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The effects of mesh regularity on the accuracy of unstructured node-centered finite-volume discretizations are
considered. The focus of this paper is on an edge-based approach that uses unweighted least-squares gradient
reconstruction with a quadratic fit. Gradient errors and discretization errors for inviscid and viscous fluxes are
separately studied according to a previously introduced methodology. The methodology considers three classes
of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic
grids over a curved surface typical of advancing-layer viscous grids. The meshes within these classes range
from regular to extremely irregular including meshes with random perturbation of nodes. The inviscid scheme
is nominally third-order accurate on general triangular meshes. The viscous scheme is a nominally second-
order accurate discretization that uses an average-least-squares method. The results have been contrasted with
previously studied schemes involving other gradient reconstruction methods such as the Green-Gauss method
and the unweighted least-squares method with a linear fit. Recommendations are made concerning the inviscid
and viscous discretization schemes that are expected to be least sensitive to mesh regularity in applications to
turbulent flows for complex geometries.

I. Introduction

Traditional mesh-quality metrics tend to assess meshes without taking into account the type of equations being
solved, solutions, or the desired computational output. The most widely-used mesh quality metrics are geometric in
nature, considering shape, size, angles, aspect ratio, skewness, Jacobian, etc., of the mesh elements. Additional con-
siderations include variations between mesh elements, such as cell-to-cell and face-to-face ratios and line smoothness,
etc. There is a widespread perception that the most accurateand efficient solutions are obtained on “pretty” meshes
similar to either structured Cartesian meshes or to meshes composed from identical perfect elements (perfect triangles,
tetrahedrals, etc.) This perception contradicts modern Computational Fluid Dynamics (CFD) practice, in which accu-
rate solutions are computed on practical meshes that would be characterized as unacceptable by many geometric mesh
quality metrics. Moreover, the most powerful state-of-artmethod for improving solution accuracy, output-based mesh
adaptation,1 tends to produce “ugly” meshes but provides vast improvements of the accuracy-per-degree-of-freedom
ratio.2 It is widely recognized today that mesh quality indicators should involve information about the solution3–5 and,
more generally, the discretization method in use and the desired computational output.

Historically, mesh quality analyses were first performed for finite-difference and finite-element methods. It is
not straightforward to translate those approaches to finite-volume discretizations (FVD) that represent the state of art
in CFD computations. While there is no doubt that certain mesh characteristics critically affect accuracy of CFD
solutions and gradients, the precise nature of this influence (what affects what) is far from clear.

For finite-difference approaches, most of the mesh quality methods try to establish connections between mesh and
truncation error.6, 7 The truncation error analysis is often applied to FVD schemes as well.8 However, it has been
long known, that truncation errors of FVD schemes on unstructured grids are not reliable estimators of discretization
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errors. Thesupra-convergenceof discretization errors observed and studied for at least 50 years (e.g., see the list of
references in Ref. 8) indicates that design-order accurateFVD solutions can be computed on unstructured grids even
when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all.9–11

The theory and applications of mesh quality assessments arewell developed and widely used within the finite-
element community. While groundbreaking work focused on pure geometrical mesh-quality metrics, such as large
angles,12, 13 later developments take the solution into account.14 The standard finite-element estimates use Sobolev
norms that simultaneously estimate errors in the solution and its derivatives. These estimates might be too conservative
because recent finite-volume computations indicate that accurate solutions can be obtained in spite of poor accuracy
of gradients.15–17

Previously, the authors evaluated the effects of mesh regularity on accuracy of unstructured FVD schemes for vari-
ous common node-centered and cell-centered schemes.15, 16, 18–20The considered second-order node-centered schemes
employ three gradient reconstruction methods: unweightedand weighted least-squares (ULSQ and WLSQ, respec-
tively) methods with a linear fit and a Green-Gauss (GG) method. The following observations concerning relations
between accuracy and grid regularity have been made: (1) Convergence and magnitudes of truncation errors are
strongly affected by grid regularity and often mislead in predicting convergence and magnitudes of discretization
errors. (2) Some common inviscid FVD schemes, e.g., with WLSQ gradients, produce larger discretization errors
(possibly diverging in grid refinement) on almost perfectlyregular grids than on very irregular grids with the same
degrees of freedom (DOF). This striking observation shows the futility of assessing mesh quality independently of the
discretization scheme and motivates employment of more stable ULSQ methods. (3) Convergence and magnitude of
discretization errors on isotropic grids are often independent of grid regularity. (4) Gradient accuracy may degrade on
irregular high-aspect-ratio grids; effects of this degradation are much stronger on viscous solutions than on inviscid
solutions. (5) Grid regularity may strongly affect convergence of iterative solvers, e.g., defect-correction iterations.
(6) Stochastic tests may be required to account for variations introduced by outlier geometries on irregular grids.

The focus of this paper is on an edge-based node-centered approach. An FVD scheme is considered as edge-
based if a loop over edges is sufficient to compute residuals of all equations.21 Edge-based schemes offer advantages
of efficiency (much more efficient than schemes that need to loop over elements in order to compute residuals and
linearizations), generality (applicable to agglomeration grids with no explicit elements), and easier grid adaptation.
Widely used node-centered FVD schemes22 are edge-based for inviscid residuals on all grids and for viscous residuals
on simplicial grids; viscous residuals on non-simplicial elements require an element loop. An attractive feature of an
edge-based scheme for integrating fluxes over a median-dualcontrol volume is that the integration is up to third-order
accurate on general simplicial grids; the integration accuracy may degenerate to first order on general grids including
non-simplicial elements.

There is computational evidence that second-order FVD schemes used for practical computations of turbulent
flows demonstrate a better accuracy on mixed-element viscous grids with prismatic elements in boundary layers than
on fully tetrahedral grids. This evidence is the main motivation for using mixed unstructured grids in spite of efficiency
degradation caused by losing the edge-based character of the schemes. Recent publications23, 24introduced an efficient
edge-based FVD scheme using WLSQ gradient reconstruction with a quadratic fit and showed third-order accuracy for
inviscid fluxes on general triangular grids. With this scheme, a comparable or even superior turbulent flow accuracy
may be possible on fully tetrahedral grids.

This paper considers effects of mesh regularity on the accuracy of edge-based FVD schemes using ULSQ gradients
computed with a quadratic fit. The inviscid scheme is nominally third-order accurate on general triangular meshes.
The viscous scheme is a nominally second-order accurate discretization that uses an average-least-squares method.
The schemes have been contrasted with previously studied schemes involving other gradient reconstruction methods
such as the Green-Gauss method and the ULSQ method with a linear fit.

Gradient errors and discretization errors are separately studied according to a previously introduced comprehensive
methodology.15, 16 A linear convection equation,

(a · ∇)U = f, (1)
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with a velocity vector,a, serves as a model for inviscid fluxes. Poisson’s equation

∆U = f, (2)

subject to Dirichlet boundary conditions serves as a model for viscous fluxes. The method of manufactured solutions
is used. Solutions are chosen to be smooth on all grids considered, i.e., no accuracy degradation occurs because of a
lack of solution smoothness.

The paper is organized as following. First, grids, FVD schemes, and accuracy measures are briefly described.
Then, numerical studies of the FVD accuracy measures are reported for grids of three classes representing isotropic,
adapted, and turbulent-flow grids. Finally, conclusions and recommendations are offered concerning the FVD schemes
that are expected to be least sensitive to mesh regularity inapplications to turbulent flows in complex geometries.
Appendix A illustrates high sensitivity of truncation errors to grid regularity. Appendix B presents a study of gradient
accuracy as a function of grid deformation typical for curved anisotropic grids used in turbulent-flow computations.

(a) Type (I): regular
quadrilateral grid.

(b) Type (II): regular tri-
angular grid.

(c) Type (III): random
triangular grid.

(d) Type (IV ): random
mixed grid.

(e) Type (Ip): perturbed
quadrilateral grid.

(f) Type (IIp): perturbed
triangular grid.

(g) Type (IIIp): per-
turbed random triangular
grid.

(h) Type (IVp): perturbed
random mixed grid.

Figure 1. Class A: regular and irregular grids.

II. Grid Classes and Types

Computational studies are conducted on two-dimensional grids ranging from structured (regular) grids to irregular
grids composed of arbitrary mixtures of triangles and quadrilaterals. Highly irregular grids are deliberately constructed
through random perturbations of structured grids. Three classes of grids are considered. Class A involves isotropic
grids in a rectangular geometry. Class B involves highly anisotropic grids in a rectangular geometry, typical of those
encountered in grid adaptation. Class C involves advancing-layer grids varying strongly anisotropically over a curved
geometry, typical of those encountered in high-Reynolds number turbulent flow simulations.

Four basic grid types are considered:(I) regular quadrilateral(i.e., mapped Cartesian) grids;(II) regular tri-
angular gridsderived from the regular quadrilateral grids by the same diagonal splitting of each quadrilateral;(III)
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random triangular grids, in which regular quadrilaterals are split by randomly chosen diagonals, each diagonal orien-
tation occurring with a probability of half; and(IV ) random mixed-element grids, in which regular quadrilaterals are
randomly split or not split by diagonals; the splitting probability is half; in case of splitting, each diagonal orientation
is chosen with probability of half. Nodes of any basic-type grid can be perturbed from their initial positions by random
shifts, thus leading to four additionalperturbedgrid types which are designated by the subscriptp as(Ip)-(IVp). The
random node perturbation in each dimension is typically defined as1

4
ρh, whereρ ∈ [−1, 1] is a random number and

h is the local mesh size along the given dimension. The representative grids of classes A, B, and C are shown in
Figures 1, 2, and 3, respectively.
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Figure 2. Class B: stretched grid of type(IIIp) with 9 × 65 nodes.
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(a) Grid of type (III).
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(b) Grid of type (IV).

Figure 3. Class C: representative9 × 33 irregular stretched high-Γ grids.

4 of 20

American Institute of Aeronautics and Astronautics



III. Finite-Volume Discretization Schemes

The FVD schemes are derived from the integral form of a conservation law,
∮

∂Ω

(F · n̂) ds =
∫

Ω

fdΩ, (3)

whereΩ is a control volume with boundary∂Ω, n̂ is the outward unit normal vector, andds is the area differential. The
general FVD approach requires partitioning the domain intoa set of non-overlapping control volumes and numerically
implementing Eq. 3 over each control volume.

Node-centered discretization schemes are considered, in which solutions are defined at the primal mesh nodes. The
control volumes are constructed around the mesh nodes by themedian-dual partition. Node-centered discretization
schemes have the same DOF on grids of all types.

For inviscid Eq. 1, the numerical flux,
(

F
h · n̂

)

≡ Uh (a · n̂) , (4)

at a control-volume boundary is computed according to the flux-difference-splitting scheme,26

Uh (a · n̂) = 1

2
(UL + UR) (a · n̂)− 1

2
|(a · n̂)| (UR − UL) , (5)

where the first and second terms represent the flux average andthe dissipation, respectively;UL andUR are the
“left” and “right” solutions reconstructed at the edge midpoint by using solutions and gradients defined at the nodes
connected by the edge. The edge-based flux integration scheme approximates the integrated flux through the two faces
linked at the edge midpoint byUh (a · n), wheren is the combined directed-area vector of the adjacent faces.

The integration scheme is computationally efficient. For exact fluxes, the integration scheme provides third-order
accuracy on regular simplicial grids of type(II), second-order accuracy on regular quadrilateral and general simplicial
grids of types(I), (III), (IIp), and(IIIp), and first-order accuracy on mixed-element and perturbed quadrilateral
grids of types(IV ), (IVp), and(Ip).18, 19, 27

It was shown23, 24 that third order discretization accuracy is achieved on simplicial grids with WLSQ gradients
employing a quadratic fit. Third-order accuracy on simplicial grids has been confirmed with quadratic-fit ULSQ
gradients used herein. Note that five neighbors are typically sufficient for a quadratic fit. On triangular grids considered
in this study, the average number of edge-connected neighbors is six; and the minimum number of edge-connected
neighbors for an interior node on any grid is four. In cases when the least-squares stencil of the nearest edge-connected
neighbors is not sufficient for a quadratic fit, the stencil isexpanded to include neighbors of neighbors.

For viscous Eq. 2, the numerical flux is defined as
(

F
h · n̂

)

≡ (∇rU · n̂) , (6)

where∇rU is the gradient reconstructed at the face of the control volume. Two gradient reconstruction schemes are
considered. First, the averaged least-squares (Avg-LSQ) scheme averages the ULSQ gradients at the nodes to compute
the face gradient.28, 29 Second, the GG scheme15, 22 computes gradients at the primal elements and uses them in face-
gradient computations at control-volume boundaries. The GG scheme is widely used in node-centered codes and
equivalent to a Galerkin finite-element (linear-element) discretization for triangular/tetrahedral grids. Both schemes
use the edge gradient to augment the face gradient and increase theh-ellipticity30 of the diffusion operator15, 21 and
thus, avoid checkerboard instabilities. The gradient augmentation is introduced in the face-tangent form.29 Note that
when the edge is normal to the face, the edge gradient is the only contributor to the flux. For the GG scheme, the
implementation of gradient augmentation on three-dimensional non-simplicial grids requires looping over elements
and thus, alters the edge-based character of the scheme. Theaugmentation does not affect the face gradient within a
simplex element and thus, the GG scheme is edge based on simplicial grids. Both Avg-LSQ and GG schemes possess
second-order accuracy for viscous fluxes on general mixed-element grids.18, 19, 28, 29
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IV. Accuracy Measures

The accuracy is analyzed for known exact or manufactured solutions. The forcing function and boundary values are
found by substituting this solution into the governing equations, including boundary conditions. The discrete forcing
function is defined at the nodes that are not necessarily located at centroids of control volumes. Boundary conditions
are over-specified, i.e., discrete solutions at boundary control volumes and, possibly, at their neighbors are specified
from the manufactured solution. Unless described otherwise, the figures in this paper show accuracy measures versus
an effective meshsize which is computed as theL1 norm of the

√
V function, whereV is a measure of the control

volume,

V =

∫

Ω

dΩ. (7)

Relations between different methods of computing the effective meshsize are discussed in Ref. 19.

IV.A. Discretization error

The main accuracy measure is thediscretization error,Ed, which is defined as the difference between the exact discrete
solution,Uh, of the discretized Eq. 3 and the exact continuous solution,U , to the corresponding differential equations,

Ed = U − Uh, (8)

whereU is sampled at mesh nodes.

IV.B. Accuracy of gradient reconstruction

The accuracy of the gradient approximation is also important. The gradient reconstruction accuracy is evaluated by
comparing the reconstructed gradient,∇rU , with the exact gradient,∇U . The accuracy of a ULSQ gradient is eval-
uated by comparing the reconstructed and exact gradients atnodes. The accuracy of a GG gradient is evaluated at
element centers computed as the average of the corresponding element vertexes. The error in the gradient reconstruc-
tion is measured as

Eg = |∇rU −∇U |. (9)

V. Class A: Isotropic Grids in Rectangular Geometry

V.A. Grid and solution specifications

Sequences of consistently refined19 grids with 52, 92, 172, 332, 652, 1292, and2572 nodes are generated on the unit
square[0, 1]× [0, 1]. Irregularities are introduced at each grid independently, so the grid metrics remain discontinuous
on all irregular grids. With the random perturbation range limited by a quarter of the local mesh size, the angles of
triangular elements can approach180◦ and the ratio of the neighboring cell volumes can be arbitrarily high.

The exact solution isU = sin(πx−2πy), so for the inviscid Eq. 1 witha = (2, 1), the force,f , is zero, and for the
viscous Eq. 2,f = −5π2 sin(πx− 2πy). The boundary conditions are over-specified from the manufactured solution
for all nodes linked to the boundary.

V.B. Gradient reconstruction errors

Figure 4 shows the variation of theL1 norm of the gradient error. As expected, the ULSQ gradient reconstruction with
a quadratic fit is second-order accurate on all grids. The GG gradient reconstruction is second order only on perfect
grids of type(I); on all other grids, the GG gradients are first-order accurate. All equivalent-order methods provide
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very similar errors. Thus, no mesh regularity effects are observed for theL1 norm of the gradient error on isotropic
grids.

Although not shown, the observedL∞ norms of the gradient errors converge with the same orders asthe cor-
respondingL1 norms, but theL∞ norms of GG gradient error on grids of types(IIIp) and(IVp) are an order of
magnitude greater than theL∞ norms of other first-order errors. The latter effect is caused by gradient accuracy
deterioration on triangular elements with obtuse angles approaching180◦. Theoretically, with an infinitesimal prob-
ability, the GG gradient error may become infinitely large atan element with a vanishing volume. As opposed to
the anisotropic grids considered below, elements with extremely obtuse angles occur infrequently and in isolation on
isotropic grids. Thus, discretization errors are not affected.
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Figure 4. Accuracy of gradient reconstruction on isotropicgrids. Manufactured solution isU = sin (πx − 2πy).

V.C. Discretization errors

Convergence rates of theL1 norm of discretization errors for inviscid and viscous fluxes are shown in Figures 5 and 6,
respectively. This is an example where inviscid accuracy onsimplicial meshes is superior to that on meshes with
quadrilateral elements. This is not a surprise because the inviscid scheme used in this study is designed to be third
order only on simplicial grids.23, 24 The edge-based integration scheme used in this scheme is known to deteriorate to
first order on grids of types(Ip), (IV ), and(IVp).18, 19, 27 On triangular grids, the discretization accuracy of inviscid
solutions is not sensitive to mesh regularity. If anything,discretization errors are somewhat smaller on topologically
structured grids of types(II) and(IIp). Discretization errors for viscous fluxes show no sensitivity to mesh regularity.
The errors for both Avg-LSQ and GG schemes are practically identical to the plotting accuracy for all grids.

VI. Class B: Anisotropic Grids in Rectangular Geometry

VI.A. Grid and solution specifications

This section considers FVD schemes on stretched grids generated on rectangular domains. Figure 2 shows an example
grid with the maximal aspect ratioA = 1, 000. A sequence of consistently refined stretched grids is generated on the
rectangle(x, y) ∈ [0, 1]× [0, 0.5] in the following 3 steps.
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Figure 5. Inviscid discretization errors on isotropic grids. Manufactured solution isU = sin (πx − 2πy).
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Figure 6. Viscous discretization errors on isotropic grids. Manufactured solution isU = sin (πx − 2πy).

1. A background regular rectangular grid withN = (Nx + 1)× (Ny + 1) nodes and the horizontal mesh spacing
hx = 1/Nx is stretched toward the horizontal liney = 0.25. They-coordinates of the horizontal grid lines in
the top half of the domain are defined as

yNy

2
+1

= 0.25; yj = yj−1 + ĥyβ
j−

(

Ny

2
+1

)

, j =
Ny

2
+ 2, . . . , Ny, Ny + 1. (10)

Hereĥy = hx/A is the minimal mesh spacing between the vertical lines,A = 1, 000 is a fixed maximal aspect
ratio, andβ is a stretching factor which is found from the conditionyNy+1 = 0.5. The stretching in the bottom
half of the domain is defined analogously.
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2. Irregularities are introduced by random shifts of interior nodes in the vertical and horizontal directions. The
vertical shift is defined as∆yj =

3
16
ρmin(hj−1

y , hj
y), whereρ is a random number between−1 and1, andhj−1

y

andhj
y are vertical mesh spacings on the background stretched mesharound the grid node. The horizontal shift

is introduced analogously,∆xi = 3
16
ρhx. With these random node perturbations, all perturbed quadrilateral

cells are convex.

3. Each perturbed quadrilateral is randomly triangulated with one of the two diagonal choices; each choice occurs
with a probability of one half.

Sequences of consistently refined stretched grids with maximum aspect ratioA = 1, 000 including 9 × 65, 17 ×
129, 33 × 257, 65 × 513, and129 × 1025 nodes have been considered. The corresponding stretching ratios are
β ≈ 1.207, 1.098, 1.048, 1.025, and1.012. The aspect ratio near the external horizontal boundaries is about2.7.

In the tests on grids of Class B performed with either the manufactured solutionsin (πx− 2πy) or extended over-
specification used in tests on grid of Class A, the asymptoticbehavior of the discretizations errors for viscous fluxes
was not observed on coarse grids. The exhibited discretization errors were uncharacteristically low on coarse grids,
but did not converge with the asymptotic order. The discretization errors for this specific manufactured solution on
the chosen domain are small in the interior and peak toward the boundary. Thus, over-specification that involves all
neighbors of boundary nodes affects solutions on a too largeportion of stretched grids. As a result, the manufactured
solution has been changed toU = cos (πx− 2πy); the discretization errors for this solution peak in the middle of the
computational domain. Also only solutions at boundary nodes are over-specified, and not at their neighbors as was
done for Class A grids. With these changes, the asymptotic behavior of the discretizations errors for the viscous fluxes
is established on relatively coarse grids. Note that the forcing term for inviscid equations is stillf = 0 for a = (2, 1).

VI.B. Gradient reconstruction errors
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Figure 7. Accuracy of gradient reconstruction on stretchedgrids with maximum aspect ratio A = 1, 000. Manufactured solution is U =
cos (πx − 2πy).

A recent study20 assessed the accuracy of gradient approximations on various grids with high aspect ratioA =
hx

hy
≫ 1. The study indicates that for rectangular geometries and functions predominantly varying in the direction of
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small mesh spacing (y-direction here), gradient reconstruction is accurate andprovides small relative error while con-
verging with at least first order in consistent refinement on grids of all types. For manufactured solutions significantly
varying in the direction of larger mesh spacing (x-direction), the gradient reconstruction may produce extremely large
relative errorsO(Ahp

x) affecting the accuracy of they-directional gradient component. Here,p is the formal gradient
reconstruction order;p = 1 for the GG method and for the ULSQ method with a linear fit;p = 2 for the ULSQ scheme
with a quadratic fit.

A summary of the results concerned with gradient accuracy onanisotropic grids is presented in Table 1. The
gradient is accurately reconstructed on all unperturbed grids by the GG scheme. All gradient reconstruction methods
considered may generate large relative errors on perturbedgrids of types(Ip)− (IVp).

Table 1. Relative error of gradient reconstruction on anisotropic grids for solutions with significant variation in the x-direction of larger mesh spacing.

Grid Types (I) (II) (III) (IV ) (Ip)− (IVp)

ULSQ-linear fit at node O(h2
x) O(h2

x) O(Ahx) O(Ahx) O(Ahx)

ULSQ-quadratic fit at node O(h2
x) O(h2

x) O(Ah2
x) O(Ah2

x) O(Ah2
x)

GG at element center O(h2
x) O(hx) O(hx) O(hx) O(Ahx)

The convergence of theL∞ norm of gradient errors is shown in Figure 7. TheL∞ norm is used to highlight
the worst gradients observed in high-aspect ratio regions of the stretched grids of Class B. All quadratic-fit ULSQ
gradients converge with second order, but the magnitude of the gradient errors is sensitive to grid regularity. As shown
in Table 1, with any deviation from the regularity of grids oftypes(I) and(II), the ULSQ gradient error becomes
proportional to aspect ratio. The GG gradients converge with first order on all grids beside the grids of type(I),
where a second-order convergence is observed. In spite of a lower order convergence, the GG gradients show a clear
advantage over the ULSQ gradients on coarse unperturbed grids of types(I)–(IV ). The GG scheme on such grids
provides gradient accuracy independent of aspect ratio. Onperturbed grids of types(Ip)–(IVp), the GG errors are also
proportional to the aspect ratio, and quadratic-fit ULSQ gradients are preferable.
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Figure 8. Inviscid discretization errors on anisotropic stretched grids with maximum aspect ratio A = 1, 000. Manufactured solution is U =
cos (πx − 2πy).
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Figure 9. Viscous discretization errors on anisotropic stretched grids with maximum aspect ratioA = 1, 000. Manufactured solution is U =
cos (πx − 2πy).

VI.C. Discretization errors

The convergence of theL1 norm of discretizations errors for inviscid fluxes is shown in Figure 8. The convergence
characteristics are similar to those exhibited on isotropic grids of Class A. Third-order convergence insensitive to grid
regularity is observed on all triangular grids. Convergence on grids of type(I) is second order, but any irregularity on
mixed and quadrilateral meshes degrades the convergence tofirst order.

The convergence of theL1 norm of discretization errors for viscous fluxes is shown in Figure 9. All discretiza-
tion errors converge with second order. While second-orderconvergence of the Avg-LSQ scheme is not apparent in
Figure 9(a) on triangular and mixed-element grids, a second-order slope has been attained on finer grids. For refer-
ence, convergence of the errors obtained with a linear fit on grids of type(II) is also shown. The Avg-LSQ errors
are relatively small only on pure quadrilateral grids of types(I) and(Ip). The magnitude of errors obtained with a
quadratic fit is much smaller than the magnitude of errors obtained with a linear fit. However, discretization errors of
the GG scheme are significantly better than any of the Avg-LSQerrors. The GG errors are clearly divided into two
groups. The errors on unperturbed grids of types(I) − (IV ) are small on all grids; the errors on perturbed grids are
roughly two orders of magnitude higher for any given number of DOF. The ratio is about the same as the ratio between
gradient errors shown in Figure 7(b).

VII. Class C: Grids with Curvature and High Aspect Ratio

VII.A. Grid and solution specifications

In this section, we discuss FVD schemes on grids with curvature and high aspect ratio. The grid nodes are generated
from a cylindrical mapping, where(r, θ) denote polar coordinates with spacings ofhr andhθ, respectively. The grid
aspect ratio is defined as the ratio of mesh sizes in the circumferential and the radial directions,A = Rhθ/hr, where
R is the radius of curvature.

The curvature-induced mesh deformation parameterΓ15, 16 is defined as:
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Γ =
R (1− cos(hθ))

hr

≈ Rh2
θ

2hr

= Ahθ

2
. (11)

The following assumptions are made about the range of parameters:R ≈ 1, A ≫ 1, andΓhr ≪ 1, which implies
that bothhr andhθ are small. For a given value ofA, the parameterΓ may vary:Γ ≪ 1 indicates meshes that are
locally (almost) non-deformed. As a practical matter, grids withΓ < 0.2 can be considered as nominally non-curved.
In a mesh refinement that keepsA fixed,Γ = O(Ahθ) asymptotes to zero. This property implies that on fine enough
grids with fixed curvature and aspect ratio, the error convergence is expected to be the same as on similar Class B grids
generated on rectangular domains with no curvature.

Four basic types of grids are studied in the cylindrical geometry. Unlike Class B grids used in the rectangular
geometry, random node perturbation is not applied to high-Γ grids of Class C because even small perturbations in the
circumferential direction may lead to non-physical control volumes. Representative stretched grids of types(III) and
(IV ) are shown in Figure 3.

The manufactured solution considered in this section isU = sin(5πr). The convection direction is changed to
a variable tangential directiona = (y/r2,−x/r2), so the inviscid forcing term remains zero. Solutions at boundary
nodes are over-specified.

VII.B. Gradient reconstruction errors

Table 2. Relative errors of gradient reconstruction for manufactured solutions varying only in the radial direction on high-Γ grids.

Grid Types (I) (II) (III) (IV )

ULSQ-linear fit O(1) O(1) O(1) O(1)

ULSQ-quadratic fit O(hθ) O(hθ) O(hθ) O(hθ)

GG O(h2
θ) O(hθ) O(hθ) O(hθ)

Our main interest is solutions varying predominantly in theradial direction on grids withΓ ≫ 1 corresponding
to meshes with large curvature-induced deformation. The errors of gradient reconstruction for a radial solution are
summarized in Table 2. The ULSQ gradient approximation witha linear fit is zeroth-order accurate for such solutions,
in agreement with computations and analysis reported earlier.17, 25 The use of the ULSQ method with a quadratic fit
dramatically improves gradient accuracy on high-Γ grids leading to a first-order convergence of gradient errors on
grids with highΓ.

The computational tests are performed with downscaling19, 20 on a sequence of narrow arc-shaped domains with
the angular extent ofπ

9
L radians and the radial extent of1 ≤ r ≤ 1+ π

9
LA−1. The scaleL changes asL = 2−n, n =

0, . . . , 8. On each domain, a17×17 grid is generated with nodes uniformly spaced in the polar coordinates. Figure 10
shows convergence of theL∞ norms of gradient errors computed for the manufactured solution U = sin(5πr) on
grids with aspect ratiosA = 100 andA = 1, 000. The errors are shown versus the grid deformation parameter, Γ,
defined in Eq. 11. Figures 10(a) and 10(b) show convergence ofULSQ gradient errors computed with quadratic and
linear fits on grids of types(I)–(IV ). Figures 10(c) and 10(d) show convergence of GG gradient errors. As known
from previous studies,15–17 the errors of GG gradients are small and show the order property on all grids. The ULSQ
gradients computed with a linear fit lose accuracy on high-Γ grids. The ULSQ gradients computed with a quadratic fit
recover a first-order convergence on high-Γ grids and show the smallest error magnitudes on grids of types(II), (III),
and(IV ). The GG gradients show the smallest errors on regular quadrilateral grids of type(I). Appendix B presents a
detailed study of gradient reconstruction errors for ULSQ methods with linear and quadratic fits on a family of stencils
corresponding to a wide range ofΓ.
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Figure 10. Accuracy of gradient reconstruction on high-Γ grids. Manufactured solution isU = sin (5πr).

VII.C. Discretization errors

Computational grids used in the grid-refinement study of discretization errors are radially stretched grids with a radial
extent of1 ≤ r ≤ 1.2 and an angular extent of20◦. Fixed maximal aspect ratios are used. The maximal aspect
ratio isA ≈ 1, 000 for viscous computations. The grids have four times more cells in the radial direction than in the
circumferential direction. The maximum value ofΓ changes approximately asΓ ≈ 22, 11, 5.5, . . . . The corresponding
grid stretching ratios change asβ = 1.25, 1.11, 1.06, . . . .

The third-order inviscid scheme produces highly accurate solutions, so local errors become very small on relatively
coarse highly stretched grids and convergence is obscured by round-off errors interfering with the solutions. A reduced
maximal aspect ratio ofA ≈ 100 has been chosen for inviscid computations.
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Figure 11. Inviscid discretization errors on high-Γ stretched grids with maximum aspect ratioA = 100. Manufactured solution isU = sin (5πr).
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Figure 12. Viscous discretization errors on high-Γ stretched grids with maximum aspect ratioA = 1, 000. Manufactured solution isU = sin (5πr).

Convergence of theL1 norm of discretization errors is shown in Figures 11 and 12 for inviscid and viscous fluxes,
respectively. The inviscid errors converge with (almost) fourth order on grids of type(I), with third order on grids of
types(II) and(III), and with first order on grids of type(IV ). The unusually high order of convergence on grids
of type(I) is explained by the fact that, for a manufactured solution varying in the radial direction only, the inviscid
scheme on grids of type(I) turns into a fourth-order pure one-dimensional scheme. Anysolution variation in the
circumferential direction results in the expected second-order convergence on grids of type(I). Note that, because
of asymmetric gradient-reconstruction stencil on grids oftypes(II) and (III), the scheme does not become one-
dimensional and thus, its third order of convergence on these grids is independent of solution variation. Second-order
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convergence and no sensitivity to grid type are observed forboth viscous schemes.

VIII. Conclusions

The effects of mesh regularity on the accuracy of unstructured node-centered finite-volume discretizations for
viscous and inviscid fluxes have been considered for an edge-based approach that use unweighted least-squares gra-
dient reconstruction with a quadratic fit. The inviscid scheme is nominally third-order accurate on general triangular
meshes.23, 24 The viscous scheme is a nominally second-order accurate discretization that uses an average-least-squares
method with a face-tangent augmentation.28, 29 The results have been contrasted with previously studied schemes in-
volving other gradient reconstruction methods such as the Green-Gauss method and the unweighted least-squares
method with a linear fit. Gradient errors, truncation errors, and discretization errors have been separately studied
according to a previously introduced methodology.15, 16

The methodology considers three classes of grids: Class A includes isotropic grids in a rectangular geometry, Class
B includes anisotropic grids representative of adaptive-grid simulations, and Class C includes anisotropic advancing-
layer grids representative of high-Reynolds number turbulent flow simulations over a curved body. Regular and irreg-
ular grids have been considered, including mixed-element grids and grids with random perturbations of nodes. Grid
perturbations and stretching have been introduced independently of solution variation to bring out the worst possible
behavior.

The gradient accuracy deteriorates on high-aspect-ratio perturbed grids. On grids of Class B, the gradient errors
converge with the design orders – first order for the Green-Gauss method and the least-squares method with a linear fit
and second order for the least-squares method with a quadratic fit. The least-squares gradient errors become propor-
tional to the aspect ratio on all irregular grids. On grids with node perturbation, all gradient errors are proportionalto
the aspect ratio. On Class C grids characterized by a high deformation parameterΓ, the Green-Gauss gradient errors
converge with at least first order and are small on all grids. The errors of least-squares gradients with a quadratic fit
converge with first order. The magnitude of the quadratic-fiterrors is superior to theO(1) magnitude observed with a
linear fit.

As observed previously8–11, 19and confirmed here in Appendix A, lack of mesh regularity strongly affects trun-
cation errors, which converge with lower-than-design order on all irregular meshes. Viscous truncation errors do not
converge at all on perturbed grids.

Inviscid discretization errors are practically insensitive to mesh regularity on triangular grids, demonstrating a
third-order convergence and small variation of the error magnitudes. Discretization accuracy is more sensitive to mesh
regularity on grids with quadrilateral elements. On those grids, the results observed with the least-squares method
with a quadratic fit show no advantage over previous results obtained with a linear fit,16, 19 both showing first-order
convergence on mixed and perturbed quadrilateral grids.

In all cases, the viscous discretization errors asymptotically converge with second order. Similar to the gradient
accuracy, the magnitude of discretization errors of viscous solutions is insensitive to grid regularity on grids of Class A,
but may be sensitive on grids of classes B and C. On such grids,the Green-Gauss method is the most accurate, although
the errors on the grids with node perturbation are still significantly larger than errors on grids with unperturbed nodes.
Asymptotically, the difference is proportional to the aspect ratio. Accuracy of the average-least-squares methods
deteriorates on irregular high-aspect-ratio grids, although the deterioration is less with a quadratic fit than with a linear
fit.

The following recommendations are offered:

1. The unweighted least-squares method with a quadratic fit is highly recommended as a robust way to compute
accurate gradients on all grids.

2. The edge-based scheme that uses the unweighted least-squares method with a quadratic fit is recommended
for inviscid fluxes. On triangular grids, it produces third-order accurate solutions and is insensitive to mesh
regularity.
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3. The Green-Gauss scheme is recommended for viscous fluxes.On isotropic and advanced-layer grids of classes
A and C, both Green-Gauss and averaged-least-squares methods produce uniformly second-order solutions and
are insensitive to mesh regularity. On grids of Class B, there is a sensitivity to grid regularity; the Green-Gauss
solutions are less sensitive than averaged-least-squaressolutions.

Robust iterative convergence is also critically importantfor practical applications. The solver for the third-order
scheme reported previously23 failed to converge on high-Γ grids of Class C. This failure is attributed in part to use of
a WLSQ gradient reconstruction that causes difficulties foriterative solvers in complex geometries.25 Although, we
do not consider iterative convergence in this paper, preliminary tests indicate that a combination of a ULSQ method
with an approximate mapping technique15, 16 enables fast and robust convergence of defect-correction iterations for
this third-order scheme on high-aspect-ratio grids in complex geometries. Also, the approximate-mapping approach
to gradient reconstruction can recover a second-order convergence of gradient errors on high-Γ grids of Class C.

The overall conclusion is that relations between mesh characteristics and solution accuracy are complicated. The
mesh regularity affects gradient, truncation, and discretization errors in dramatically different ways. The resolution is
expected in the form of adjoint-based grid adaptation that directly and rigorously connects the local mesh properties
with the desired solution outcome.

A. Truncation errors

Truncation error,Et, characterizes the accuracy of approximating the differential equations. For finite differences,
the truncation error is defined as the residual obtained after substituting the exact solutionU into the discretized
differential equations.31 For FVD schemes, the traditional truncation error is usually defined from the time-dependent
standpoint.32, 33 In the steady-state limit, it is defined (e.g., in Ref. 34) as the residual computed after substitutingU
into the normalized discrete Eq. 3,

Et =
1

V



−
∫

Ω

fh dΩ +

∮

∂Ω

(

F
h · n̂

)

ds



 , (12)

whereV is the measure of the control volume, Eq. 7,fh is an approximation of the forcing functionf onΩ, and the
integrals are computed according to quadrature formulas.

The truncation errors are extremely sensitive to mesh regularity. Convergence rates of theL1 norm of truncation
errors for inviscid and viscous fluxes on isotropic grids of Class A are shown in Figures 13 and 14, respectively. The
inviscid scheme and the viscous Avg-LSQ scheme use the ULSQ method with a quadratic fit; the viscous GG scheme
is shown for comparison. The grids and manufactured solution are defined in Section V.A.

The inviscid errors converge with third order only on regular triangular meshes of type(II). On irregular triangular
grids of types(III), (IIp), and (IIIp) and on perfect quadrilateral grid of type(I), the inviscid truncation errors
converge with second order. Irregularities on grids with quadrilateral elements (types(IV ), (Ip), and(IVp)) lead to
zeroth-order convergence.

Similar sensitivity is observed for the truncation errors of viscous fluxes discretized by the Avg-LSQ scheme with
second-order accurate ULSQ gradients (Figures 14(a) and 14(b)). The second-order convergence is observed only on
perfectly regular grids of types(I) and(II). The convergence deteriorates to first order on irregular triangular grids
and to zeroth order on mixed-element and perturbed quadrilateral grids. For viscous fluxes discretized with the GG
scheme (Figures 14(c) and 14(d)), truncation errors do not converge on any but perfectly regular grids of types(I)
and(II). Note that GG scheme produces identical discretizations ongrids of types(I), (II), and(III).15 Thus,
corresponding GG solutions and truncation errors on grids of types(I) and(II) are always identical. Different results
on grids of type(III) are explained by the differences in the dual volumes.

The qualitative behavior (orders of convergence) of truncation errors on anisotropic grids of Class B is the same
as on isotropic grids, shown in Figures 13 and 14. On grids with similar DOF, the magnitude of the errors increases
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Figure 13. Inviscid truncation errors on isotropic grids. Manufactured solution isU = sin (πx − 2πy).

proportional to the aspect ratio.

B. Variation of gradient errors on grids of Class C

Table 3. Stencil for study of accuracy of gradient reconstruction on highly deformed grids.

Point r θ x y

0 R 0 0 0

N R+ hr 0 0 hr

S R− hr 0 0 −hr

E R hθ R sin(hθ) −R(1− cos(hθ))

W R −hθ −R sin(hθ) −R(1− cos(hθ))

NE R+ hr hθ (R+ hr) sin(hθ) −(R+ hr)(1 − cos(hθ))

SW R− hr −hθ −(R− hr) sin(hθ) −(R− hr)(1 − cos(hθ))

To illustrate the convergence property of gradient errors over a wide range of the deformation parameterΓ, a
special computational test is designed. In the test, the gradient reconstruction is performed on a seven-point stencil
corresponding to a Type(II) curved grid. The positions of stencil points (labeled in thecompass notation) are shown
in Table 3 in polar coordinates(r, θ) and in Cartesian coordinates(x, y) relative to the stencil center. In this test,
radiusR = 1 and radial mesh spacinghr = 2.5 · 10−8 are kept fixed, the initial value of angular mesh spacing
hθ ≈ 0.04 is reduced by factor 2 in each of 13 refinement steps. With this“semi-refinement”,Γ is reduced by factor
4 in each step, varying as40, 000 > Γ > 0.0005 over the entire test. Figure 15 shows convergence of the Taylor
expansion coefficients for they-component of the gradient. The coefficients of terms that are not present in the figure
are smaller than10−10. For the Taylor coefficients of the ULSQy-gradient with a linear fit, a large magnitude and
a flat convergence of the coefficient ofUxx observed in Figure 15(a) forΓ ≥ 1 confirm anO(1) accuracy of this
gradient reconstruction method. In contrast, all Taylor coefficients of the ULSQy-gradient with a quadratic fit shown
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(b) Avg-LSQ; mixed and quadrilateral grids
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(c) GG; triangular grids

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

effective meshsize

T
ru

nc
at

io
n 

er
ro

r 
(L

1 −
 n

or
m

)

 

 
(I)
(IV)
(I

p
)

(IV
p
)

1st ord.

2nd ord.

3rd ord.

(d) GG; mixed and quadrilateral grids

Figure 14. Viscous truncation errors on isotropic grids. Manufactured solution isU = sin (πx − 2πy).

in Figure 15(b) are small and converge with at least first order for high-Γ stencils.
The magnitudes of the relative errors for the GG scheme and for the ULSQ scheme with a quadratic fit are much

smaller than the magnitude for the ULSQ scheme with a linear fit. Figure 16 shows the gradient errors measured at the
center of the stencil for a radial solutionU = sin(5πr). The gradient errors in Figure 16(a) confirm lack of accuracy
for the ULSQ method with a linear fit on high-Γ grids. Low errors and flat convergence of the ULSQ method witha
quadratic fit observed in Figure 16(b) are expected for accurate gradient reconstructions because the radial mesh size
does not decrease in the test. This behavior indicates that for solutions varying predominantly in the radial direction,
the gradient accuracy is determined by the radial mesh spacing and independent ofΓ, which is a highly desirable
property on high-Γ grids.
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(b) ULSQ quadratic fit

Figure 15. Convergence of Taylor coefficients in semi-refinement test.
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(a) ULSQ linear fit
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Figure 16. Convergence of gradient errors in semi-refinement test.
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