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The effect of a wind gust on the aerodynamic characteristics of a rigid wing undergoing 

insect-based flapping motion is studied numerically. The turbulent flow near the flapping 

wing is described by the 3-D unsteady compressible Reynolds-Averaged Navier-Stokes 

equations with the Spalart-Allmaras turbulence model.  The governing equations are solved 

using a second-order node-centered finite volume scheme on a hexahedral body-fitted grid 

that rigidly moves along with the wing. A low-Mach-number preconditioner is used to 

accelerate the convergence at each time step. The effects of wind gust direction with respect 

to a wing orientation are investigated.  Our numerical results show that the centimeter-scale 

wing considered in the present study is susceptible to strong downward wind gusts. In the 

case of frontal and side gusts, the flapping wing can alleviate the gust effect if the gust 

velocity is less or comparable with the wing tip velocity. For all cases considered, the thrust 

coefficient returns to its original baseline profile within one full stroke after the gust is 

removed, thus indicating that the flapping wing can effectively recover from wind gust 

fluctuations. 

I. Governing equations and Numerical Scheme 

The fully turbulent compressible flow near a wing undergoing an insect-based flapping motion is simulated using 

the 3-D unsteady Reynolds-Averaged Navier-Stokes (URANS) equations written in the integral conservation law 

form as follows: 

     

  
         

 

                                                                                  

 

where V  is a moving control volume bounded by the surface  , Q represents a vector of the volume-averaged 

conservative variables, n is the outward unit face normal vector, and Fi and Fv are the inviscid and viscous flux 

vectors, respectively. Note that for a moving control volume, the inviscid flux vector must account for the difference 
in the fluxes due to the movement of control volume faces. Given a flux vector F on a static grid, the corresponding 

flux vector Fi on a moving grid is defined as      - (W  ), where W  is a local face velocity.  

The governing equations are closed with the perfect gas equation of state and an appropriate turbulence model for 

the eddy viscosity. It should also be noted that for the special case of Q=const, the conservation equations (1) reduce 

to the Geometric Conservation Law (GCL): 

  

  
   

 

                                                                                           

The GCL provides a precise relation between the rate of change of the time-dependent control volume and its local 

face velocity W. Though the GCL equation is a direct consequence of the governing equations (1) and is satisfied at 

the differential level, this is usually not the case at the discrete level. To preserve a constant solution on dynamic 

grids, the discrete GCL residual RGCL is added to the discretized flow equations (see [1] for further details). 
The 3-D URANS equations (1) are solved using a 2nd-order finite volume code, FUN3D. The code can be used to 

perform aerodynamic simulations across the speed range, and an extensive list of options and solution algorithms is 

available for spatial and temporal discretizations on general static or dynamic mixed-element unstructured grids.1, 2 

In the present study, the time derivative and contour integral in (1) are discretized using a 2nd-order backward 

difference (BDF2) formula and 2nd-order node-centered finite volume scheme,2 respectively. The inviscid fluxes at 

                                                        
1 Graduate student, 1601 E. Market St., Greensboro, NC 
2 Associate Professor, Department of Mathematics, 1601 E. Market St., Greensboro, NC. Senior member AIAA 

50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
09 - 12 January 2012, Nashville, Tennessee

AIAA 2012-1080

Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



 

American Institute of Aeronautics and Astronautics 
 

 

2 

cell interfaces are computed using Roe’s approximate Riemann solver, and the viscous fluxes are approximated by a 

method equivalent to a 2nd-order finite element Galerkin procedure. The mesh velocity terms are evaluated with the 

BDF2 formula consistent with the discretization of the time derivative. The eddy viscosity is modeled by the one-

equation turbulence model of Spalart and Allmaras.3 The solver demonstrates high parallel scalability which is 

achieved through domain decomposition and message passing communication. 

An approximate solution of the linear system of equations formed within each time step is obtained with a 
multicolor Gauss-Seidel point-iterative scheme. To accelerate the convergence, a low-Mach-number preconditioner 

similar to one developed in [4] is used at each time step. This preconditioning technique is briefly outlined in 

Section III. The turbulence model is integrated all the way to the wall without the use of wall functions and is solved 

separately from the mean flow equations. 

 

II. Rigidly Moving Grid 
To accurately resolve the flow near a wing during the entire flapping motion, a body-fitted mesh is regenerated 

at each time step, so that it moves rigidly along the wing. The rigid mesh motion is generated by a 4x4 

transformation matrix.1 The transformation matrix enables general translations and rotations of the grid according to 

the following relation: 

       
 

which moves a point from an initial position (x0, y0, z0) to its new position (x, y ,z): 
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In Eq. (3), the 3x3 matrix R defines a general rotation, and the vector t = [tx, ty, tz]
T specifies a translation. Note that 

the matrix T depends on time. One key feature of this approach is that multiple transformations telescope via matrix 

multiplication. This formulation is particularly attractive for composite parent-child body motion. Herein, the 

rotation associated with the wing pitching is specified relative to the flapping motion. 

 

III. Flapping Wing Kinematics 
 

In the present analysis, the kinematics of an idealized insect wing motion is defined as two rotations associated 

with the flapping and pitching motions: 

 
              

                
                                                                                   

 

where θ0 denotes a stroke amplitude, α0 is a pitch amplitude,  fw is a wing stroke cycle frequency, and φ is a phase 

shift angle between the flapping and pitching motions. The parameters θ0, α0, φ are set equal to 1800, 450, 900, 

respectively. The rotation associated with the flapping motion occurs with respect to the wing root. The wing flips 

(pitches) about an axis located at 50% of the chord. The pitching axis remains in the stroke plane throughout the 

entire motion, and the forward and backward stroke arcs are kinematically symmetric. Note that for this wing 

motion, the midpoint of the flip occurs precisely at the end of the forward stroke or the end of the backward stroke.  

IV. Low-Mach-number Preconditioning 

Since the compressible URANS equations are used to describe the flapping wing flow at very low Mach numbers, 

some proper preconditioning is required to accelerate the convergence of the unsteady numerical solution at each 

time step. This is achieved by using a low-Mach-number preconditioner developed by Turkel and Vatsa for the 
unsteady Navier-Stokes equations.4 To preserve the time-dependent behavior of the original unsteady equations, the 

preconditioning is incorporated into the dual-time stepping framework as follows: 
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where t is the physical time, τ is an artificial time, R is the spatial residual, Q is a vector of the conservative 

variables, P is a preconditioning matrix.  At each physical time step, the first term in Eq. (5) converges to zero, thus 

recovering the original unsteady discrete equations and providing time-accurate numerical solution. The 

preconditioning matrix P is given by 
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where β is a user-defined parameter which is of the order of the mean Mach number,  U and Q are vectors of the 

primitive and conservative variables, respectively. The matrix P is constructed such that all eigenvalues of the 

preconditioned Jacobian matrix are of the order of one, thus eliminating the large disparity between acoustic and 

convective wave speeds. A detailed description of the above preconditioning technique can be found elsewhere.4 

V. Results and Discussion 

We now study the aerodynamic characteristics of a single rigid wing undergoing an insect-based flapping motion.  

It is assumed that the ambient flow is quiescent. The Reynolds number based on the wing chord length and the 

maximum wing tip velocity is 5096. The wing has a span of 2.12 cm and mean chord of 1.0 cm. The reduced 
flapping frequency nondimensionalized by the maximum wing tip velocity is set be 0.32, which corresponds to the 

flapping frequency of 34 Hz. A hexahedral body-fitted mesh with approximately 1 million cells is used in all 

numerical experiments. The rigidly moving body-fitted grid provides good resolution of the flow near the wing over 

the entire time interval considered. The outer boundary is placed 20 chord lengths away from the wing. Fifty time 

steps per one flapping cycle are used to resolve the wing dynamics. It is assumed that the characteristic size of a gust 

is much larger than that of the flapping wing. For all cases considered, no gust is initially present in the system, and 

the flow is quiescent. Over this initial period of time, the wing makes two full strokes, which is sufficient to remove 

initial transients, so that the solution reaches its quasi-periodic regime.   

 

 

Figure 1. Time histories of the gust velocity and the wing thrust  
coefficient computed with and without the frontal gust. 
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Figure 2. Snapshots of the iso-surface of the q-criterion colored with pressure contours at four instants in time: (a-b) 
t=3500, (c-d) t=3600, (e-f) t=4000, (g-h) t=4100, obtained with (right column) and without frontal gust. 
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A. Frontal gust 
First, we analyze the response of the flapping wing to a frontal wind. The wind gust velocity is oriented along  

the x-axis, i.e.  [Ug, 0, 0]T, where 

       
                        

                          
  

The gust frequency fg is set to be 4 times less than the wing flapping frequency, fw. As a result, the wing makes 4 full 

strokes during the wing gust. The gust velocity amplitude U0 is set equal to one half of the maximum wing tip 

velocity. Figure 1 shows time histories of the thrust coefficient obtained with and without the frontal wing gust. As 

follows from this comparison, the frontal gust has a very strong effect on the instantaneous thrust generated by the 

flapping wing. In the presence of the wind gust, the maximum peak value of the thrust coefficient during the forward 

stroke is more than two times larger than that in the quiescent air. This behavior reverses during a backward stroke 

when the thrust drops down to the level which is less than half of its value under the quiescent flow condition. These 

large variations in the peak values of the thrust coefficient are directly related to variations in strength of the leading 

edge vortex, as one can see in Fig. 2. Indeed, the wing moves against the wind gust during the forward stroke. As a 

result, the relative wing velocity significantly increases as compared with its baseline value obtained in the hovering 

case where no gust is present. This increase in the relative wing velocity results in generation of a much stronger 

leading edge vortex during the forward stroke, as seen in Figs. 2a-2d. The strengthening of the leading edge vortex 
increases the pressure difference between the windward and leeward sides of the wing, thus increasing the thrust. 

During the backward stroke, the wing comes along with the gust, so that the relative wing velocity with respect to 

the wind gust is reduced as compared with that in the quiescent flow. Figures 2e-2h show that the leading edge 

vortex generated during the backward stroke in the presence of the wind gust is much weaker than its strength in the 

quiescent flow. Another important observation is that the wind gust significantly reduces the wake capture effect, in 

which the wing passes through the vortex shed in the previous stroke, as one can see in Fig. 2b and 2f. 

B. Downward gust 

We now consider the effect of a short duration downward wind gust on the flapping wing performance. All wing 

and gust parameters are kept the same as in the previous case except that the wind gust velocity is now oriented 

vertically in the downward direction with respect to the xy-plane in which the flapping motion occurs. Figure 3 

shows time histories of the thrust coefficient obtained in the quiescent air and in the presence of the wing gust. The 
mean thrust coefficient gradually decreases as the wing gust velocity increases and achieves its minimum value 

when the gust velocity is the highest. During this period of time, the time-averaged (over each flapping cycle) wing 

thrust coefficient becomes negative, thus indicating that the flapping wing is strongly susceptible to downward gust 

even if its amplitude is quite moderate and equal to one half of the wing tip velocity. This drastic reduction in the 

trust coefficient is mainly due to weakening of the leading edge and root vortices, as is evident from Fig. 4.  

 

 

Figure 3: Time histories of the gust velocity and the wing thrust 

coefficient computed with and without downward gust. 
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Figure 4. Snapshots of iso-surface of the q-criterion colored with pressure contours at four instants in time 
(a-b) t=3500, (c-d) t=3600, (e-f) t=4000, (g-h) t=4100, obtained with (right column) and without downward gust. 
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As the downward gust velocity increases, the strength of the leading edge vortex decreases. This behavior can be 

explained by the fact that the effective angle of attack of the wing with respect to the total flow velocity vector 

reduces as the gust velocity increases. Another mechanism that contributes to the reduction of the thrust coefficient 

is that the leading edge vortex shed during the previous stroke is convected downward by the wind gust, thus 

practically eliminating the wake capture effect when the gust velocity reaches its maximum value, as one can see in 

Fig. 4b and 4f. Another conclusion that can be drawn from these studies is that the thrust coefficient returns to its 
baseline profile after one flapping cycle once the wind gust is removed. It gives us an indication that the flapping 

wing effectively recovers from wind gust fluctuations and demonstrates the potential for providing a stable flight in 

gusty environment. 

C. Side gust 

The last case concerns the influence of a side gust on the performance of the same hovering wing considered in the 

previous two cases. The gust starts during the 2nd wing stroke and increases sinusoidally, reaching its maximum 

value during the 4th stroke. As in the previous cases, the wing makes 4 full strokes during the wind gust, and the 

ratio of the gust velocity to the maximum wing tip velocity is equal to 0.5, which corresponds to the gust amplitude 

of approximately 3.5 m/s. Time histories of the flapping wing thrust coefficient computed with and without the  

 

 

Figure 5: Time histories of the wind gust velocity and the thrust 
coefficient of a flapping wing with and without side gust. 

presence of the side gust are shown in Fig. 5. As one can see in the figure, the time-averaged thrust coefficient 

grows as the gust velocity increases. The highest peak value of the thrust coefficient occurs near t=4000 when the 

gust velocity reaches its maximum. Similar to the downward- and frontal-gust cases, the response time of the 

flapping wing to the side wind gust is much shorter than one flapping cycle. It should also be noted that when the 

gust wind is the strongest, the thrust generated by the wing becomes negative over a small portion of the full stroke. 

Despite these large variations in thrust, the time-averaged (over each flapping cycle) thrust coefficient varies not so 

significantly over its mean value, thus indicating that the flapping wing maintains a stable thrust under the moderate 

side wind conditions. To gain a deeper insight into the flow physics of the flapping wing in the presence of side gust, 

snapshots of an isosurface of the q-criterion obtained with and without gust are presented in Fig. 6. The q-criterion 
reveals the rotational flow regions, thus identifying the leading edge, root, and tip vortices. As follows from Fig. 6, 

the presence of the side wind gust strengthens the leading edge and tip vortices during both the forward and 

backward strokes. Another important observation is that the vortex shed from the wing leading edge in the previous 

backward or forward stroke is convected towards the wing by the side gust. These additional vortices influence the 

flowfield during the next stroke, thus increasing the amplitude of oscillations of the thrust coefficient. 
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Figure 6. Snapshots of iso-surface of the q-criterion colored with pressure contours at four instants in time 
 (a-b) t=3500, (c-d) t=3600, (e-f) t=4000, (g-h) t=4100, obtained with (right column) and without side gust. 
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VI. Conclusions 

The performance of a flapping wing under various gust conditions including frontal, downward, and side gusts 

has been studied using the 3-D fully unstructured, unsteady RANS code, FUN3D. As follows from our numerical 

results, the downward gust drastically reduces the thrust generated by a centimeter-scale flapping wing when the 

ratio of the gust velocity to the wing tip velocity is 0.5, thus indicating that small-scale flapping-wing MAVs may be 

susceptible to downward gusts. In the case of a frontal gust of the same amplitude used in the downward case, the 

peak value of the wing thrust coefficient during the forward (with respect to the wind direction) stroke exceeds its 

baseline value by more than a factor of 2. This increase in thrust is compensated by a similar reduction during the 

backward stroke, thus leading to no appreciable changes in the time-averaged thrust coefficient. A moderate increase 

in the time-averaged thrust coefficient is observed in the case of the side gust which has only a marginal effect on 
the flapping wing performance. These results indicate that flapping-wing MAVs can alleviate the frontal and side 

gust effects if the mean gust velocity is less or comparable with the wing tip velocity. Another interesting 

observation is that for all types of gusts, the thrust generated by the flapping wing  returns to its baseline profile over 

just one full stroke once the gust is removed, thus showing that the flapping wing can effectively recover from wind 

gust fluctuations. 

 

Acknowledgments 

This work was supported by the MAST CTA Center for Microsystem Mechanics sponsored by Army Research 

Laboratory. 

 

References 
1. Biedron, R.T. and Thomas, J.L., “Recent Enhancements to the FUN3D Flow Solver for Moving Mesh 

Applications,” AIAA 2009-1360, 2009. 

2. Anderson,W. K., and Bonhaus, D. L., “An Implicit Upwind Algorithm for Computing Turbulent Flows on 

Unstructured Grids,” Computers and Fluids, Vol. 23, No. 1, 1994, pp. 1–21. 

3. Spalart, P.R. and Allmaras, S.R., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper 92-

0439, 1991. 

4. Turkel, E. and Vatsa,V.N., “Choice of variables and preconditioning for time dependent problems,” AIAA Paper 

2003-3692, 2003. 

 


