Cost of design optimization is very problem-dependent, but in

general you can expect to spend ~20 times the cost of a flow

solution to get reasonable improvements, depending on how “good”

the baseline is

• Generally see very rapid improvements initially, followed by

diminishing returns

• We will cover the bare essentials here; also see the manual

– There are many aspects we will not have time to cover here

• Hands-off design is challenging – be patient, send in questions, and

we’ll try to help you through

– There are a lot of pieces involved, and getting things running smoothly

always involves stumbling blocks along the way

3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Design Optimization Using FUN3D

• Based on a gradient-based approach

• FUN3D is distributed with support for several COTS gradient-based
optimization packages
– You must download and install your choice of these third-party libraries

• DOT/BIGDOT (Vanderplaats R&D)

• KSOPT (Greg Wrenn @ Langley)

• PORT (Bell Labs)

• NPSOL (Stanford)

• SNOPT (Stanford)

• Other packages are generally straightforward to hook up – couple of hours

• These optimizers are based on the user supplying functions and
gradients (and perhaps constraints and their gradients also)
– Optimizers know nothing about CFD, all they see are f and f

• In CFD, objective/constraint functions are generally based on things
like lift, drag, pitching moment, etc.
– But can be anything you code up, generally speaking

4

7/7/2017

FUN3D Training Workshop 3

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Design Optimization Components

Functions

• When the optimizer requests a function value, it requires a flow
solution with inputs and a grid corresponding to the current design
variables

Gradients

• When the optimizer requests a gradient value, it requires a
sensitivity analysis with inputs and a grid corresponding to the
current design variables
– The most straightforward way to generate sensitivity information is to

perturb each design variable independently and run black-box finite
differences

• This is prohibitively expensive when each finite difference requires a new
CFD simulation (or two) – cost scales linearly with the number of design
variables

– The most efficient sensitivity analysis approach for CFD simulations
based on large numbers of design variables (hundreds or thousands) is
the adjoint method

5

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 6

Notation and Governing Equations

• Incompressible through hypersonic flows

• May include turbulence models and various physical models from

perfect gas through thermochemical nonequilibrium

(, ,) 0
t


 



Q
R D Q X

R

D

= Spatial residual

= Design variables

Q

X

= Dependent variables

= Computational grid

We wish to perform rigorous adaptation and design optimization

based on the steady-state Euler/Navier-Stokes equations,

without requiring any a priori knowledge of the problem:

7/7/2017

FUN3D Training Workshop 4

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 7

What is an Adjoint?

f

K

fΛ

gΛ

= Cost function (lift/drag/boom/etc)

= Mesh movement elasticity matrix

= Flowfield adjoint variable

= Grid adjoint variable

Combine cost function with Lagrange multipliers :

Differentiate with respect to D:

R Q R
Λ Λ

D D D D Q Q

TT T

f f

dL f f

d

          
                   

T T

T T

f g g

surf

f          
                   

X R X
Λ Λ K Λ

D X X D

Mesh Movement EquationsFlowfield EquationsCost Function

(, , , ,) (, ,) (, ,) ()T T
f g f g surfL f   D Q X Λ Λ D Q X Λ R D Q X Λ KX X

T

f

f  
    

R
Λ

Q Q

This adjoint equation for the flowfield

has powerful implications for:

• Error estimation & mesh adaptation

• Sensitivity analysisGoverning Eqns Engineering Output

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 8

Adjoints for Error Estimation and Mesh Adaptation

It is apparent that:

f
f




Λ
R

Direct relationship between local equation

error and the output we are interested in

• These relationships can be used to get
error estimates on

• Also used to compute a scalar field
explicitly relating local point spacing
requirements to output accuracy for a
user-specified error tolerance

• Often yields non-intuitive insight into
gridding requirements

• Relies on underlying mathematics to
adapt, rather than heuristics such as
solution gradients

Blue=Sufficient Resolution

Red=Under-Resolved

Transonic Wing-Body:

“Where do I need to put grid points

to get 10 drag counts of accuracy?”f

User no longer required to be a

CFD expert to get the right answer

7/7/2017

FUN3D Training Workshop 5

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 9

Supersonic Adjoint-Based Mesh Adaptation

• Objective: Adapt grid to compute drag on

lower airfoil as accurately as possible

• Result of adjoint-based adaptation:

• Uniformly-resolved shocks are not required

• Drag is computed accurately with a

90% smaller grid

Adjoint-Based Adaptation

CD=0.0766 3,810 Nodes

Feature-Based Adaptation

CD=0.0767 37,352 Nodes

3M 

Collaboration with Venditti/Darmofal of MIT using FUN2D

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 10

Adjoint-Based Mesh

Adaptation for High Lift
Collaboration with Venditti/Darmofal of MIT using FUN2D

• Initial grid was coarse Euler mesh

• Pressure-based indicator only

resolves strong flow curvature

• Adjoint-based indicator also includes

important smooth regions, stagnation

streamline and wakes

7/7/2017

FUN3D Training Workshop 6

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 11

Adjoints for Sensitivity Analysis
Examine the remaining terms in the linearization:

T T T
T T

f f g g
surf

dL f f

d

             
                          

R X R X
Λ Λ Λ K Λ

D D D D X X D

R
K Λ Λ

X X

T

T

g f

f    
        

Discrete adjoint equation

for mesh movement

T T

f g

surf

dL f

d

   
       

R X
Λ Λ

D D D D

Sensitivity

equation



Function Evaluation Sensitivity Evaluation

1. Compute surface mesh at current D

2. Solve mesh movement equations

3. Solve flowfield equations

3. Solve flowfield adjoint equations

2. Solve mesh adjoint equations

1. Matrix-vector product over surface

Analysis Cost = Sensitivity Analysis Cost

Even for 1000s of design variables

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Design Variables in FUN3D

• Global flowfield variables
– Mach number, angle of attack, sideslip, noninertial rates

• Shape variables
– These depend entirely on the geometric parameterization being

supplied to FUN3D

– FUN3D has no native shape variables, other than the grid points
themselves

• Additional variables related to unsteady simulations

12

7/7/2017

FUN3D Training Workshop 7

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Objective/Constraint Functions in FUN3D

13

*

1

()
i

j

J
p

i j j j

j

f C C


 
 = weight C = aero coeff

p = power C
= target aero coeff

• We call each term in the summation a component function and the
summation fi a composite function

• User may specify which boundary patch in the grid (or all) to which each
component function applies

• Constraints may be explicit or added as “penalties”

• Multipoint/multiobjective: as many composite functions/constraints as
desired

– Only limited by particular optimization package

– Adjoints for multiple functions/constraints computed simultaneously

• The optimization always seeks to minimize the objective function(s), so
pose them accordingly

• This general form leads to numerous ways to pose an optimization
problem; each optimizer has its own limitations though

– Extensive discussion in manual

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Objective/Constraint Functions Examples

14

Unconstrained Drag Minimization

Drag Minimization with CL=0.5 Lift Penalty

Drag Minimization with Explicit CL=0.5 Lift Constraint

2

Df C

2 210 (0.5)D Lf C C  

2

1 Df C 2 Lf C

7/7/2017

FUN3D Training Workshop 8

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Geometry Parameterizations

15

• FUN3D relies on a predefined relationship between a set of
parameters, or design variables, and the discrete surface mesh
coordinates

• Given D, surface parameterization determines Xsurf (surface mesh)

• For example, given the current value of wing thickness at a location,
what are the corresponding xyz-coordinates of the mesh?

• This narrows down the number of design variables from hundreds
of thousands (raw grid points) to dozens or hundreds

– Optimizers will perform more efficiently

– Smoother design space

• The other requirement of the parameterization package is that it
provides the Jacobian of the relationship between the design
variables and the surface mesh, Xsurf/D

• While users may provide their own parameterization scheme, FUN3D is set up
to handle three common packages:

– MASSOUD: Aircraft-centric design variables (thickness, camber, planform, twist, etc.)

– Bandaids: General patching tool to handle fillets, winglets, and other odd shapes

– Sculptor: Commercial package from Optimal Solutions

• To dump out the surface grids in the Tecplot format necessary for these tools,
run the flow solver with ‘--write_massoud_file’

– This procedure generates a [project]_massoud_bndryN.dat file for the ith solid
boundary

Wing Twist via MASSOUD

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Design/description.i

• i suffix is an integer referring to the

design point (to accommodate multipoint

design)

• Contains all of the baseline files

describing this design point (CFD model

and all input decks specific to it)

• The optimization never changes

anything in here; this is where the

optimizer can always find the problem

definition

• You provide the problem description
for the ith design point here

Directory Tree for FUN3D-Based Design

16

Design

• Main directory for design execution

• The only directory here without a hardwired name

Design/ammo

• Design is executed from here
using the opt_driver

executable

• design.nml resides here

Design/model.i
• i suffix is an integer referring to

the design point (to accommodate

multipoint design)

• All CFD runs are performed here

• You never change anything in

here; it only contains outputs

Design/model.i/Flow

• All flow solutions are

performed here

Design/model.i/Adjoint

• All adjoint solutions are

performed here

Design/model.i/Rubberize

• All parameterization evaluations

are performed here

Design/model.i/Rubberize/surface_history

• A Tecplot file for every surface grid evaluated during the

design is stored here

You need not set up this tree

manually; the code will do it for you,

provided some basic pathnames

7/7/2017

FUN3D Training Workshop 9

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

Maximize L/D for Transonic Flow Over a Wing

• To create the directory structure necessary for performing the optimization, issue

the following command:
‘/path/to/your/FUN3D/installation/Design/opt_driver --setup_design 1’

• The trailing integer represents the number of design points desired

• This command will prompt you for several paths and then will set up the

required directory structure

• First we will discuss the files that must be provided in the
description.1 directory

17

ONERA M6 Wing:

Baseline L/D=6.7

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 18

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

• This file is used to specify any command line options (CLOs) required by the

FUN3D executables, as well as MPI

• The first line specifies the number of executables for which you are providing CLOs

• This is followed by a line containing an integer and a keyword

– The integer specifies the number of CLOs you are providing for the code identified by the

keyword

• This is followed by the actual CLOs for the current executable

• Note ‘mpirun’ is an available keyword: this provides a mechanism to feed your
mpirun executable any options it may require (-nolocal, -machinefile

filename, etc.)

– Depends on your environment, queue structure, etc.

command_line.options

3

0 flow

1 adjoint

‘--rmstol 1.e-3’

0 mpirun

7/7/2017

FUN3D Training Workshop 10

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

• These files are input files for MASSOUD for the 1st body; the MASSOUD setup

tool provides these when you set up your parameterization

• Do not change these files

19

design.1, design.gp.1

• This file is an input file for MASSOUD for the 1st body; the MASSOUD setup tool

provides this template when you set up your parameterization

• Depending on how you choose to “link” raw MASSOUD variables to create new

variables, this defines the linking weights (see MASSOUD documentation)

• When using MASSOUD with FUN3D, you must always use the design variable

linking option, even if simply set to the identity matrix

design.usd.1

We are assuming the use of a MASSOUD parameterization for this example

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 20

design.usd.1

this is input sd file for MASSOUD

number of row == number dvs within MASSOUD

number of col == final number dvs

#(row) (col) (#of nonzero rows)

10 11 10

d 1d 2d 3d 4d 5d 6d 7d 8d 9d 10d 11d

1 1 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 1

8 0 0 0 0 0 0 0 1 0 0 1

9 0 0 0 0 0 0 0 0 1 0 1

10 0 0 0 0 0 0 0 0 0 1 1

• Our demo problem uses 166 variables; this sample file only shows 10

raw variables plus 1 linked variable for clarity

• Linked variable is equal combination of raw DV’s 7-10

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

7/7/2017

FUN3D Training Workshop 11

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

• This file tells MASSOUD the names of its input/output files for the 1st body

• The first value specifies the number of linked MASSOUD design variables

– If linking matrix is identity, this is just the number of raw MASSOUD design variables

• The remainder of the inputs are filenames; they should remain as is, but with

the integer value in each name set to the index of the current body

21

massoud.1

#MASSOUD INPUT FILE

runOption (0 analysis), (> 0 sd using user's dvs) (-1, sd using massoud's dvs)

166

core (0 incore solution)(1 out of core solution)

0

input parameterized file

design.gp.1

design variable input file

design.1

input sensitivity file (used for runOption > 0

design.usd.1

output file grid file

new1.plt

output tecplot file for viewing

model.tec.1

file containing the design variables group

designVariableGroups.1

user design variable file

customDV.1

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

• This is the nominal solver input deck for your case

• The adjoint solver also uses this input

– If the adjoint requires different values (e.g., stopping tolerance), you can override
these values with CLOs given in command_line.options

• It should contain the necessary inputs to run the baseline case

• The optimization will override values as needed using CLOs (e.g., angle of

attack, etc.)

22

fun3d.nml

• This is the nominal mesh for your baseline case in whatever grid format is

convenient

[project].fgrid, [project].mapbc

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

7/7/2017

FUN3D Training Workshop 12

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 23

• This is the main design control file used to define the design variables and their

bounds, objective functions, and constraints for the current design point

• It also stores current values of functions and sensitivities

• A copy of this file is placed in the model.1 directory at the beginning of an

optimization and is continuously updated with the current values of the design

variables, objective/constraint functions, and all gradient information

– If you want to know the latest info during a design, it’s probably in here

rubber.data

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 24

• In general, for each design variable, you must set several fields

– Active (0=no, 1=yes), baseline value, upper and lower bounds (if active)

• First subsection lays out global design variable information including Mach

number, angle-of-attack, yaw, noninertial rates

• This is followed by an input stating the number of bodies to be designed

• Then for each body:

– Fixed number of rigid motion variables – leave these alone (used for unsteady flows)

– Number of shape variables and their inputs – these correspond directly to the

MASSOUD variables previously discussed

• When setting bounds for shape variables, it pays to be conservative – the optimizer will exploit

every radical shape it can dream up

• You can quickly get into unsolve-able or invalid/crossed-up geometries

• You can always loosen up the bounds and restart the design if needed

rubber.data: Design Variable Block

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

7/7/2017

FUN3D Training Workshop 13

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 25

###

######################## Design Variable Information ##########################

###

Global design variables (Mach number / angle of attack)

Index Active Value Lower Bound Upper Bound

Mach 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

AOA 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

Yaw 0 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00

xrate 0 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00

yrate 0 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00

zrate 0 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00

Number of bodies

1

Rigid motion design variables for body 1 (name of body 1, less than 80 cols)

Var Active Value Lower Bound Upper Bound

RotRate 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotFreq 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotAmpl 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotOrgx 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotOrgy 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotOrgz 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotVecx 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotVecy 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

RotVecz 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

TrnRate 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

TrnFreq 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

TrnAmpl 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

TrnVecx 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

TrnVecy 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

TrnVecz 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

Parameterization Scheme (Massoud=1 Bandaids=2 Sculptor=4)

1

Number of shape variables for body 1 (name of body 1, less than 80 cols)

166

Index Active Value Lower Bound Upper Bound

1 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

2 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

3 0 0.000000000000000E+00 0.000000000000000E+00 0.500000000000000E+01

.

.

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 26

• These sections lay out the objective/constraint function definitions

• First input is the total number of composite functions being specified (sum of

objectives + constraints)

• Then, for each function:

– Is it an objective function (1) or a constraint (2)

– If it is a constraint, what are the upper and lower bounds (otherwise dummies)

– How many component functions are used to build up the composite function

– Time step interval defining the function (leave as dummies – for unsteady design)

– Composite function weight/target/power: for further generality, described in manual

– Then the list of component functions:

• Boundary index it applies to (0 means all boundaries)

• Keyword identifying the function type (see manual)

• Value (dummy – this is an output during the optimization)

• Weight/target/power to be applied to current component function

• The remainder of the function block is devoted to sensitivity outputs – you can place

dummies here, but there must be a line corresponding to every design variable

rubber.data: Function Block

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

7/7/2017

FUN3D Training Workshop 14

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 27

##

############################ Function Information ############################

##

Number of composite functions for design problem statement

1

##

Cost function (1) or constraint (2)

1

If constraint, lower and upper bounds

0.0 0.0

Number of components for function 1

1

Physical timestep interval where function is defined

1 1

Composite function weight, target, and power

1.0 0.0 1.0

Components of function 1: boundary id (0=all)/name/value/weight/target/power

0 clcd 0.000000000000000 1.000 20.00000 2.000

Current value of function 1

0.000000000000000

Current derivatives of function wrt global design variables

0.000000000000000

0.000000000000000

.

.

.

Current derivatives of function wrt rigid motion design variables of body 1

0.000000000000000

0.000000000000000

.

.

.

Current derivatives of function wrt design variables of body 1

0.000000000000000

0.000000000000000

.

.

.

Maximize L/D for Transonic Flow Over a Wing
Files Required in description.1 Directory

Our objective function:
2(/ 20)f L D 

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 28

• We are now finished setting things up in the description.1 directory

• There is one more file that needs to be set up in the ../ammo directory

• The design.nml file controls the actual optimization procedure

• Everything in this namelist file is pretty self-explanatory, but a few reminders:

– ‘opt_algorithm’: DOT/BIGDOT=1, KSOPT=3, PORT=4, NPSOL=5, SNOPT=6

– ‘what_to_do’: analysis=1, sensitivity analysis=2, optimization=3

– Note you can specify the mpirun executable name

• Useful if executable is called ‘mpiexec’, ‘aprun’, or otherwise on your system

– Otherwise, see extensive documentation for this namelist in the manual

Maximize L/D for Transonic Flow Over a Wing
ammo/design.nml

&design

base_directory = ‘path/to/your/design/case’

what_to_do = 1

mpirun_prefix = ‘mpiexec’

/

7/7/2017

FUN3D Training Workshop 15

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 29

• Things are now ready for execution

• The first thing I typically do is just run a function evaluation to see that

the parameterization and all of the inputs are set correctly

• To do this, edit design.nml and set what_to_do to 1

• From the ammo directory, the command line that is used to run this case

is

./opt_driver --sleep_delay 5

– The ‘--sleep_delay 5’ instructs the design driver to wait 5 seconds in

between operations – allows NFS caching to keep up

– Different systems may require more time (or none)

Maximize L/D for Transonic Flow Over a Wing
Running a Function Evaluation

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 30

• The first thing that you will see is MASSOUD evaluating the parameterization for each

body, defining the surface grid coordinates at the baseline position

• The flow solver will then start up, but prior to the solve, you will see an auxiliary solution

take place that represents the interior mesh movement based on the elasticity equations

– For this first step at the baseline position, you should see very small numbers for the “Natural

Error Est” (close to machine zero): this indicates the current surface mesh is very close to the

requested surface mesh

• After the actual flow solution takes place, the solver will evaluate each of the objective

and constraint functions you posed:

Current value of function 1 178.087727962997

• This marks the end of a successful function evaluation

• Always wise to plot the flow solver convergence – you want to run enough iterations to

get a “reasonable” answer (outputs resolved beyond what you are expecting from design

changes), but you don’t necessarily need to drive it into the ground

Maximize L/D for Transonic Flow Over a Wing
Running a Function Evaluation

7/7/2017

FUN3D Training Workshop 16

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 31

[MASSOUD Screen Output]

Sleeping to allow file system time to catch up...

Executing: mpiexec nodet_mpi --animation_freq -1 --design_run --irest 0 --write_mesh inviscid

FUN3D 12.7-74063 Flow started 05/20/2015 at 14:38:54 with 24 processes

[Echo of fun3d.nml]

[Usual preprocessing info]

Using linear elasticity to reposition grid...

reading ../rubber.data ...

reading:../Rubberize/model.tec.1.sd1

Iter Natural Err Est Error Estimate Restarts

0 0.648914658284637E-16 0.000000000000000E+00 0

Iter density_RMS density_MAX X-location Y-location Z-location

1 0.725550147064997E-04 0.46595E-03 0.34893E-01 0.60683E-01 0.00000E+00

Lift 0.657554528793843E-01 Drag 0.319926994134964E-01

…

74 0.207836490870309E-09 0.82846E-08 0.22500E+01 0.45000E+01 0.65000E+01

Lift 0.881383268442809E-01 Drag 0.132438291863532E-01

Writing boundary output: inviscid_tec_boundary.dat

Time step: 74, ntt: 74, Prior iterations: 0

Writing inviscid.flow (version 11.8) lmpi_io 2

inserting current history iterations 74

Time for write: .0 s

Current value of function 1 178.087727962997

writing ../rubber.data ...

global element counts below i4 limit, write as 'stream'

wrote inviscid.b8.ugrid in 0.0000

Done.

Analysis complete.

Maximize L/D for Transonic Flow Over a Wing
Running a Function Evaluation

ONERA M6 Wing:

Baseline L/D=6.7

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 32

• Now lets test a sensitivity analysis

• Edit design.nml and set what_to_do to 2

• Submit the job just as before

• The first thing that will take place is a function evaluation, just as before

• After the function evaluation takes place, MASSOUD will fire up again to

evaluate the linearizations of the surface mesh coordinates with respect to the

design variables

• FUN3D’s adjoint solver will then start up:

– You will see a solution taking place; this is the flowfield adjoint

– Afterwards, you will see another solution occurring; this is the elasticity adjoint for the

mesh

– The final step is to update the model.1/rubber.data file with the sensitivity

information

• This marks the end of a successful sensitivity analysis

• Again, it is wise to plot the convergence of the flowfield adjoint system

– This convergence history is in the model.1/Adjoint/[project]_hist.dat file

– In general, you want 2-3 orders of magnitude convergence; this is usually sufficient

for reasonable sensitivity information

Maximize L/D for Transonic Flow Over a Wing
Running a Gradient Evaluation

7/7/2017

FUN3D Training Workshop 17

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 33

[Function Evaluation]

[MASSOUD Screen Output]

Sleeping to allow file system time to catch up...

Executing: mpiexec dual_mpi --rmstol 1.e-3 --getgrad --irest 0 --force_stream_file

FUN3D 12.7-74063 Adjoint started 05/20/2015 at 14:44:00 with 24 processes

[Echo of fun3d.nml]

[Usual preprocessing info]

Iter adjoint RMS adjoint MAX X location Y location Z location

1 0.707037901636711E+00 0.30235E+01 0.57720E+00 0.95000E+00 0.13288E-01

2 0.221413741319278E+02 0.77671E+03 0.22500E+01 0.45000E+01 0.65000E+01

3 0.252132505507981E+02 0.85665E+03 0.22500E+01 0.45000E+01 0.65000E+01

…

79 0.108404219416308E-02 0.48685E-01 0.20671E+00 0.43560E+01 0.19196E+01

80 0.961305851711102E-03 0.43086E-01 0.20671E+00 0.43560E+01 0.19196E+01

Performing linear elasticity adjoint...

reading ../rubber.data ...

Using defaults for move_relaxation.schedule.

Boundary 1 allowed to deform with y=constant constraint

Iter Natural Err Est Error Estimate Restarts

0 0.540562915758561E+04 0.100000000000000E+01 0

1 0.351062487957891E+02 0.649438719756149E-02 0

11 0.426070657988252E-02 0.788198090485649E-06 0

writing ../rubber.data ...

Done.

Sensitivity analysis complete.

Maximize L/D for Transonic Flow Over a Wing
Running a Gradient Evaluation

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 34

• If you got this far, things are looking pretty good – we’ve checked that everything is set up

to run functions and gradients correctly, which is all the optimizer depends on

• Now we’re ready to try an actual optimization

– Edit design.nml and set what_to_do to 3; submit the job like usual

• Now you will see a lot of function and gradient evaluations going by, as the optimizer

starts to change design variables and search for an optimum solution

• One easy way to monitor progress is to grep your screen output:

– ‘grep “Current value” screen.output’:
Current value of function 1 178.087727962997

Current value of function 1 137.781363854615

Current value of function 1 109.428434387371

Current value of function 1 95.6295324769749

Current value of function 1 98.1556907116245

Current value of function 1 90.6778940684516

Current value of function 1 90.5396512437177

Current value of function 1 87.6654699895390

Current value of function 1 87.6871503037963

Current value of function 1 87.1318763195701

Current value of function 1 86.8957999910668

Current value of function 1 87.3525539085617

Current value of function 1 86.5144811775675

Current value of function 1 86.8116026938974

Current value of function 1 86.2791203108911

Current value of function 1 86.2399423689607

Current value of function 1 86.2399415584093

• You can also observe (but don’t change!) the file model.1/rubber.data

Maximize L/D for Transonic Flow Over a Wing
Running the Optimization

7/7/2017

FUN3D Training Workshop 18

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 35

• After the job finishes, PORT will summarize its performance in the file
model.1/port.output

• Since each solution is a warm start, you can plot the entire flow solution history contained
in model.1/Flow/[project]_hist.dat

• A history of the surface geometry is stored in
model.1/Rubberize/surface_history/model.tec.1.sd1.iteration.*

Redesigned Wing:

L/D=10.7

Maximize L/D for Transonic Flow Over a Wing
Post Mortem

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 36

• The procedure can terminate due to CFD-related problems:

– Running into negative volumes during a mesh movement (you can plot the

history of the surface(s) using the files in model.1/Rubberize/surface_history)

• Watch for invalid surfaces or unusually large changes

• Be conservative in your lower/upper bounds!

– The flowfield or the adjoint solution is unstable

• Problem-dependent; get in touch for advice

• The procedure can also terminate due to hardware/environment

problems

– You run out of allocated time, a node dies, etc.

• Finally, the procedure can terminate if the optimizer has given up:

– No more progress can be made due to constraints

– The optimizer has hit the max number of functions/gradients you allowed

– An optimal solution has been found

What Could Possibly Go Wrong?

7/7/2017

FUN3D Training Workshop 19

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

List of Key Input/Output Files

Input

• In description.i directory:

– All files necessary to run solutions for ith design point (grid files,

fun3d.nml, etc)

– All parameterization files for ith parameterized body

– command_line.options

– rubber.data

• ammo/design.nml

Output

• All files normally associated with running the solver

• rubber.data

• port.output

• Design history in model.1/Rubberize/surface_history

37

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017 38

• That’s more or less the basic pieces involved with running an optimization

• Lots of options we did not cover here; see manual or get in touch for help

– How the wrappers work (LibF90/analysis.f90, LibF90/sensitivity.f90)

– Parameterizations other than MASSOUD

– Multipoint/multiobjective (tutorial on website)

– Constrained problems (tutorial on website)

– Running with other optimization packages (tutorial on website)

– Body grouping, spatial transforms

– Archiving files during optimization

– Overset grids

– Forward-mode sensitivity analysis using complex variables

– Unsteady design (later session)

General Advice

• Become very comfortable with the flow solver

• Work the tutorials

• Learn how to set up parameterizations using MASSOUD and/or bandaids

• Try plugging in your own grids/parameterizations in the tutorials

• Ask questions – it’s actually not that bad once you get up the learning curve

Summary of Design Optimization for Steady Flows

7/7/2017

FUN3D Training Workshop 20

http://fun3d.larc.nasa.gov

FUN3D Training Workshop
July 30, 2017

What We Learned
• General approach used by FUN3D for design optimization

• What is an adjoint

• What does a function/gradient evaluation consist of in terms of CFD

• Design variables in FUN3D

• Functions/constraints in FUN3D

• What is required of a geometry parameterization tool

• How to set up the inputs required for design optimization

• How to run function, gradient evaluations

• How to perform a basic design optimization

• What to watch out for and how to interpret results

39

