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Abstract

A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstruc-
tured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations cou-
pled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint
equations is presented. Both compressible and incompressible solvers are differentiated and the accuracy of the
sensitivity derivatives is verified by comparing with gradients obtained using finite differences. Several simplify-
ing approximations to the complete linearization of the residual are also presented, and the resulting accuracy of
the derivatives is examined. Demonstration optimizations for both compressible and incompressible flows are
given.
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Introduction
As computational power has continued to advance in recent

years, researchers have been able to extend the use of computa-
tional tools to increasingly more complex problems. Computa-
tional fluid dynamics (CFD) has been exploited as an analysis
tool for some time, and is currently receiving attention as a de-
sign optimization tool. Early attempts in CFD-based design prob-
lems made use of finite-difference calculations to obtain sensitiv-
ity information. This technique can be used to obtain the
derivatives of all the flow quantities with respect to each design
variable and can be easily retrofitted to existing flow solvers.
One problem with this approach is the computational time re-
quired. To obtain the design sensitivities for a system involving

 design parameters using a central-difference approach re-
quires well-converged solutions of  flow analysis problems.
For complex cases with many design variables, this requirement
may become prohibitive. Another problem often encountered
with the finite-difference approach is the sensitivity of the deriv-
atives to the choice of the step size. It is desirable to have a small
step size so that the truncation error is minimal, while at the same
time, avoid exceedingly small step sizes which could yield large
cancellation errors.

To mitigate the difficulties associated with the choice of step
size used in finite differences, direct differentiation can be em-
ployed.14, 19, 25 In this approach, the sensitivity derivatives of all
the variables in the flow field are obtained but the solution of a
large linear system of equations for each design variable is re-
quired. Therefore, for problems involving many design variables,
obtaining the sensitivity derivatives can be expensive.

In recent years, adjoint formulations have grown in popularity,
and are rapidly being developed for use in aerodynamic design
sensitivity computations (see e.g. Refs. 2, 4, 9, 10, 15, 18). The
adjoint approach has the advantage of being able to compute cost
function gradients at an expense independent of the number of
design parameters. This feature makes adjoint methods ex-
tremely attractive for problems involving a large number of de-
sign variables.
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In the current work, a discrete adjoint approach is used in an un-
structured-grid framework to compute design sensitivities for prob-
lems based on the Navier-Stokes equations. A one-equation turbu-
lence model is used which is fully differentiated and coupled into
the solution of the adjoint equations so that the resulting sensitivity
derivatives are consistent with those obtained using finite differ-
ences. In addition to a compressible solver, an incompressible for-
mulation is also differentiated in order to accommodate a wide
range of applications. The accuracy of the resulting derivatives is
established and sample calculations are shown for two- and three-
dimensional cases using both implementations. Conclusions and
suggestions for future research are also given.

Nomenclature

Speed of sound

Sutherland’s constant

Lift and drag coefficients

Target lift and drag coefficients

Ratio of lift derivatives for translation

Constants for turbulence model

Constants for turbulence model

Vector of design variables

Distance to the nearest surface

Total energy per unit volume

Inviscid flux vector

Viscous flux vector

Cost function

Components of viscous fluxes

Functions for turbulence model

Functions for turbulence model

Function for turbulence model

Identity matrix

Unit vectors in Cartesian coordinate directions

Spring constant for mesh movement
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Mach number

Outward-pointing normal to control volume

Prandtl number

Turbulent Prandtl number

Pressure

Vector of conserved variables

Components of heat flux

Residual for a control volume

Reynolds number

Function for turbulence model

Magnitude of vorticity

Temperature

Time

Cartesian components of velocity

Volume of control volume

Grid-point locations

Cartesian coordinate directions

Greek

Angle of attack

Ratio of specific heats

Boundary of control volume

Constant for turbulence model

Vector of Lagrange multipliers

Laminar viscosity

Turbulent viscosity

Dependent variable for turbulence model

Density

Constant for turbulence model

Components of shear stress

Function for turbulence model

Weights for lift and drag in cost function

Subscripts

Free-stream quantity

Governing Equations
The governing equations are the three-dimensional Reynolds-av-

eraged Navier-Stokes equations. In the present work, both the com-
pressible and incompressible forms of these equations are consid-
ered. For turbulent flows, the one-equation turbulence model of
Spalart and Allmaras27 is used. The compressible flow equations,
as well as the equations for the turbulence model, are given in Ap-
pendix A.

Adjoint and Design Equations
In the adjoint approach for design optimization, a cost function is

defined and augmented with the flow equations as constraints to
form a Lagrangian given by

(1)

Here,  is the cost function to be minimized and  is a
vector of design variables. The vector of Lagrange multipliers (also
known as costate variables) is denoted by , and  is the residual
of the discretized steady-state flow equations. The vector  is the

conserved variables and  represents the computational grid. Al-
though not explicitly denoted in Eq. 1, both  and  are functions
of the design variables.

Differentiating Eq. 1 with respect to the design variables yields

(2)

Because  is arbitrary, the terms multiplied by  may be
eliminated using the following equation

(3)

Equation 3 is a linear system which represents the discrete adjoint
equation for the optimization problem. After the flow equations
have been solved for , the adjoint equation can be solved for the
unknown vector of Lagrange multipliers . The remaining terms
in Eq. 2 can be used to evaluate the sensitivity derivatives as fol-
lows:

(4)

After the solution for the costate variables is obtained using Eq. 3,
the vector containing all of the desired sensitivities can be evalu-
ated as a single matrix-vector product, given by Eq. 4.

Numerical Implementation

Flow Equations
The flow solvers used in the current work are described at length

in Refs. 1, 3, and 5. The codes use an implicit, upwind, finite-vol-
ume discretization, in which the dependent variables are stored at
the mesh vertices. Inviscid fluxes at cell interfaces are computed
using the upwind schemes of Roe,21 van Leer,29 or Osher.6 Viscous
fluxes are formed using an approach equivalent to a central-differ-
ence Galerkin procedure. Temporal discretization is performed
using a backward-Euler time-stepping scheme, and multigrid accel-
eration can be used for the two-dimensional codes.5

An approximate solution of the linear system of equations
formed at each time step is obtained using several iterations of a
point-iterative scheme in which the nodes are updated in an even-
odd fashion, resulting in a Gauss-Seidel-type method.

The turbulence model is solved separately from the flow equa-
tions at each time step, using a backward-Euler time-stepping
scheme. The resulting linear system is solved using the same point-
iterative scheme employed for the flow equations. The turbulence
model is integrated all the way to the wall without the use of wall
functions.

The incompressible solvers are based on an artificial compress-
ibility formulation, and are described in Ref. 3. Time integration
and solution of the linear system at each time step are performed in
the same manner as described above.

Adjoint and Design Equations
The adjoint equation given in Eq. 3 represents a linear set of

equations for the costate variables . Although this system can be
solved directly using GMRES,22 a time-like derivative is added and
the solution is obtained by marching in time, much like the flow
solver:
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(5)

where

(6)

The time term can be used to increase the diagonal dominance for
cases in which GMRES alone would tend to stall. This ultimately
results in a more robust adjoint solver.

Due to the large amount of code resulting from the linearization
of the viscous terms and the turbulence model, these contributions
are stored in the present implementation. Because the stencil for the
inviscid contributions is larger, the linearization of these terms is
recomputed at each step to avoid the need for extra storage and data
structure.

To precondition the linear system, an incomplete LU decomposi-
tion of the matrix obtained from a first-order accurate discretization
is used. The preconditioning is applied on the left and no fill-in is
allowed (ILU[0]).13 Numerical experiments using this precondi-
tioner have shown that some turbulent cases are slow to converge.
An alternate means of preconditioning that has often been found
useful is to employ a point-iterative scheme similar to that used for
the flow equations. This technique allows for continual improve-
ment in preconditioning the first-order system but is most effective
when the time step is small and the matrix is diagonally dominant.

In the present work, the differentiation of both the flow equations
and the turbulence model is accomplished by "hand differentiating"
the code. For obtaining the solution of the adjoint equations, the
turbulence model is tightly coupled during the solution process,
whereas it is solved separately during the flow analysis. During de-
velopment, various treatments of the turbulence model have been
studied and it has been found that the close coupling of the turbu-
lence model is required in order to obtain sensitivity derivatives
consistent with those obtained using finite differences. This will be
illustrated in a subsequent section.

Cost Functions
For both two and three dimensions, the cost function is com-

posed of a linear combination of the lift and drag coefficients:

(7)

For two-dimensional calculations, a target pressure distribution can
also be specified.

The drag can be minimized while maintaining a specified lift by
adjusting the weights associated with each term in Eq. 7. The
weights must be chosen such that neither term dominates the other.
The current method for choosing the initial weights is to simply set
the ratio of  to  to be equal to the ratio of the lift to the drag:

(8)

During the design process, these weights may require adjustment.
However, this avoids the need to solve separate adjoint equations
for lift and drag.

Design Variables
For both incompressible and compressible flows, the angle of at-

tack can be utilized as a design variable in addition to the shape.
For compressible flows, the free-stream Mach number can also be
specified as a design parameter. When the shape is evolving, the
surfaces are parameterized as described in the following sections.

Two-Dimensional Parameterization

For two-dimensional cases, the geometry is described using
B-splines and the coordinates of the control points are used as de-
sign variables as described in Refs. 2 and 4. Translation and rota-
tion of individual bodies can also be used as design variables. Al-
though not discussed further here, a graphical interface has been
developed which aids the user in selecting and placing limits on de-
sign variables, as well as modifying target pressure distributions.2

This interface has proven to be very useful and helps reduce errors
in setting up design cases.

Three-Dimensional Parameterization

The three-dimensional code has been coupled with a geometric
parameterization scheme recently introduced by Samareh.23 The
method utilizes a free-form deformation technique similar to that
used in the motion picture industry for animating digital images.
Here, a Bezier net describing the changes in the geometry is placed
around the baseline mesh. The control points in the net may be used
directly as the design variables, or they may be further grouped into
design variables such as camber, thickness, and twist. This parame-
terization technique has been chosen for its ability to handle arbi-
trary geometries and because the mesh generation process does not
depend on a prior parameterization of the geometry. This allows
meshes which have been previously generated solely for analysis to
be utilized for design purposes.

Geometric Constraints
During the design process, the feasibility of the geometry is

maintained by limiting the movement of the design variables. For
the two-dimensional code, area and curvature constraints may also
be placed on the geometry although these are not employed in the
present work. The curvature constraints can be used to enforce a
specified leading edge radius or to guarantee curvatures of a speci-
fied sign.

Grid Generation and Mesh Movement Strategy
For all of the two-dimensional computations, the meshes have

been generated using the method described in Ref. 17. In three di-
mensions, the method of Ref. 20 is utilized. Both techniques em-
ploy an advancing front methodology and generate good quality
grids for both inviscid and viscous calculations.

When the design process requires modifications to the surface
geometry, the computational mesh must be deformed to reflect the
changes. For inviscid flows, the mesh movement strategy is based
on the spring analogy described in Ref. 30. The edges of the mesh
are treated as tension-springs, and the following equation is solved
using a Jacobi iteration process:

(9)

Here  and  represent the change in the coordinates of nodes
 and  from the initial mesh to the desired mesh. The spring con-

stants  are assumed to be , where  is the length of the edge
connecting node  to node . Since this technique may result in
crossed grid lines, the required shift of the surface coordinates is
decomposed into a series of smaller movements (usually around
10), and Eq. 9 is relaxed for each change in the surface. This strat-
egy has been found to work well for Euler-based designs.

For viscous meshes, the method described above is not adequate
and can easily lead to crossing mesh lines and negative volumes.
For these cases, the nodes near viscous surfaces are shifted by inter-
polating the changes in the coordinates at the boundaries of the
nearest surface triangle or edge. This technique is blended with a
smoothing procedure so that away from the highly stretched cells
near the surface, the mesh movement reverts to that of the proce-
dure described above for inviscid meshes. Further details can be
found in Ref. 4.
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For two-dimensional viscous applications, the procedure de-
scribed above is very robust and is capable of successfully deform-
ing the mesh in response to large changes in the surface geometry.
For multielement airfoils, there is a tendency to open "gaps" in the
mesh between elements when the elements are allowed to translate
away from one another. A similar problem occurs when the ele-
ments move closer together in which case there is a "jamming" to-
gether of mesh points. These difficulties are simply due to the fact
that no additional mesh points are inserted or removed during the
process so that as elements shift in relation to one another, voids
can be created. This has not had a detrimental effect on the flow
solver and can be remedied by periodically regenerating the mesh.

For three-dimensional flows, the mesh movement procedure is
inadequate when large changes in the geometry are required. In
these cases, negative cell volumes can occur around the edges of
the planform. Therefore, changes in the thickness and camber have
been limited to only a few percent of the chord. Further research is
required to develop a more reliable methodology for large geomet-
ric changes in three dimensions.

As the surface is deformed during the design process, there is a
corresponding change in the interior mesh points as well. The effect
of the changing grid is reflected through the mesh sensitivity terms
given by  in Eq. 4. The computation of these terms is
achieved by differentiating the mesh movement process described
above.

Optimization Technique
The optimization technique used in all of the results presented

below is the quasi-Newton method of Davidon-Fletcher-Powell.8,11

The current implementation of this technique, referred to as
KSOPT, allows for multipoint optimization as well as both equality
and inequality constraints.32 For the present work, the multipoint
capability is not utilized although this is an obvious future require-
ment.

Results and Discussion

Consistency of Linearization
During code development, great care has been taken at each step

to ensure that the derivatives are consistent with those obtained
using finite differences. In this section, the accuracy of the resulting
derivatives is verified for compressible flow in both two and three
dimensions. Similar results have been obtained for incompressible
flows and are included in Appendix B. Comparisons are made be-
tween derivatives computed using finite differences with those ob-
tained using the adjoint method. When computing derivatives using
finite differences, central-difference formulas are used with a step
size of , and the flow solver is converged to machine accu-
racy. The two-dimensional results shown are calculated using the
Osher flux function although similar accuracy is obtained using ei-
ther flux-difference splitting or flux-vector splitting. For the three-
dimensional linearizations, all results are obtained using the flux-
difference splitting scheme of Roe. All of the results shown below
are for turbulent flows although the consistency of derivatives has
been verified for inviscid and laminar flows as well.

Two-Dimensional Accuracy

For demonstrating the consistency of the derivatives obtained
using the adjoint formulation with those obtained using finite dif-
ferences, two test cases are considered. The first case is a 2-element
airfoil at a free-stream Mach number of 0.25, an angle of attack of

, and a Reynolds number of 9 million based on the chord of the
airfoil. The geometry has been chosen arbitrarily and is that given
in Ref. 31.

The mesh used for this test has 4,901 nodes and is shown in Fig.
1. The geometry of each airfoil is described with a third-order
B-spline. The derivatives of the lift and drag coefficients with re-
spect to the vertical and horizontal positions of four shape design
variables have been obtained. The locations of the design variables
are indicated by the solid circles shown in Fig. 2. As seen in the fig-

ure, two of these design variables are located on the main airfoil
and two are located on the flap. For each element, one design vari-
able is located on the upper surface near the nose of the airfoil and
one is located near the rear. A comparison of derivatives of the lift
and drag coefficients with respect to changes in the vertical position
of these design variables is shown in Tables 1 and 2, while Tables 3
and 4 compare the derivatives of the lift and drag coefficient with
respect to x- and y-translation of the flap. Note that this required
two solutions of the adjoint equation — one for lift and one for
drag.   As seen, the derivatives obtained with the adjoint approach
are in very good agreement with the finite-difference derivatives
for all cases. Although not shown, similar accuracy is obtained for
the derivatives with respect to horizontal changes in the control
points.

In order to further demonstrate the accuracy of the differentia-
tion, a case containing transonic flow is examined. An RAE 2822
airfoil is used at an angle of attack of , a Mach number of

, and a Reynolds number of  million. The mesh contains
14,127 nodes and the spacing at the wall is . The computed
pressure distribution is shown in Fig. 3 along with the correspond-
ing experimental data.7 For this case, a strong shock is present on
the upper surface which separates the flow immediately down-
stream. The locations of the three design variables are shown by the
filled circles in Fig. 4. The corresponding sensitivity derivatives for
the lift coefficient with respect to a vertical movement of the con-

X∂ D∂⁄

1 5–×10

1°

Figure 1.  Mesh for 2-element airfoil used in assessment of two-
dimensional design sensitivities.

Figure 2.  Location of design variables for 2-element airfoil.

Table 1.   Accuracy of two-dimensional derivatives for lift coefficient

Finite difference Adjoint % Diff.

0.30965 0.30962 -0.010

0.12285 0.12282 -0.024

 Point A -1.0952 -1.0952 0.000

Point B 0.57480 0.57480 0.000

Point C -2.1368 -2.1366 -0.009

Point D 0.76215 0.76215 0.000
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trol points are listed in Table 5 along with those for Mach number
and angle of attack. The agreement with finite differences is very
good, although the derivative for the design variable located in the
separated region of the flow just downstream of the shock appears
to be slightly inconsistent. However, numerical experiments using
different step sizes have shown that finite differences for this con-
trol point are somewhat sensitive to the perturbation level. For ex-
ample, step sizes of  and  result in finite-differ-
ence derivatives of  and  respectively.

Three-Dimensional Accuracy

To verify the accuracy of the derivatives in three dimensions, a
similar experiment is conducted. For this case, an ONERA M6
wing24 has been parameterized using 46 design variables describing
the planform, twist, shear, thickness, and camber. The design vari-
ables are depicted in Fig. 5 where twist and wing shear have been
parameterized at five spanwise locations. The thickness and camber
have also been parameterized using the six locations shown in the
figure. The design variables describing the planform are not shown
in the figure nor are thickness and camber design variables along
the leading and trailing edges. The mesh used for these tests con-
tains 16,391 nodes and 90,892 tetrahedra and is shown in Fig. 6.
The flow conditions are an angle of attack of , a Reynolds num-
ber of million based on the mean chord, and a Mach number of

. In this test, the cost function is a combination of the lift and
drag coefficients so that only one adjoint solution is required. The
derivatives of the cost with respect to the angle of attack and the
Mach number as well as the derivatives with respect to four of the
shape parameterization variables are shown in Table 6. As can be
seen, the consistency between the derivatives obtained with the ad-
joint formulation and finite differences is excellent. Additional de-
rivatives for the design variables depicted in Fig. 5 have also been
verified with comparable accuracy.

Table 2.   Accuracy of two-dimensional derivatives for drag coefficient

Finite difference Adjoint % Diff.

-0.05029 -0.05029 0.000

0.00843 0.00843 0.000

Point A 0.21925 0.21925 0.000

Point B -0.03489 -0.03489 0.000

Point C 0.17007 0.17007 0.000

Point D 0.06447 0.06448 0.016

Table 3.   Accuracy of two-dimensional derivatives of lift coefficient
for flap translation

Finite difference Adjoint % Diff.

x-translation 1.4226 1.4232 0.042

y-translation -6.8991 -6.8990 -0.001

Table 4.   Accuracy of two-dimensional derivatives of drag
coefficient for flap translation

Finite difference Adjoint % Diff.

x-translation 0.02710 0.02716 0.221

y-translation -0.24164 -0.24163 -0.004

Figure 3.  Pressure distribution for transonic RAE 2822 airfoil.

Figure 4.  Location of design variables for RAE 2822 airfoil.
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Table 5.  Sensitivity derivatives for lift coefficient for RAE 2822 airfoil

Finite difference Adjoint % Diff.

-3.0546 -3.0546 0.000

5.7614 5.7615 0.002

Point A 7.9826 7.9814 -0.015

Point B 1.9247 1.9219 -0.145

Point C 1.3283 1.3283 0.000

Figure 5.  Location of design variables for ONERA M6 wing.
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Linearization Approximations
Due to the complexity in achieving accurate linearizations for

use in Eqs. 3 and 4, one may consider the use of simplifying
assumptions. Clearly, a great deal of effort can be avoided if certain
terms may be neglected or replaced with simpler approximations
without seriously compromising the accuracy of the results. The
previous sections have established the accuracy of the derivatives
obtained from the adjoint formulation using a consistent lineariza-
tion of the flow solvers. This section will examine the accuracy of
the derivatives obtained using several natural approximations.
These numerical experiments are conducted in two dimensions
using the test case and flow conditions used for Table 1. A discus-
sion of each of the approximations is given below and some repre-
sentative derivatives for vertical changes in the design variables are
shown in Table 7.

First-Order Adjoint Solution

For second-order accurate schemes, the complete linearization of
the inviscid contribution to the residual requires information from
mesh points beyond the immediately adjacent nodes. This require-
ment arises from having to form gradients of the dependent vari-
ables at the nodes in order to extrapolate them to the faces of each
control volume. This large stencil makes an exact linearization
quite tedious. However, if the fluxes are formed using only nearest-
neighbor information, the amount of coding required above the
baseline flow solver is minimal. This corresponds to using a first-
order accurate scheme for the convective terms, and may also result
in a linear system that is easier to solve, as the bandwidth of the co-
efficient matrix is reduced significantly.

In Table 7, derivatives obtained using a first-order linearization
of the convective terms are compared with those obtained from the
linearization of the higher order residual. For these results, the first-
order approximation is made in evaluating both Eqns. 3 and 4.
Using this approximation, the derivative of the lift with respect to a
vertical shift of the design variable towards the rear of the flap is
within 8% of the correct value. However, the derivatives obtained
by ignoring the higher order terms are generally highly inaccurate
and several are of incorrect sign. The derivatives of incorrect sign
would most certainly have an adverse effect on an optimization
process, especially near a minimum.

"Frozen" Turbulence Model

 An accurate linearization of the turbulence model can be diffi-
cult to obtain. As seen from the equations given in Appendix A,
there are many terms and additional functions that must be properly
differentiated. These terms exhibit complex dependency on both
the flow variables as well as the distance to the wall. By assuming
that the turbulence model is "frozen", a significant reduction in the
required level of effort may be obtained. This approach has been
previously used in Refs. 15 and 26 for structured grid applications
to airfoils and wings. In these references, successful optimizations
have been performed although the accuracy of the derivatives has
not been explicitly demonstrated.

Results obtained by making the assumption of a constant eddy
viscosity are listed in Table 7. While the computed sensitivities
show a large amount of error when compared to finite differences,
they all exhibit the correct sign. However, for derivatives
associated with horizontal changes in these same design variables,
several are of incorrect sign. For example, the finite-difference
derivative obtained by perturbing point A in the horizontal
direction is -0.18060 whereas the current approximations to the
linearizations yield 0.30328. For this same design variable, the
complete linearization yields -0.18052 which is less than 0.05
percent in error.

A similar technique that can be used to simplify the implementa-
tion is to neglect the contributions from the turbulence model in
Eq. 4. This is primarily motivated by the observation that the
costate variable associated with the turbulence model is very small

Figure 6.  Grid used for assessment of three-dimensional design
sensitivities.

Table 6.  Three-dimensional compressible derivatives

Finite difference Adjoint % Diff.

Mach Number 0.00960 0.00959 -0.104

-0.03243 -0.03243 0.000

Twist #3 0.00965 0.00965 0.000

Shear #3 -0.04275 -0.04277 0.047

Thickness #3 -0.04011 -0.04012 0.025

Camber #4 -1.3174 -1.3174 0.000

α

Table 7.  Sensitivity derivatives for lift coefficient using various
approximations (see Fig. 1)

Finite
difference Adjoint % Diff.

Exact Linearization
Point A
Point B
Point C
Point D
x-translation (flap)
y-translation (flap)

-1.0952
0.57480
-2.1368
0.76215
1.4226
-6.8991

-1.0952
0.57480
-2.1366
0.76215
1.4232
-6.8990

0.000
0.000
-0.009
0.000
0.042
-0.001

First-Order Adjoint
Point A
Point B
Point C
Point D
x-translation (flap)
y-translation (flap)

-1.0952
0.57480
-2.1368
0.76215
1.4226
-6.8991

0.34633
0.47104
-0.10590
0.70373
-0.68201
0.14801

-132
-18.1
-95.0
-7.67
-148
-102

Constant

Point A
Point B
Point C
Point D
x-translation (flap)
y-translation (flap)

-1.0952
0.57480
-2.1368
0.76215
1.4226
-6.8991

-1.6844
0.37262
-2.2888
0.57459
1.1909
-7.6163

53.8
-35.2
7.11
-24.6
-16.3
10.4

µt
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and decays rapidly away from the body. Although not shown, nu-
merical experiments indicate that the resulting accuracy is poor
with many derivatives of incorrect sign.

Extent of Mesh Sensitivities

For each design variable, the evaluation of Eq. 4 requires a ma-
trix-vector product of the costate variables with the linearization of
the residual. This also includes computation of the mesh sensitivi-
ties for each design variable. For large numbers of design variables
and mesh points, this can potentially represent a significant expense
due to the complicated linearization of the residual.   Because nodes
further away from the body are subjected to more moderate
changes than those in the immediate vicinity of the surface, it may
be possible to neglect terms in Eq. 4 that are sufficiently far from
the body. This could help to reduce the cost of evaluating Eq. 4 by
avoiding the need to include terms from every mesh point in the
field.

To investigate the validity of this assumption, a region around
the surface of the airfoil is defined by first  "tagging" the nodes on
the surface and then identifying nodes that lie within a set number
of grid layers adjacent to the surface. Outside of this region, the
mesh sensitivities are set to zero to emulate the effect of neglecting
all the contributions outside of the tagged region. The sensitivity
derivatives for the lift coefficient with respect to vertical and hori-
zontal translations of the flap are computed for a varying number of
grid layers and the results are shown in Fig. 7. Here,  is the
ratio of the approximate derivative to the derivative obtained by in-
cluding the mesh sensitivities at every grid point in the domain. In
this figure, the curve labeled  is the ratio of the number of
nodes where mesh sensitivities are employed to the total number of
nodes in the mesh. It should be noted that examining a single deriv-
ative may not be representative of the behavior of the rest of the de-
rivatives and an accurate computation of this derivative does not
guarantee accuracy for the remaining derivatives. However, inaccu-
racy of this derivative demonstrates that neglecting the full effects
of the mesh sensitivities may have an adverse effect on other deriv-
atives as well.

As seen in the figure, the influence of the mesh sensitivities grad-
ually decays away from the surface. Accurate results are obtained
when the number of mesh layers is greater than approximately 15.
At this point, about half the total number of points in the mesh is in-
cluded in the layers so that a factor of 2 savings could be realized
when evaluating Eq. 4. When many design variables are present,
neglecting some of the mesh sensitivities could lead to a substantial
savings in computer time. However, for the present study, the com-
puter time required for evaluating Eq. 4 does not dominate the over-
all optimization process so this strategy is not used.

Design Examples

Inviscid Multielement Airfoil

The objective of the first example computation is to position the
elements on a multielement airfoil to obtain a desired pressure dis-
tribution. For this case, the target pressure distribution is obtained
from analysis of a baseline configuration.28 The individual ele-
ments are then perturbed by translating in the x- and y-directions as
well as by rotating by several degrees. The mesh used for this test
contains 3,820 nodes with 193 nodes on the surface of the main ele-
ment and 129 on each flap. The initial and target configurations are
shown in Fig. 8.

The initial pressure distributions over the elements are shown in
Fig. 9 along with the target pressure distribution and the pressures
obtained after 15 design cycles. A near-field view of the corre-
sponding geometries are shown in Fig. 10. As seen in the figures,
the target pressure distributions are obtained and each of the ele-
ments returns to its desired position. This experiment has been suc-
cessfully performed using both the compressible and incompress-
ible solvers, although only results from the incompressible case are
shown.

Figure 7.  Extent of mesh sensitivity terms required for translation
sensitivity accuracy.

Cltrans

n ntot⁄

Figure 8.  Four-element airfoil in original and perturbed positions.

Figure 9.  Pressure distributions for 4-element airfoil.
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Turbulent Airfoil

The objective for the next test case is to reduce the drag on the
RAE 2822 airfoil. The initial flow conditions are a free-stream
Mach number of , an angle of attack of , and a Reynolds
number of 6.2 million based on the chord of the airfoil. These con-
ditions correspond to those presented earlier for verifying the shape
sensitivity derivatives. For this case, there are 47 active design vari-
ables. The lift coefficient is held fixed at  and the objective
is to reduce the drag coefficient. After 10 design cycles, the drag
has been reduced from  to  whereas after 20 design
cycles, a modest improvement is further obtained, reducing the
drag coefficient to . The initial and final pressure distribu-
tions are shown in Fig. 11 and Mach number contours are shown in
Fig. 12. As seen in the figures, the shock wave on the surface of the
airfoil is eliminated although the curvature in the Mach contours for
the final geometry indicate that a shock may form at off-design
conditions.

Multielement Airfoil

 For this case, the objective is to increase the downforce for a
multielement airfoil used for open-wheel racing cars. This airfoil
has been initially designed using the inviscid design techniques de-
scribed in Ref. 12. The mesh has 15,446 nodes with 195 placed on
the main element and 129 on the flap. The spacing at the wall is

 giving a  based on flat plate estimates. The Rey-
nolds number is 2.4 million based on the chord of the airfoil and the
angle of attack is held fixed at  which corresponds to the oper-
ating point suggested in Ref. 12. After 25 cycles using 65 design
variables, the downforce coefficient has increased from -2.3068 to
-2.4379. The initial and final pressure distributions computed using
the incompressible solver are shown in Fig. 13 along with the corre-
sponding shapes. It is seen from the figure that the redesigned main
element carries more downforce compared to the initial design,
while the loading on the flap has decreased. Velocity contours and
vectors, shown in Fig. 14, indicate that the region of separated flow
on the rear of the flap has been reduced through the design process.
Although not shown, comparable cases have been run using the
compressible code with similar results.

Figure 10.  Geometries for 4-element airfoil.

0.75 2.81°

0.7336

0.0263 0.0150

0.0149

1 10 5–× y+ 1≈

12°

Figure 11.  Initial and final pressure distributions for drag reduction
on RAE 2822 airfoil.

Figure 12.  Initial and final Mach contours for transonic airfoil
optimization exercise.

Initial Flow Field

Final Flow Field
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Inviscid Drag Reduction for ONERA M6 Wing

An example optimization is conducted for inviscid flow over the
ONERA M6 wing.24 The free-stream Mach number for this case is
0.84 and the angle of attack is . The mesh used for this com-
putation consists of 53,961 nodes and 287,962 tetrahedrons. The
contours for the initial and final density distribution on the surface
of the wing are shown in Fig. 15 with the corresponding pressure
distributions shown in Fig. 16. The objective of the optimization is
to reduce the drag while maintaining a specified lift. For this de-
sign, the angle of attack is allowed to change in addition to 10
shape design variables (4 twist, 4 camber, and 2 thickness). The
twist variables are located at the 4 outboard stations in Fig. 5 and
allowed to increase or decrease by . The thickness and camber
variables at positions 3 and 4 are also design variables as is the
camber at positions 5 and 6. Each of these is allowed to change by 2
percent of the span. After 10 design cycles, the drag has been re-
duced from 0.0182 to 0.0167 while the lift has been maintained.
The pressure distribution shown in Fig. 16 indicates that the shock
has weakened at all of the spanwise stations.

Figure 13.  Initial and final pressure distributions for multielement
airfoil.

Figure 14.  Velocity contours and vectors in flap region for
multielement airfoil.

Initial Flow Field

Final Flow Field

Figure 15.  Initial and final density contours for inviscid wing
design.

3.06°

1°

Initial Flow Field

Final Flow Field
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Turbulent ONERA M6 Wing Redesign

A transonic wing design has been conducted using an ONERA
M6 mesh consisting of 62,360 nodes and 355,814 tetrahedra. The
mesh used for this study is extremely coarse and is not adequate for
accurate computations; it serves merely as an initial demonstration
for evaluating the methodology. The flow is assumed to be fully
turbulent at a Mach number of 0.84, an angle of attack of ,
and a Reynolds number of 5 million. For this flow field, a weak
swept shock extends from the root leading edge and a normal shock
is present further aft on the wing surface (see Fig. 17). The weak-
ness of the shock is in large part due to the coarseness of the mesh;
further refinement would yield a shock structure similar to that
shown in the initial flow field in Fig. 15. The objective of the de-
sign is to reduce the drag while holding the lift constant.   For this
case, thickness and camber have been allowed to vary at two chord-
wise stations located at the mid-span of the wing. These design
variables have been allowed to change up to 1 percent of the span
of the wing. The angle of attack is also allowed to vary in order to
maintain the original lift coefficient.

 After 10 design cycles, the drag coefficient is reduced from
0.0200 to 0.0184. Density contours for the initial and final design
are shown in Fig. 17. It is apparent from the increased spacing be-
tween the contours that the strength of the shock at the midchord lo-
cation is somewhat weaker for the final design which accounts for
the lower drag.

Summary and Concluding Remarks
Compressible and incompressible versions of an unstructured

mesh Navier-Stokes flow solver have been differentiated and the
resulting derivatives have been verified by comparisons with finite
differences in both two and three dimensions. In this implementa-
tion, the turbulence model is fully coupled with the flow equations
in order to achieve this consistency. The accuracy of a number of
simplifying approximations to the linearizations of the residual
have also been examined and none of the approximations yielded
derivatives of acceptable accuracy and were often of incorrect sign.

 Efficient surface parameterizations have been utilized in both
two and three dimensions, and the resulting codes have been inte-
grated with an optimization package. Example optimizations have
been demonstrated in both two and three dimensions.

In order for large scale optimization to become routine, the bene-
fits of parallel architectures should be exploited. Although the
three-dimensional flow solver has been parallelized using compiler
directives, the parallel efficiency is under 50 percent. Clearly, par-
allel versions of the codes will have an immediate impact on the
ability to design realistic configurations on fine meshes, and this ef-
fort is currently underway (see e.g. Ref. 16).

Another area that requires future work is the incorporation of
multipoint optimization capability for designing geometries that
perform well at off-design conditions. Further development of
mesh movement strategies which enable large changes in the geom-
etry are also needed in three dimensions.
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Figure 16.  Initial and final pressure distributions for inviscid wing
design.
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Figure 17.  Initial and final density contours for wing.
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Appendix A: Governing Equations

Flow Equations
The governing equations are the three-dimensional  Reynolds-

averaged Navier-Stokes equations. These equations are given as:

(10)

where  is the outward-pointing normal of the control volume
boundary and the vector of conserved variables, , and inviscid
and viscous flux vectors  and , are given by

(11)

(12)

(13)

where

(14a)

(14b)

(14c)

The shear stress and heat conduction terms are given by

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

The equations are closed with the equation of state for a perfect gas

(24)

and the laminar viscosity is determined through Sutherland’s Law:

(25)

where  is Sutherland’s constant divided by a
free-stream reference temperature, which is assumed to be .

Turbulence Model
For the current study, the turbulence model of Spalart and

Allmaras27 is used. This is a one-equation turbulence model given
as

(26)
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and
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In these equations,  is the magnitude of the vorticity, and  is the
distance to the nearest wall. The function  is given as

(31)

where

(32)

and

(33)

The last term in Eq. 26 is used when specifying the transition loca-
tion. Because the computations in the present work are all assumed
to be fully turbulent, this term is not used. Therefore, definitions of

 and , which are associated with these terms, are not given.
After Eq. 26 is solved for , the eddy viscosity is computed as

(34)

Appendix B: Linearization of Incompressible Solvers
For both two and three dimensions, the incompressible versions

of the flow solvers have also been differentiated. The sensitivity de-
rivatives are verified by comparing with derivatives obtained using
finite differences.

For the two-dimensional incompressible flow solver, the test
case is the 2-element airfoil shown in Fig. 1. The angle of attack is

 and the Reynolds number is 5 million. The design variables are
identical to those used for verifying the sensitivity derivatives for
the compressible case. Comparisons between computed values and
derivatives obtained using finite differences are shown in Tables
B1-B4. Derivatives of the lift coefficient with respect to vertical
changes in the shape design variables are shown in Table B1 with
the corresponding derivatives for drag shown in Table B2. The de-
rivatives obtained for translation of the flap are shown in Tables B3
and B4. As seen in the tables, the derivatives obtained using the ad-
joint formulation exhibit excellent agreement with the finite differ-
ences.

The mesh used for verifying the three-dimensional incompress-
ible linearizations is shown in Fig. 6. The flow conditions are an
angle of attack of  and a Reynolds number of 9 million. The
shape design variables are the same as those used in verifying the
sensitivity derivatives for the compressible solver. Results are pre-
sented in Table B5, and the linearizations are shown to be highly
accurate.
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