
34th AIAA Fluid Dynamics Conference
June 28 – July 1, 2004 / Portland, Oregon
CFD Verification and Validation session 88-FD-22

CFD: A Castle in the Sand?

Bil Kleb and Bill Wood
Aerospace Engineers, Aerothermodynamics Branch
NASA’s Langley Research Center, Hampton, Virginia 23681

AIAA Paper 2004–2627

c©2004 The Head Agency, modified by Bil Kleb

The computational simulation community is not routinely
publishing independently verifiable tests to accompany new
models or algorithms. A survey reveals that only 22% of
new models published are accompanied by tests suitable for
independently verifying the new model. As the community
develops larger codes with increased functionality, and hence
increased complexity in terms of the number of building block
components and their interactions, it becomes prohibitively
expensive for each development group to derive the appropriate
tests for each component. Therefore, the computational
simulation community is building its collective castle on
a very shaky foundation of components with unpublished
and unrepeatable verification tests. The computational
simulation community needs to begin publishing component-
level verification tests before the tide of complexity undermines
its foundation.

1 Introduction

Growth in computational power naturally facilitates higher-
fidelity computational simulation techniques. But as sim-
ulation codes grow more sophisticated, their number of
building-block components also increases. The increased com-
plexity is forcing a change from the cottage industry of one
person/one code to team software development.1

1 Alexandrov, N. et al., Team software
development for aerothermodynamic
and aerodynamic analysis and design,
NASA/TM 2003-212421, 2003; Cam-
bier, L. and Gazaix, M., elsA: An effi-
cient object-oriented solution to CFD
complexity, AIAA Paper 2002-0108,
2002; Kroll, N., Rossow, C. C., Becher,
K., and Theile, F., MEGAFLOW—
a numerical flow simulation system,
ICAS 98-2.7.4, 1998.

For the continued viability of our computational community
we need to be more than clever engineers and mathematicians,
we also need to be competent software developers.2 One

2 Quirk, J. J., Computational science:
Same old silence, same old mistakes,
something more is needed, in Adaptive
Mesh Refinement – Theory and Appli-
cations, edited by Plewa, T., Linde, T.,
and Weirs, V. G., pages 1–26, Springer-
Verlag, 2004.

distinguishing aspect of competent software developers is their
software testing practice. Before inserting a new component
into a system, they will perform a set of component-level tests.

There is a tremendous duplication of effort if each develop-
ment group must independently derive all the component-level
test for each model they implement. Further, without repeat-
able verification, the Hatton studies showing 1 fault per 170
lines for scientific codes3 highlights the difficulty in achieving

3 Hatton, L., IEEE Computational
Science and Engineering 4 (1997) 27;
Hatton, L. and Roberts, A., IEEE
Transactions on Software Engineering
20 (1994) 785.

consistent implementations. Component-level tests should be
published by the original authors who are in the best position
to provide these component-level verification tests.

This material is declared a work of the U.S. Government and is not subject
to copyright protection in the United States.

34th AIAA Fluid Dynamics Conference and Exhibit
28 June - 1 July 2004, Portland, Oregon

AIAA 2004-2627

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

mailto:Bil.Kleb@NASA.Gov?cc=Bill.Wood@NASA.Gov&subject=AIAA_2004-2627
mailto:Bill.Wood@NASA.Gov?cc=Bil.Kleb@NASA.Gov&subject=AIAA_2004-2627

This paper explores the lack of component-level testing
in the computational simulation community and proposes a
course correction that will enable the community to build a
solid foundation for increasingly complicated computational
codes. The paper revisits the Scientific Method, explores the
current practice, proposes a new course of action, and presents
test fixture examples.

2 The Scientific Method

In a computational context, component-based verification
testing is the engine behind the Scientific Method that Roger
Bacon first described in the thirteenth century: a repeating
cycle of observation, hypothesis, experimentation, and the need
for independent verification.4

4 Bacon, R., Opii: Majus, Minus, and
Tertium, c.1267.Popularized by Francis Bacon and Galileo Galilei, the

Scientific Method has since become a means of differentiating
science from pseudoscience. The Scientific Method is fueled
by the idea that hypotheses and models must be presented to
the community along with the description of experiments that
support the hypothesis. The experiments that accompany
a hypothesis must be documented to the extent that others
can repeat the experiment—Roger Bacon’s independent
verification.

3 Current Practice

To develop a CFD code, a team will pull components, such
as flux functions, boundary conditions, turbulence models,
transition models, gas chemistry models, data structures, and
so on, each from a different original publication.

For example, consider the 24 components that comprise
the FUN3D flow solver5 listed in table 1. Now, consider the 5 fun3d.larc.nasa.gov

Table 1: Components in the FUN3D flow solver. Data provided by Eric Nielsen of NASA.

Turbulence model Transition model Boundary conditions Flux limiter

Flux reconstruction Time relaxation Convergence acceleration Flux functions

Entropy fix Transport properties Data structures Gas chemistry

Time integration Preconditioners Flux jacobians Governing equations

Multiprocessing Domain decomposition Preprocessing Postprocessing

Grid sequencing Grid adaptation Grid movement Load balancing

potential interactions between these components as indicated
by the lines in figure 1. While arguments can be made about
whether all components necessarily influence all the other
components (as drawn), even the most ardent detractor has to
concede that this system is nevertheless a complicated set of
interrelated components.

2 of 9

AIAA Paper 2004–2627

http://fun3d.larc.nasa.gov/

Turbulence model

Transition model

Boundary conditions

Flux limiter

Flux reconstructionTime relaxation

Convergence acceleration

Flux functions
Entropy fix

Transport properties

Data structures

Gas chemistry

Time integration

Preconditioners
Flux jacobians

Governing equations

Multiprocessing

Domain decomposition
Preprocessing

Postprocessing

Grid sequencing

Grid adaptation

Grid movement

Load balancing

Figure 1: Components interactions in the FUN3D flow solver.

As the number of components increases, the interactions
grow as n2/2. The task of finding an error in a system of
interrelated components is daunting, but this task becomes un-
tenable if the components have not already been independently
verified. Verification of this complex system must proceed in
two steps: (1) verification of components and (2) verification
of their interactions.

The current computational verification and validation
community recommends verification on the system level; that
is, test the entire collection of components that make up a
given code in one shot by using the method of manufactured
solutions.6 This approach typically requires new components

6 See, for instance: Roache, P. J.,
Verification and Validation in Com-
putational Science and Engineering,
Hermosa, 1998; Oberkampf, W. L. and
Trucano, T. G., Progress in Aerospace
Sciences (2002) 209; Roy, C. J., Verifi-
cation of codes and solutions in compu-
tational simulation, in Proceedings of
CHT-04: ICHMT International Sym-
posium on Advances in Computational
Heat Transfer, 2004.

be added specifically to accommodate the arbitrary boundary
conditions and source functions required by manufactured
solutions. In addition, selection of the appropriate basis
function for the manufactured solution remains an art, and so
far, only smooth-valued solutions have been manufactured.

The goal method of manufactured solutions in this case
is to verify the entire system attains its theoretical order-of-
accuracy properties. But because this is a system-level test,
the potential source of errors from component interactions
grows as n2/2. Therefore, before attempting the method
of manufactured solutions on a system of components, each
component should be independently verified.

As discussed earlier, verification at the component level
is the essential ingredient for the advancement of numerical
analysis according to the Scientific Method, but currently,
component-level tests rarely accompany publications that
introduce new models and algorithms. Table 2, a sampling

Table 2: Survey of new component
publishing. Upticks indicate arti-
cles with component tests, downticks
indicate articles lacking component
tests, and dot articles did not appear
to introduce a new model. The per-
cent of new model articles containing
tests is also given.

journal vol(#) articles %

JCP 192(2) 0

192(1) 23

191(2) 27

IJNMF 43(10–11) 0

43(9) 20

43(8) 67

22of recent issues of the Journal of Computational Physics

3 of 9

AIAA Paper 2004–2627

(JCP) and the International Journal for Numerical Methods in
Fluids (IJNMF), reveals that only 22% of the 49 new models
introduced are published with component-level verification
data. A notable exception that provides verification tests is a
series of boundary layer papers in IJNMF:43(8).

Table 2: Repeated for convenience.

journal vol(#) articles %

JCP 192(2) 0

192(1) 23

191(2) 27

IJNMF 43(10–11) 0

43(9) 20

43(8) 67

22

The omission of component-level verification is also evident
in the proposed phases of computational modeling and
simulation7 shown in figure 2. It is important to note that

7 Oberkampf, W. L., DeLand, S. M.,
Rutherford, B. M., Diegert, K. V., and
Alvin, K. F., Reliability Engineering
and System Safety (2002) 333.

Physical System
(Existing or Proposed)

Conceptual Modeling
of the Physical System

Mathematical Modeling
of the Conceptual Model

Discretization and
Algorithm Selection for
the Mathematical Model

Computer Programming
of the Discrete Model

Numerical Solution of the
Computer Program Model

Representation of the
Numerical Solution

Figure 2: Proposed phases of computa-
tional modeling and simulation.

this figure is drawn at the system level, that is, from the
perspective of the complete computational simulation software
system. The boxed step, Computer Programming of the Discrete

Model, is the topic of this paper, but we argue that this step
must contain component-by-component verification before
attempting system-level verification.

This distinction is important not only because component-
level testing is simpler than testing the entire system, but also
because it is the necessary first step when building a complex
system. By first testing at the component level, developers
avoid what Steve McConnell, author of Code Complete and
Rapid Software Development has declared the absolute worst
software development practice: code-n-fix.8

8 Wayne, R., Software Develpment
(2004) 48; McConnell, S., Code Com-
plete, Microsoft Press, 1993.

Consider, for example, the publication of the Spalart-
Allmaras turbulence model.9 The document contains a

9 Spalart, P. R. and Allmaras, S. R.,
A one-equation turbulence model for
aerodynamic flows, AIAA Paper 92–
0439, 1992.

mathematical description of the model and then shows
comparisons with experimental boundary layer profiles that
require the use of a complex computational simulation system
like the one portrayed earlier in figure 1. This scenario
is sketched in figure 3, in which New Component is the

Figure 3: Current method of translating the “paper” model to numerical results.

4 of 9

AIAA Paper 2004–2627

mathematical description of the new turbulence model and
the author’s code are indicated by Component Code A and
System Code A. The boundary layer profile output appears at
the bottom.

The issue is that no isolated tests of the turbulence model
itself, either mathematical or numerical, are presented. So,
when another CFD developer (path B) implements this new
model in her system, a comparison with boundary layer
profiles does not assure the model was implemented in the
same way as the original because most of the code components
are completely different. The specific effects of the turbulence
model become lost in the large sea of computational simulation
infrastructure in which it has been cut adrift, and there is no
credible means for someone else to be assured that they too
are employing precisely the same model in their code.

4 Proposed Practice

How can the computational simulation community realign itself
with the Scientific Method—by publishing a set of tests when
a new model or algorithm is presented so that when others
make the leap from the mathematics to the numerics they
can have a means to verify their component’s implementation
before inserting it into their system. This notion is depicted
by the pages labeled Component Verification in figure 4.

Figure 4: Proposed method of translating the
“paper” model to numerical results: Publish
component tests so that developer “B” can
verify the numerical implementation of the
mathematical model or algorithm in isolation
before inserting it into her simulation system.

The tests, or numerical experiments, should consist of simple
input/output combinations that document the behavior of
the model. In addition, any limiting cases should also
be documented; for example, the temperature range of
Sutherland’s viscosity law or the nonrealizable initial states for
a linearized Riemann solver. Wherever possible, tests should
be written at both the mathematical and numerical levels
and could be given in terms of the method of manufactured
solutions on the component level. The latter is particularly
advantageous if the experiments are designed to expose
boundary areas that are sensitive to divided differences,
nonlinear limiters, or truncation error. Examples are given in
section 5.

All subsequent developers that implement the model and
publish their results would be required to document which
of the original verification experiments they conducted and
the results of those experiments. Over time, the popular
techniques could have a suite of tests formally sanctioned by a
governing body such as the AIAA so that any implementation
would have to pass the standard tests to be considered verified.

Once the errors and limits of each component can be
quantified, error analysis can be used to build a notion of the
entire system’s uncertainty levels.10

10 Youden, W. J., Physics Today (1961)
32; Youden, W. J., Technometrics 14
(1972) 1.

5 of 9

AIAA Paper 2004–2627

5 Examples

Suppose a new flux function for a finite-volume solver were
created. As usual, it would be documented in mathematical
terms, but it would also be accompanied by analytical test
cases that document its behavior for known interface states
such as supersonic flow to the right and left, vacuum expansion,
and so forth.

Numerical results would also be provided that not only
showed the flux resulting from left and right input states
covering the typical regimes but cases which explored the
limits or transition points of the scheme would be provided as
well.

Consider the CIR scheme11 for the linear wave equation,
11 Courant, R., Isaacson, E., and Rees,
M., Communications on Pure & Ap-
plied Mathematics (1952) 243.

ut + a ux = 0,

Fi+ 1
2

=
a

2
(ui + ui−1) −

1
2
|a| (ui − ui−1)

The corresponding tests are shown in table 3. While this

Table 3: Example of CIR tests.

(a) Mathematical

inputs

a ui ui−1

Fi− 1
2

> 0 ∀ ∀ a ui−1

< 0 ∀ ∀ a ui

0 ∀ ∀ 0

(b) Numerical

inputs

a ui ui−1

Fi− 1
2

2 5 -1 2

-1 2 0 -2

0 3 2 0

example is trivial, it serves to give a flavor of the proposed
component tests.

An example that demonstrates a sensitivity to numerical
implementation is the Van Albada symmetric averaging
function commonly used to limit slope reconstructions,

M(a, b) =
(a b+ ε2)(a+ b)
a2 + b2 + 2 ε2

where a and b are slopes and ε is proportional to the local mesh
spacing.12 Example component tests are shown in table 4.

12 van Albada, G. D., van Leer, B., and
Roberts, Jr., W. W., Astronomy and
Astrophysics 108 (1982) 76.

If this averaging function was implemented by using the
limiter form of Sweby13 that uses ratios and drops ε,

13 Sweby, P. K., High resolution TVD
schemes using flux limiters, in Large-
Scale Computations in Fluid Mechan-
ics, edited by Engquist, B. E., Osher,
S., and Somerville, R. C. J., volume 22
of Lectures in Applied Mathematics,
pages 289–309, American Mathemati-
cal Society, 1985.

ψ

(
a

b

)
=

a
b (a

b + 1)
(a

b)2 + 1

one would not obtain correct behavior when slope b approached
zero and when both slopes approached zero. (See the last
column of table 4b.)

6 of 9

AIAA Paper 2004–2627

Table 4: Example of Van Albada tests.

(a) Mathematical

inputs

a b ε2
M

∀ a 0 a

∀ −a 0 0

∀ 0 ∀ aε2

a2+2 ε2

(b) Numerical

inputs

a b ε2
M b ψ(a

b)

2 2 0 2 2

2 -2 0 0 0

1 0 2 0.4 NaN

0 1 1/2 1/4 0

-1 -2 70000 -1.5 -1.2

More extensive examples of component-based testing are
available for an advection-diffusion solver14 that was written

14 Wood, W. A. and Kleb, W. L.,
NASA Tech Briefs (2002) 43.during an exploration of Extreme Programming for scientific

research.15 The code was written in Ruby16 and is available
15 Wood, W. A. and Kleb, W. L., IEEE
Software 20 (2003) 30.

16 Thomas, D. and Hunt, A., Program-
ming Ruby: The Pragmatic Program-
mer’s Guide, Addison-Wesley, 2001.

from the authors.

6 Concluding Remarks

The Scientific Method is used as a backdrop against which
current computational simulation development practices are
compared. The argument is presented that the community
has strayed from the Scientific Method by failing to publish
component-level verification tests when introducing a new
component algorithm. These tests should contain specific
inputs and numerical outputs. A plea is made for realigning
with the Scientific Method by publishing such tests to facilitate
verifications by others who also implement the component.

A protocol is proposed for the introduction of new methods
and physical models that would provide the community with
a credible history of documented, repeatable verification
experiments that would enable independent replication. The
community can then begin tracking uncertainties at the
component level and begin systematic error analysis.

7 of 9

AIAA Paper 2004–2627

Acknowledgments

Both authors are indebted to Bill Oberkampf of Sandia
National Laboratories, Chris Roy of Auburn University,
and Pat Roache of Ecodynamics Research Associates for
outstanding verification and validation AIAA short courses; to
James Quirk of Los Alamos National Laboratories for planting
the seed so many years ago that all was not right in the
world of computational simulation and for demonstrating the
courage and integrity to publish it.17

17 Quirk, J. J., A contribution to the
great Riemann solver debate, ICASE
Report 92–64, 1992.

The authors would like to thank the following people for
providing feedback during the course of this work: Steve
Allmaras of Boeing; Dimitri Mavriplis of the University of
Wyoming; Bill Oberkampf of Sandia National Laboratories,
Natalia Alexandrov, Steve Alter, Bob Biedron, Peter Gnoffo,
Mike Hemsch, Brian Hollis, Benjamin Kirk, Beth Lee-Rausch,
Charles Miller, Joe Morrison, Eric Nielsen, Chris Rumsey, and
Jim Thomas of NASA; participants in the 2nd AIAA Drag
Prediction Workshop; Aldo Bonfiglioli of the University of
Basilicata; Leonardo Scalabrin of the University of Michigan;
James Quirk of Los Alamos National Laboratory; and Chris
Roy of Auburn University.

The authors would also like to thank Eric Nielsen of NASA
for providing an extensive list of FUN3D code components
used to generate figure 1 on page 3; Richard Wheless of NCI
Information Systems for translating the first author’s lame
sketches for figures 3 and 4 on page 5 into more presentable
form; and Susan Hurd of NCI Information Systems for
technical editing the final draft.

Bil Kleb would like to thank Mika LaVaque-Manty of the
University of Michigan and James Grenning of Object Mentor
for discussions regarding the origins and nature of the scientific
method.

8 of 9

AIAA Paper 2004–2627

About the Authors

Bil Kleb completed his BS in Aeronautical and
Astronautical Engineering (AAE) from Purdue
University in 1988. Afterward, Bil spent time at

NASA’s Langley Research Center developing a time-accurate,
local-time-stepping algorithm for computational unsteady
aerodynamics and was awarded his MS in AAE from Purdue
University in 1990. For the past 14 years, Bil has worked in
the area of computational aerothermodynamics at NASA’s
Langley Research Center. During this time, he pioneered the
first full-vehicle reentry simulation of the Shuttle Orbiter,
earned an MBA from the College of William and Mary, and
earned a PhD of Aerospace Engineering from the University
of Michigan.

Since 1999, Bil has been an active member in what is now
called the agile software development community18 and has

18 For agile software development’s
succinct, but extremely powerful man-
ifesto, see agilemanifesto.org.

given several invited lectures on team software development
for scientific software. For the past two years, Bil has been
the steward of the High Energy Flow Solver Synthesis team19

19 hefss.larc.nasa.gov
and has been serving on the XP/Agile Universe conference
committee since 2002.

Email: Bil.Kleb@NASA.Gov

Bill Wood has worked in the field of CFD in the
Aerothermodynamics Branch at NASA’s Langley
Research Center since 1991, earning a Ph.D. in

Aerospace Engineering from Virginia Tech in 2001. He has
served on the program committee for the software development
conference XP/Agile Universe from 2002–2004.

Email: Bill.Wood@NASA.Gov

Colophon

This document was typeset in Computer Modern font with
the free, cross-platform LATEX typesetting system using the
handout option of the AIAA package,20 version 3.7, which

20 www.ctan.org
simulates the layout style espoused by visual design expert,
Edward Tufte.21 Also employed were the color, subfigure,

21 Tufte, E. R., The Visual Display
of Quantitative Information, Graphics
Press, 1983; Tufte, E. R., Envisioning
Information, Graphics Press, 1990;
Tufte, E. R., Visual Explanations:
Images and Quantities, Evidence and
Narrative, Graphics Press, 1997.

booktabs, multirow, threeparttable, varioref, wrapfig,
hyperref, and nohyperref packages.

Table 2 on page 3 was created using Ruby22 and Fig-

22 Thomas, D. and Hunt, A., Program-
ming Ruby: The Pragmatic Program-
mer’s Guide, Addison-Wesley, 2001.

ure 1 on page 3 was created using Ruby and Graphviz’s neato
program.23

23 www.graphviz.org

9 of 9

AIAA Paper 2004–2627

http://www.agilemanifesto.org/
http://hefss.larc.nasa.gov/
mailto:Bil.Kleb@NASA.Gov?cc=Bill.Wood@NASA.Gov&subject=AIAA_2004-2627
mailto:Bill.Wood@NASA.Gov?cc=Bil.Kleb@NASA.Gov&subject=AIAA_2004-2627
http://www.ctan.org/
http://www.graphviz.org/

