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This work evaluates the ability of a hybrid Reynolds-Averaged Navier-Stokes (RANS)
and Large Eddy Simulation (LES) turbulence method to accurately predict the physics
of an unsteady separated flow field in an unstructured legacy RANS computational fluid
dynamics code. The hybrid method consists of a blending of the k − ω SST RANS model
with a one-equation LES model for the subgrid-scale turbulent kinetic energy (ksgs). Un-
structured grids provide better resolution of complex geometries which is the motivation
for extending this method. Correlations include theoretical data, experimental data and
computational results with RANS turbulence models.

Nomenclature

e Specific internal energy
E Total energy
h Specific enthalpy
i, j, k Unit vectors in the x,y,z directions
k Turbulent kinetic energy
l Length
M Mach number
n Number of rotor blades
PrL Laminar Prandtl number, PrL = cpµ

κ
q Heat flux vector
t Time
T Temperature
u, v, wVelocity in the x, y, z directions
x, y, zCartesian coordinate system in the stream, normal and span directions
y+ Dimensionless sublayer-scaled distance, uT y/ν
V Velocity
δij Kronecker delta, when i=j, δii = 1, otherwise, δij = 0
∆ Local grid cell size
ε Dissipation per unit mass
η Kolmogorov length scale
κ Thermal conductivity
µ Molecular viscosity or advance ratio
µT Eddy viscosity
ν Kinematic molecular viscosity, µ/ρ
ρ Mass density
σij Instantaneous viscous stress tensor
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τij Reynolds shear stress tensor
ω Vorticity

Subscripts and Superscripts
i, j, k Tensor directions
k Kinetic energy
l Length
L Laminar
sgs Subgrid-scale
T Turbulent
(.)′ Fluctuating term for a time-averaged quantity
(.)′′ Fluctuating term for a Favre-averaged quantity
~(.) Vector quantity
(.) Mean quantity
(̃.) Mass-averaged quantity
∞ Free stream

I. Introduction

While computational fluid dynamics (CFD) is considered by some to be a mature technology, there still
remain gaps in the numerical closure of the Navier-Stokes equations, known as turbulence modeling. Indeed
the argument can be made that while major advances in computational hardware have occurred in the past
two decades, the ability to efficiently (in an engineering sense) capture complex flow field turbulent struc-
tures has lagged the advances made in other areas. While the much more computationally intensive Large
Eddy Simulations (LES) and Direct Numerical Simulations (DNS) are performed in research environments,
simulations that resolve the Reynolds-Averaged Navier-Stokes (RANS) equations are still required for rapid
engineering results. In the past decade, some strides have been made in bridging this gap by the development
of hybrid turbulence techniques that combine RANS and LES methods to address applications with strong
separated flow fields.

There are many existing RANS turbulence models,1 including algebraic (Baldwin-Lomax), one-equation
(Baldwin-Barth, Spalart-Allmaras), and two-equation (k − ω, k − ω SST) models. For applications of even
simple aerodynamic configurations such as airfoils and wings,it is clear 2,3 that these RANS models are failing
when the flow field becomes highly unsteady with viscous-dominated features such as in static or dynamic
stall. Since RANS models are statistical approximations of the turbulence at all length scales (figure 1), and
are tuned using a small subset of test cases, most of which have a flow field that is steady and attached,
these problems are not surprising.

For separated flows, either LES or DNS is needed so that at a minimum the large turbulence scales can be
captured rather than statistically modeled. Large Eddy Simulations (LES) mass-average the compressible
governing equations, followed by a filtering process wherein turbulence eddies that are larger than the
grid size are captured and turbulence with scales smaller than the grid is modeled. DNS is a process by
which turbulence scales are captured directly, requiring an extremely large grid and extensive computational
resources. While LES is capable of capturing the larger eddies using grids that are much coarser than those
needed for DNS, the small time step sizes and grid constraints near configuration surfaces at moderate to
high Reynolds numbers still keeps it beyond the scope of many engineering needs.

Research into hybrid turbulence techniques is a topic of interest as a means to close the gap between
RANS and LES. This has been demonstrated by Sanchez-Rocha et al.5 who incorporated the k − ωSST
RANS model into an existing LES code as a mechanism to moderate the excessively high cost to resolve the
turbulent eddies near the wall. He has demonstrated this on a NACA0015 airfoil at a Reynolds number of
1 million. Another approach has been to resolve the subgrid scale models of turbulence within an existing
RANS code, utilizing an existing RANS model where separation effects are minimal. Thus even for coarse
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Figure 1. Illustration of the resolution of turbulence scales by numerical techniques.6

grids, more suitable for RANS or Very-Large Eddy Simulation (VLES), some enhancement of the physics
should be captured. Of these hybrid methods, the most well-known is Detached Eddy Simulation (DES),4

typically applied in conjunction with the k−ωSST Menter7 or Spalart-Allmaras8 RANS turbulence models.
These two approaches to hybrid RANS-LES are different in the sense of the underlying methodologies.

LES codes are typically explicit, with high order spatial and temporal schemes. Care is taken to include most,
if not all, of the fluctuating terms that appear when mass (Favre)-averaging the compressible Navier-Stokes
equations. Within existing CFD (RANS) codes, the spatial and temporal schemes are usually lower order
spatial and temporal schemes. The temporal integration is typically implicit to accelerate the simulation.
Fluctuating terms appearing from the time-averaging of usually the incompressible Navier-Stokes equations
may have less computationally consuming ”shortcuts”. Finally, the schemes may be overly dissipative,
resulting in a smearing of the features of the flow field.

For this effort, the HRLES hybrid model chosen was developed by Sanchez-Rocha et al.,5 and is based
on a two-equation RANS model, blended with an LES resolution of the k-equation, resulting in a modified
value of the turbulent eddy viscosity. A second Very Large Eddy Simulation (VLES) technique that resolves
the k and k` turbulence equations was developed by Fang and Menon.9,10 Both models were successfully
ported to a legacy structured CFD solver (OVERFLOW) and demonstrated6 for 2D airfoils and the UH-60A
rotor. This paper documents the experience in taking the HRLES model and implementing it in a legacy
unstructured RANS methodology.

II. Governing Equations of Motion

The instantaneous Navier-Stokes equations for compressible flows can be expressed in tensor form as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi
− ∂σji
∂xj

= 0

∂

∂t
[ρ(e+ 0.5uiui)] +

∂

∂xj
[ρuj(h+ 0.5uiui)] +

∂qj
∂xj
− ∂

∂xj
(uiσij) = 0

For flows relevant to the standard aerodynamic applications, several assumptions about the flow can
be made to affect closure of these equations. The flows of interest are assumed to be in the moderate
temperature range (incompressible to supersonic Mach regimes), comprised of a Newtonian fluid consisting
of a monotonic gas with isotropic viscosity. Thus the perfect gas law and the Boussinesq constitutive relation
can be applied.
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The difference between RANS and LES first appears in the averaging technique applied to the Navier-
Stokes equations. RANS equations apply Reynolds averaging where the primitive variables (ρ, ~V , p, e) are
separated into mean (f) and fluctuating (f ′) components, then averaged over a finite period of time much
greater than the turbulent fluctuation frequency, so that the mean value of single fluctuating variable will
be zero. The mean value of some multiplied fluctuating variables will remain non-zero, and these correlated
values must be treated via additional closure assumptions. This Reynolds-averaging process is also typically
applied to the incompressible Navier-Stokes equations to obtain closures for the boundary layer. For LES
applications, density, heat transfer and pressure remain as Reynolds-averaged values, while the remainder
of the pertinent variables are decomposed using a Favre-averaging that accounts for compressibility effects,
and yields mass-averaged (f̃) and fluctuating (f ′′) components. It should be noted that the fluctuating
terms that arise in the Favre and Reynolds averaging processes are not identical and therefore are typically
assigned different notations.

The compressible Navier-Stokes equations, once Favre-averaged, can be mathematically formulated as :

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = − ∂p

∂xi
+
∂σij
∂xj

− ∂

∂xj
(ρu′′

i u
′′
j )

∂

∂t
[ρ(ẽ+ 0.5ũiũi)] +

∂

∂xj
[ρũj(h̃+ 0.5ũiũi)] =

∂

∂xj
(−qLj

+ ũiσij)−
∂

∂t
[0.5ρu′′i u

′′
i ]

+
∂

∂xj
[−ũjρu′′i u′′j + ũj0.5ρu′′i u

′′
i − ρu′′j h′′

+ σjiu′′i − 0.5ρu′′j u
′′
i u
′′
i ]] (2)

As a result of the averaging processes for incompressible or compressible assumptions, there arises a
Reynolds-stress tensor that requires closure, either in the specific Reynolds-averaged form (τij = −u′iu′i) or
the compressible Favre-averaged form (ρτij = −ρu′′i u′′i ). The turbulent kinetic energy can then be defined
in its specific formulation k = 0.5u′iu

′
i or full form ρk = 0.5ρu′′i u

′′
i , respectively. Favre-averaging also gives

rise to the the turbulent heat flux (qT i = ρu′′i h
′′) and the rate of turbulent dissipation (ρε = σji

∂u′′
i

∂xj
). For

flows up through the low supersonic regime, the molecular diffusion and turbulent transport terms (σjiu′′i −
ρu′′j 0.5u′′i u

′′
i ) are typically ignored,1 and this practice is continued for this analysis. The additional equations

through which these terms are resolved or closed gives rise to the turbulence model of the simulation.

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = − ∂p

∂xi
+
∂σij
∂xj

− ∂

∂xj
(ρτij)

∂

∂t
[ρ(ẽ+ 0.5ũiũi)] +

∂

∂xj
[ρũj(h̃+ 0.5ũiũi)] =

∂

∂xj
(−qLj

+ ũiσij)−
∂

∂t
[ρk]

+
∂

∂xj
[−ũjρτij + ũjρk − qTj ] (3)

If symmetry is assumed, the Reynolds-stress tensor yields six unknowns that are approximated using
models about the behavior of the fluctuating correlations, u′′i u

′′
j . These approximations yield the set of

RANS turbulence models, ranging from algebraic to two-equation techniques. It was previously noted
that the current practice is to assume the Boussinesq approximation, which can be utilized to relate the
fluctuations to an eddy viscosity, µT :

ρτij = 2µT [Sij −
1
3
∂ũk
∂xk

δij ]−
2
3
ρkδij (4)
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Similarly, the turbulent heat flux vector can be related to the eddy viscosity, µT , via proportionality to the
mean temperature gradient:

qT i = − µT
PrT

∂h̃

∂x̃j
= −µT cp

PrT

∂T̃

∂x̃j
(5)

that introduces the turbulent Prandtl number, PrT , which can be either constant or variable, depending on
the application. Finally, the rate of turbulent dissipation can be expressed as

ρε = µ[2SjiS′′ij −
2
3
ukku′′ii] (6)

In addition to the Favre-averaging, the concept of LES is based on the direct capture of the large
turbulence eddies as part of the solution of the Favre-averaged Navier-Stokes equations, relegating the
smaller turbulent eddies to be modeled. This process is based on the view that the larger turbulence
eddies contribute significantly to the Reynolds-stress tensor, while the smaller eddies are less significant.
In order to separate these effects, in addition to the averaging process, the variables in the equation of
motion should also be filtered (typically referred to as Favre-filtering) to obtain the small or subgrid scale
(sgs) turbulence. These filtering techniques are discussed in Wilcox.1 Near the surface of the configuration
undergoing simulation, the turbulence eddy scales reduce significantly, requiring in LES a very refined grid
that increases the computational resources beyond the reach of most engineering applications. As attached
boundary layer characteristics can be well-predicted by RANS turbulence models, an alternative to grid
refinement is to switch the simulation between RANS and LES.

III. Hybrid RANS-LES Model

The correlation of these turbulence terms requiring closure to viscosity permits the RANS and LES
turbulence approximations to be combined to provide closure information in the simulation. The information
exchange occurs via the turbulent kinetic energy, k. In this work, the RANS turbulence model chosen to
effect this closure is the Menter kω−SST turbulence model,7 based on its success in prior CFD applications
of interest to the authors.6,12,13

The Menter kω − SST turbulence model resolves two differential equations that describe the turbulent
kinetic energy, k, as well as an approximation for the length scale based on the dissipation per unit turbulent
kinetic energy, ω. These equations are given by:

∂

∂t
(ρk) +

∂

∂xj
(ρujk) = τ ransij

∂ui
∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
(7)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) =

γρ

µT
τ ransij

∂ui
∂xj
− βρω2 +

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
+ 2(1− F2)ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
(8)

where the rans superscript is used to denote the use of the Reynolds-averaged Reynolds-stress tensor.
Menter7 indicates that the production terms (τ ransij

∂ui

∂xj
) can be modeled directly with µTΩ2 where Ω is the

vorticity magnitude defined by Ω2 = (wy − vz)2 + (uz − wx)2 + (vx − uy)2.
The LES turbulent kinetic energy equation to obtain the subgrid scale data is one successfully used by

Kim and Menon14 :

∂

∂t
(ρksgs) +

∂

∂xj
(ρũjksgs) = τsgsij

∂ũi
∂xj
− Cερ

(ksgs)3/2

∆
+

∂

∂xj

[(
µ̃

P r
+
µsgs
Prt

)
∂ksgs

∂xj

]
(9)

Baurle et al.15 have demonstrated that RANS and LES methods can be linearly merged to form a hybrid
model. Speziale16 proposed an extension to this via the Reynolds-stress tensor. Thus the RANS equations
of motion and kinetic energy equation would be recast in the generic form:
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∂

∂t
(~F ) +

∂

∂xj
(ũj ~F ) =

∂

∂xj
(~Gtrans) + ~Gsrc +

∂

∂xj
(~GhybridTtrans

) + ~GhybridTsrc
(10)

where ~E = {ρ, ρũj , ρE, ρk} and the right hand side of the equation consists of the original transport (~Gtrans)
and source (~Gsrc) vectors excluding the fluctuating turbulence terms, which have been formulated into new
vectors, ~GTtrans and ~GTsrc that will be hybridized. The hybridization of the two ~GT terms occurs via a
simple linear formulation ~GhybridT = F ~GransT + (1 − F )~GsgsT . The function F which is used as the switch
mechanism is F = tanh(x4) where x = max( 2

√
k

0.09ωy ,
500ν
y2ω ).

Further details of the development of this hybridization technique can be found in Sanchez-Rocha and
Menon.5

IV. Computational Methodology

The hybrid RANS/LES model has been extended for unstructured topologies and implemented into
NASA Langley’s unstructured CFD solver FUN3D. FUN3D implicitly solves the Reynolds Averaged Navier-
Stokes (RANS) equations using node-centered unstructured mixed topological meshes11,17,18 and has been
successfully utilized for a number of applications that encompass the aerospace spectrum.19–21 FUN3D can
resolve the RANS equations for both compressible and incompressible22 Mach regimes. Steady state solutions
are obtained using a first-order backward Euler scheme with local time stepping, while time accurate solutions
utilize the second-order backward differentiation formula (BDF). The resulting linear system of equations
is solved using a point-implicit relaxation scheme. Turbulence models include the Spalart-Allmaras8 and
Menter kω − SST 7 models, in addition to the modifications accomplished as part of this paper. The Roe
flux difference splitting technique23 is utilized to calculate the inviscid fluxes on the control volume faces,
while viscous fluxes are computed using a finite volume formulation that results in an equivalent central
difference approximation.

When implementing the HRLES scheme, it is necessary to recognize that the computational scheme is
typically nondimensionalized. Thus, the equations delineated in the prior sections must be modified to work
within the existing scheme. For FUN3D, the nondimensionalization consists of the following:

ρ =
ρ̃

ρ̃∞
, uj =

ũj
ã∞

, k =
k̃

ã2
∞
, ω =

µ̃∞ω̃

ρ̃∞ã2
∞

xj =
x̃j

L̃
=⇒ ∂

∂x̃j
=

∂

∂xj

∂xj
∂x̃j

=
1
L̃

∂

∂x

t =
t̃

L̃/ã∞
=⇒ ∂

∂t̃
=

∂

∂t

∂t

∂t̃
=
ã∞

L̃

∂

∂t

where the tilde represents a dimensional variable. The effect of this nondimensionalization is illustrated
here with the k and ω turbulence equations:

∂

∂t
(ρkrans) +

∂

∂xj
(ρujkrans) =

M∞
Re

µT
ρ

Ω2 − Re

M∞
β∗ρωkrans +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
(11)

∂

∂t
(ρksgs) +

∂

∂xj
(ρujksgs) =

M∞
Re

µT
ρ

[
2u2

x + u2
y + u2

z + v2
x + 2v2

y + v2
z + w2

x + w2
y + 2w2

z + 2uyvx + 2uzwx + 2vzwy
]

−2
3
M∞
Re

µT
ρ

(ux + vy + wz)
2 − 2

3
ksgs (ux + vy + wz)

+Cερ
ksgs3/2

∆
+

∂

∂xj

[(
µ

Pr
+
µsgs

Prt

)
∂ksgs

∂xj

]
(12)
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∂

∂t
(ρω)+

∂

∂xj
(ρujω) =

M∞
Re

γρΩ2− Re

M∞
βρω2 +2(1−F2)

Re

M∞
ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
(13)

V. Test Cases

V.A. Circular Cylinder

The first test case for this methodology is the flow of air over a circular cylinder at a Mach number of 0.2 and
a diameter-based Reynolds number of 3900 at standard sea-level conditions. The two-dimensional case was
a structured O-mesh that was converted to form an unstructured hex grid. The structured grid included 200
nodes in the wrap-around direction with 139 points expanding radially outward with a 10% stretching ratio,
yielding a y+ < 0.02. While the wake was somewhat coarse due to the uniform spacing of the grid as seen
in figure 2, it was instrumental in verifying the implementation of the model, allowing a direct comparison
with the structured methodology implementations.

(a) Centerline Cylinder Grid Slice (b) Centerline Cylinder Grid Slice (Close Up)

Figure 2. Computational Grid for the 2D Cylinder

For this test case a nondimensional time step of 0.119 was selected to obtain approximately 200 steps
per shedding cycle, assuming Strouhal number of 0.21.

V.B. NACA0015 Airfoil

The NACA 0015 airfoil wing was also selected as an initial test case because of the difficulty that RANS
turbulence models have had in capturing the physics of the stalled configuration.6 Further, there are exper-
imental data24 with which correlations can be made.

For this configuration, the grid was once again a structured grid that was converted into an unstructured
hex grid topology (See figure 3). The grid consisted of 539 points in streamwise direction, with 391 of the
grid points located on the wing. There were 97 points in the normal direction, yielding a y+ of less than
1. This was the same grid utilized by Sanchez-Rocha et al.5 and Shelton et al.6 for studies using similar
methodologies.

The run conditions were set to a Mach number of 0.291 with a Reynolds number per chord (=1) of 1.955
million. Various angles of attack were simulated in the attached and stalled region. A physical time step of
0.00287 seconds was chosen, which was similar to the time step employed by Shelton et al.6
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(a) Airfoil Grid (b) Close up of Airfoil Grid

Figure 3. Computational Grid for the NACA0015 Wing

VI. Results

VI.A. Circular Cylinder

Examination of figure 4 shows that HRLES captures the physics associated with the vortex shedding much
more accuractely when compared to the baseline k−ωSST RANS results that have been run on the identical
grid and with the same numerical options. The RANS solution shows that the vortex shedding process has
been completely smoothed out by the model, while the vortex wake of the HRLES is much more physical. This
is born out when the values of the turbulent kinetic energy are observed, as in figure 5, where the turbulent
kinetic energy shows a smeared wake region with no periodicity. Figure 6 is a graphical representation of how
the two models are blended. Here, values near 0 indicate LES-dominated regions and values near 1 indicate
RANS-dominant regions. Near the surface and attached regions, the value of the blending function is close
to 1, indicating that the RANS model is in force. In the wake and aft of the separation point, the function
is essentially zero showing that the flow field turbulence characteristics are dominated by the LES-computed
turbulence.

The instantaneous pressure coefficient on the cylinder is plotted in figure 7 for both the RANS and hybrid
model. Both simulations show a shift slightly forward of the minimum pressure location from experiment,26

but the magnitude of the HRLES simulation is within 3% of the experimental magnitude, while the RANS
model is about 18% in error of the value.

The computed Strouhal number for the HRLES run is 0.25, compared with the experimental25 value of
0.215± 0.005. The RANS simulation did not shed vorticity, thus it was not possible to compute a Strouhal
number. The separation point predicted by the HRLES method is 86.5o, while the RANS method predicts
separation at 85.0o. Both of these are within the error of the experimental27 value of 86.0o ± 2o, which was
extracted from data obtained at a ReD = 5000. The drag coefficient for HRLES simulation is computed
to be 1.5, which is significantly higher than the experimental26 value of 0.99 ± 0.05, but is in line with the
value of 1.65 obtained by similar LES simulations26 computed also in two dimensions. The SST simulation
resulted in a drag coefficient of 0.887.
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(a) k − ωSST (b) HRLES

Figure 4. Vorticity Magnitude about the Circular Cylinder

VI.B. NACA0015 Airfoil

The NACA0015 airfoil was run using the compressible option using the second-order spatial and first-order
temporal algorithms. The flow was initialized by a short run using steady-state k − ωSST RANS model,
prior to starting the time-accurate calculations. As observed in figure 8, the vorticity contours between
the HRLES and RANS simulations are very different. The vorticity contours from this simulation are very
similar to the ones observed by Sanchez-Rocha et al.5 when the hybrid model was implemented in the LES
code, as well as the KES simulations in OVERFLOW by Shelton et al.6 At an angle of attack of 12o, the
HRLES shows the vortex shedding at the trailing edge, while none is observed in the RANS k − ωSST
simulation. The separation location is approximately the same for both simulations. As the angle of attack
is increased to 15o, the trailing edge separation location has moved forward, and distinct vortex shedding just
aft of this location is observed for the HRLES simulation. The RANS simulation still does not show trailing
edge vortex shedding, and the difference in the prediction of the location of separation between HRLES and
RANS are becoming obvious. Once an angle of attack of 18o has been reached, the vortex shedding is now
apparent for the RANS simulation, though it is significantly less than its HRLES counterpart, which shows
both trailing and leading edge vortex shedding.

From an aeroacoustics perspective, the pressure field on and about the airfoil can be important in identi-
fying the acoustic sources and noise magnitudes. Once again, at an angle of attack of 12o, the pressure fields
are very similar, but as the angle of attack is increased, significant differences in the instantaneous pressure
field are noted. Further, the fluctuating pressures also are much different at the two higher angles of attack
due to the complex vortex shedding and interaction of vortices above and in the wake of the airfoil.

VII. Conclusion

A hybrid Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) turbulence method
has been implemented and demonstrated in an unstructured legacy RANS computational fluid dynamics
code. The hybrid method consists of a blending of the k − ω SST RANS model with a one equation LES
model for the subgrid-scale turbulence kinetic energy (ksgs). The model has been demonstrated for steady
and unsteady flows for non-moving configurations. The next step is to add additional test cases, including
three-dimensions and those where the configuration itself is unsteady, as is the case for a moving wing.
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(a) k − ωSST (b) HRLES

Figure 5. Turbulent kinetic energy about the Circular Cylinder

Figure 6. Blending function for the circular cylinder
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Figure 7. Instantaneous pressure coefficient for the circular cylinder
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Figure 8. Vorticity magnitude contours for the NACA0015 wing
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Figure 9. Pressure contours for the NACA0015 wing
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