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Comparison of Node-Centered and Cell-Centered

Unstructured Finite-Volume Discretizations: Inviscid

Fluxes

Boris Diskin∗ James L. Thomas†

Nominally second-order cell-centered and node-centered approaches are compared

for unstructured finite-volume discretization of inviscid fluxes in two dimensions. Three

classes of grids are considered: isotropic grids in a rectangular geometry, anisotropic

grids typical of adapted grids, and anisotropic grids over a curved surface typical of

advancing-layer grids. The classes contain regular and irregular grids, including mixed-

element grids and grids with random perturbations of nodes. Complexity, accuracy, and

convergence of defect-correction iterations are studied. Deficiencies of specific schemes,

such as instability, accuracy degradation, and/or poor convergence of defect-correction

iterations, have been observed in computations and confirmed in analysis. All schemes

may produce large relative gradient-reconstruction errors on grids with perturbed nodes.

On advancing-layer grids, a local approximate-mapping technique based on the dis-

tance function restores gradient-reconstruction accuracy and fast convergence of defect-

correction iterations. Among the considered scheme, the best cell-centered and node-

centered schemes which are low-complexity, stable, robust, and uniformly second-order

accurate are recommended.
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A aspect ratio
a, b reconstructed gradient components
a velocity vector
Ed discretization error
Erel relative gradient error
f forcing function
h local mesh size
hr, hθ radial and circumferential mesh spacing, respectively
hx, hy Cartesian mesh sizes in the x- and y-directions, respectively
ĥy minimal mesh spacing on stretched grids
L characteristic scale of the domain
Lh

d linearized driver scheme
n̂, t̂ unit vectors normal and tangential to the boundary, respectively
n̄ outward unit normal vector
n outward directed area vector
N total number of mesh points
Nx, Ny number of grid points in the x- and y-directions, respectively
r coordinate vector
r
∗ point on the boundary closest to the field point r

r, θ polar coordinates
R radius of curvature
Rh (·) discrete residual
s̄ small horizontal node perturbation
s distance to the designated boundary
sf distance from the face center to the closest boundary
uh approximate discrete solution
U exact solution
Uh discrete solution
U r linear solution reconstruction
UL, UR the “left” and “right” solution reconstructions
vh correction to approximate discrete solution
V measure of a control volume
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x, y Cartesian coordinates
β stretching factor
Γ curvature-induced grid deformation parameter
µk weights in least-squares minimization
ρ random number ρ ∈ [−1, 1]

ξ, η local coordinates
Ω, ∂Ω control volume and control volume boundary, respectively
numerals 0 − 12 grid nodes
capital letters A − L primal cell centers
∇ gradient operator
∇r reconstructed gradient
‖ · ‖ norm of interest, e.g., L1 or L∞

| · | vector length

Subscripts
numerals denote stencil points
f denotes face center

I. Introduction

Both node-centered and cell-centered finite-volume discretization schemes are widely used for
complex, three-dimensional, turbulent-flow simulations in aerospace applications. The relative
advantages of the two approaches have been extensively studied1–3 in the search for methods that
are accurate, efficient, and robust over the broadest possible range of grid and solution parameters,
but a consensus has not emerged. One of the difficulties in assessing the two approaches is that
comparative calculations were not completed in a controlled environment, i.e., computations were
made with different codes and different degrees of freedom, and the exact solutions were not
known.

In this paper, a subset of the discretization elements needed in turbulent-flow simulations,
namely that of the inviscid discretization, is studied in a controlled environment. This paper is
the second in a series of papers comparing cell-centered and node-centered finite-volume dis-
cretizations. It follows a previous study3 which considered viscous discretizations. The ultimate
objective of the effort is to identify methods suitable for a uniformly second-order accurate and
efficient unstructured-grid solver for the Reynolds-Averaged Navier-Stokes equations.
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In this work, a linear convection equation,

(a · ∇) U = f, (1)

serves as a model for inviscid fluxes. Here, a is a constant velocity vector and f is a forcing
function. The method of manufactured solution is used, so the exact solutions are known and
chosen to be smooth on all grids considered, i.e., no accuracy degradation occurs because of a lack
of solution smoothness. Computational studies are conducted on two-dimensional grids ranging
from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and
quadrilaterals. Highly irregular grids are deliberately constructed through random perturbations of
structured grids to bring out the worst possible behavior of the solution. Three classes of grids are
considered. Class (A) involves isotropic grids in a rectangular geometry. Class (B) involves highly
anisotropic grids, typical of those encountered in grid adaptation. Class (C) involves advancing-
layer grids varying strongly anisotropically over a curved body, typical of those encountered in
high-Reynolds number turbulent flow simulations.

Eight nominally second-order schemes are considered — two representative node-centered
schemes with weighted and unweighted least-squares methods for gradient reconstruction and six
cell-centered schemes. The cell-centered schemes include node-averaging schemes with and with-
out clipping and four least-squares gradient reconstruction schemes that are named according to
the stencil used for the least-squares fit: a nearest-neighbor scheme using only face-neighboring
cells, a smart-augmentation scheme moderately augmenting the nearest-neighbor stencil, and two
full augmentation schemes with and without weighting using larger stencils (including all node-
sharing cells). For the grids of class (C), the approximate mapping technique3 is used to improve
gradient reconstruction accuracy and convergence of defect-correction iterations. The technique is
based on the distance function (the distance from a field point to the nearest surface) commonly
available in practical codes and can be used with any scheme. Individual schemes are identified by
a combination of acronyms shown in Table 1.

The properties to be compared in this study are computational complexity (operation count),
discretization accuracy, and convergence rates of defect-correction iterations with a first-order
driver. The material in this paper is presented in the following order. Section II introduces the com-
putational grids used in the current study. A brief explanation of finite-volume discretizations in
Section III is followed by the estimates of discretization complexity for two- and three-dimensional
grids in Section IV. Section V outlines the analysis methods used in this study. Section VI con-
tains results on the accuracy of finite-volume solutions and gradients and on convergence rates of
defect-correction iterations observed on grids of class (A). Section VII compares the finite-volume
discretizations on grids of class (B). Section VIII provides comparisons on grids of class (C). Con-
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clusions and recommendations are offered in Section IX. Detrimental effects of clipping on the
accuracy of the cell-centered node-averaging scheme are shown in Appendix A. Appendix B ana-
lyzes the instability of finite-volume schemes with weighted least-squares gradient reconstruction
on high-aspect-ratio grids with small perturbations.

II. Grids

This paper studies finite-volume discretization (FVD) schemes for inviscid fluxes on regular
and irregular grids classified in [3]. Four basic grid types are considered: (I) regular quadrilateral

(i.e., mapped Cartesian) grids; (II) regular triangular grids derived from the regular quadrilateral
grids by the same diagonal splitting of each quadrilateral; (III) random triangular grids, in which
regular quadrilaterals are split by randomly chosen diagonals, each diagonal orientation occurring
with a probability of half; (IV ) random mixed-element grids, in which regular quadrilaterals are
randomly split or not split by diagonals; the splitting probability is half; in case of splitting, each
diagonal orientation is chosen with probability of half. Nodes of any basic-type grid can be per-
turbed from their initial positions by random shifts, thus leading to four additional perturbed grid
types which are designated by the subscript p as (Ip)-(IVp). The random node perturbation in each
dimension is typically defined as 1

4
ρh, where ρ ∈ [−1, 1] is a random number and h is the local

mesh size along the given dimension. The representative grids are shown in Figure 1.
Our main interest is the accuracy and efficiency of FVD schemes on general irregular grids with

a minimum set of constraints. In particular, grid smoothness is not required, neither on individual
grids nor in the limit of grid refinement. The only major requirement for a sequence of refined
grids is to satisfy the consistent refinement property.4 The effective mesh size is computed on each
grid as the L1 norm of the square root of the control volumes.

The discrete solutions are available at locations called data points. For consistency with the
3-D terminology, the 2-D control volume boundaries are called faces, and the term “edge” refers
to a line, possibly virtual, connecting the neighboring data points. Each face is characterized by
the directed-area vector, which is directed outwardly normal to the face with the magnitude equal
to the face area.

III. Finite-volume discretization schemes

The FVD schemes are derived from the integral form of a conservation law
∮

∂Ω

U (a · n̄) ds =

∫

Ω

fdΩ, (2)
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Acronym Description
Approximate mapping Can be applied on grids of class (C) with any scheme. In this paper,
(AM) AM is used in NC-ULSQ-AM, CC-NN-AM, CC-FA-ULSQ-AM,

and CC-SA-AM schemes.
Cell centered Discretization approach that uses primal grid cells as control volumes.
(CC)
Clipping Can be used in conjunction with CC-NA schemes.
(CLIP)
Exact gradient Applied for CC discretizations and uses exact gradient in
(EG) reconstruction.
Full augmentation Applied only for CC discretizations. FA indicates that the stencil for
(FA) least-squares gradient reconstruction at a cell is large and involves all

cells sharing a node with the considered cell.
Node averaging Applied only for CC discretizations. Solutions are first reconstructed
(NA) at nodes using an averaging procedure.
Node centered Discretization approach that uses median-dual cells as control
(NC) volumes.
Nearest neighbor Applied only for CC discretizations. NN indicates that the stencil for
(NN) least-squares gradient reconstruction at a cell is small and involves

only neighboring cells sharing a face with the considered cell.
Smart augmentation Applied only for CC discretizations. SA indicates that the stencil for
(SA) least-squares gradient reconstruction is a small subset of the FA

stencil and moderately larger than the NN stencil.
Unweighted Indicates that gradient reconstruction employs a least-squares
least-squares minimization problem with a cost functional that uses unweighted
(ULSQ) (equal) contributions from all stencil points. In this paper,

the following schemes use ULSQ method: NC-ULSQ, CC-FA-ULSQ,
CC-SA, and CC-NN.

Weighted Indicates that gradient reconstruction employs a least-squares
least-squares minimization problem with a cost functional that uses weighted
(WLSQ) contributions from stencil points. The weights are inversely

proportional to the squared distances to the stencil center.
In this paper, the NC-WLSQ and CC-FA-WLSQ schemes use
WLSQ method.

Table 1. Acronyms used for identification of discretization schemes.
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(a) Type (I): regular
quadrilateral grid.

(b) Type (II): regular
triangular grid.

(c) Type (III): ran-
dom triangular grid.

(d) Type (IV ): ran-
dom mixed grid.

(e) Type (Ip): per-
turbed quadrilateral
grid.

(f) Type (IIp): per-
turbed triangular grid.

(g) Type (IIIp): per-
turbed random trian-
gular grid.

(h) Type (IVp): per-
turbed random mixed
grid.

Figure 1. Typical regular and irregular grids.

where Ω is a control volume with boundary ∂Ω, n̄ is the outward unit normal vector, and ds is
the area differential. The general FVD approach requires partitioning the domain into a set of
non-overlapping control volumes and numerically implementing equation (2) over each control
volume. The control volumes used for node-centered formulations are referred to as dual cells to
distinguish them from primal cells used as control volumes in cell-centered formulations.

Cell-centered (CC) discretizations assume solutions are defined at the centers of the primal
cells. The cell center coordinates are typically defined as the averages of the coordinates of the
cell’s vertexes. Note that for quadrilateral cells, cell centers are not necessarily centroids. Node-

centered (NC) discretizations assume solutions are defined at the primal mesh nodes. For node-
centered schemes, control volumes are constructed around the mesh nodes by the median-dual par-
tition: the centers of primal cells are connected with the midpoints of the surrounding faces. These
non-overlapping control volumes cover the entire computational domain and compose a mesh that
is dual to the primal mesh. Both cell-centered and node-centered control-volume partitions are
illustrated in Figure 2.

The flux, Uh (a · n̄), at a control-volume face is computed according to the flux-difference-
splitting scheme,5

Uh (a · n̄) =
1

2
(UL + UR) (a · n̄) −

1

2
|(a · n̄)| (UR − UL) , (3)
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E
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11

12

7

H

I

K

L

F

J

Figure 2. Control-volume partitioning for finite-volume discretizations. Numbers 0 − 12 and letters A − L

denote grid nodes and primal cell centers, respectively. The control volume (dual cell) for a node-centered dis-
cretization around the grid node 0 is shaded. The control volume (primal cell) for a cell-centered discretization
around the cell center A is hashed.

where first and second terms represent the flux average and the dissipation, respectively; UL and
UR are the “left” and “right” solutions linearly reconstructed at the face by using solutions defined
at the control volume centers and solution gradients reconstructed at each control volume. Various
FVD schemes differ in the way they reconstruct gradients at the control volumes.

For cell-centered schemes, the face-based flux integration over a control-volume face is ap-
proximated as the flux computed at the face center multiplied by the face area. The integration
scheme is second-order accurate on grids of all types.

For node-centered schemes, the edge-based flux integration scheme approximates the inte-
grated flux through the two faces linked at an edge midpoint by U h (a · n) computed at the edge
midpoint where n is the combined-directed-area vector. The integration scheme is computation-
ally efficient and second-order accurate on regular quadrilateral and simplicial grids — types
(I), (II), (III), (IIp), and (IIIp). The integration accuracy degenerates to first order on mixed-
element and perturbed quadrilateral grids of types (IV ), (IVp), and (Ip).4, 6, 7 Note that node-
centered face-based integration schemes that avoid accuracy degradation can be constructed but at
a higher cost7 (see also estimates in Section IV).

The forcing term integration over the cell is approximated as the value at the cell center multi-
plied by the cell volume

V =

∫

Ω

dΩ. (4)

This approximation is locally second-order accurate when the cell center coincides with the cen-
troid. On general irregular grids, the cell center is not necessarily the centroid, and the approxi-
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mation becomes locally first-order accurate. However, with grid irregularities introduced locally
and randomly (thus, implying a zero-mean distribution of the deviations between cell centers and
centroids), the integral of the forcing term over any sub-domain of size O(1) is approximated with
second order.

The specific schemes presented in the following sections are either representative of the schemes
used in the state of the art industrial codes or new developments promising significant improve-
ments in solution accuracy, efficiency, and/or robustness.

A. Cell-centered schemes

1. Node-averaging schemes

In cell-centered node-averaging (CC-NA) schemes, solution values are first reconstructed at the
nodes from the surrounding cell centers. With respect to Figure 2, the solution at node 0 is re-
constructed by averaging solutions defined at the cell centers A, B, and C. The commonly used
solution reconstruction8–10 is an averaging procedure that is based on a constrained optimization
to satisfy some Laplacian properties. The scheme is second-order accurate and stable when the
coefficients of the introduced pseudo-Laplacian operator are close to unity. It has been shown11

that this averaging procedure is equivalent to an unweighted least-squares linear fit.
The gradient of the solution U at the cell Ω is reconstructed by the Green-Gauss formula,

∇U =
1

V

∮

∂Ω

U n̄ds. (5)

For second-order accuracy, the solution at a face is computed by averaging the values at the face
nodes, and the integral over the face is approximated by the product of the solution and the face
directed area. For simplicial grids, an explicit formula relating the gradient to the nodal solution
values is given elsewhere.10

On highly stretched and deformed grids, some coefficients of the pseudo-Laplacian may be-
come negative or larger than 2, which has a detrimental effect on stability and robustness.12, 13

Holmes and Connell8 proposed to enforce stability by clipping the coefficients between 0 and 2.
The CC-NA scheme with clipping (CC-NA-CLIP) represents a current standard in practical com-
putational fluid dynamics codes involving cell-centered finite-volume formulations.14 As shown
further in the paper, clipping seriously degrades the accuracy of the solution.
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2. Least-squares schemes

An alternative approach relies on a least-squares method for gradient reconstruction, in which
the linear approximation obtained at a control volume coincides with the solution value at the
control volume center. In this paper, both weighted (WLSQ) and unweighted (ULSQ) least-squares
methods are considered. In the WLSQ method, the contributions to the minimized functional are
weighted with weights inversely proportional to the distance from the control-volume center. In
the unweighted method, all contributions are equally weighted.

The complexity, accuracy, and robustness of the solvers using a least-squares method for gradi-
ent reconstruction may vary depending on the choice of the stencils for the least-squares minimiza-
tion. Below, three types of stencils are considered. The nearest neighbor (NN) stencil includes only
centers of face-neighbor cells. The full augmentation (FA) stencil includes all the cells that share a
vertex with the given cell, i.e., all the cells involved in CC-NA gradient reconstruction. The “smart”
augmentation (SA) stencil employs only a small portion of the cells used in the corresponding FA
stencil. The data point of the central cell is also referred to as the stencil center.

Defect-correction iterations (DCIs) with a first-order driver are widely used for solution of FVD
schemes. It has been observed that DCIs may become slow or even diverge for the CC-NN scheme,
but the DCI rates are always fast for the CC-FA-ULSQ scheme. This observation motivated the
development of the CC-SA scheme with low complexity and fast DCI rates.

The version of the CC-SA scheme used in this paper has been chosen for simplicity of imple-
mentation. It uses a predefined small-size augmentation and applies augmentation to all gradient
stencils. Initially, the SA stencil associated with a cell is identical to the NN stencil. The initial
stencil is augmented with a few cells, one added cell per vertex. For each cell vertex, the cell added
to the SA gradient stencil is the most distant from the stencil center of all the cells surrounding the
vertex. The CC-SA stencil size approximately doubles the stencil size of the CC-NN scheme, but
is much smaller than the CC-FA stencil size. Addition of the most distant cells is guided by the
observation that the distant points carry most of the weight in the ULSQ gradient reconstruction
when the obtained linear approximation coincides with the solution value at the stencil center. For
cell-center A in Figure 2, the NN stencil includes neighbors B, C, D, and E; the SA stencil adds
neighbors H, I , and L; and the FA stencil includes additionally neighbors F, G, J , and K.

The complexity of the CC-SA scheme can be further reduced with an appropriate test per-
formed in local computational windows. In [15], a simple test based on a single-cell computational
window was applied to optimize the stencil size. This single-cell approach was efficient for many
computations, but has been recently found to not be sufficiently robust. Alternative tests with larger
computational windows have been found to be sufficiently robust, but are not pursued in this paper.
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B. Node-centered schemes

For the node-centered computations, the current standard employs a least-squares gradient recon-
struction. The typical stencil at a control volume involves all nodes linked by an edge. For example,
with reference to Figure 2, the least-squares fit for the shaded control volume centered at node 0

includes nodes 1, 2, and 4. Both WLSQ and ULSQ methods are evaluated.

C. Approximate mapping method

ξ,

r0
*

η,

x

y

r0

^t0

n0
^

Figure 3. Sketch of coordinate system used in approximate mapping method.

A general approximate mapping (AM) method has been introduced in [3]. The method con-
structs a local mapping based on a distance function that supplies the distance from a field node to
designated boundaries which is readily available in practical codes. The AM method applies the
least-squares minimization in a local coordinate system, (ξ, η), where η is the coordinate normal
to the boundary, and ξ is the coordinate parallel to the boundary (see sketch in Figure 3). At each
control volume, the unit vector normal to the boundary, n̂0, is constructed as

n̂0 = (r0 − r
∗

0)/ |r0 − r
∗

0| , (6)

where the position of the control-volume center is denoted r0 and the position of the closest point
on the boundary is denoted r

∗
0. The unit vector normal to n̂0 is denoted as t̂0. To construct the

least-squares minimization at the control-volume, the local coordinates of a stencil point ri are
defined as
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ξi = (ri − r0) · t̂0, (7)

ηi = (si − s0), (8)

where si approximates the distance function at location ri. In the current version, the distance
function is always defined at mesh nodes. For cell-centered schemes, the distance function at the
cell center is calculated by averaging the distance functions defined at cell vertexes. Thus, the
η-coordinate corresponds to the distance from the boundary, and the ξ-coordinate is the projection
onto the plane parallel to the surface at r0. The least-squares minimization yields gradients in the
(ξ, η) directions or, equivalently, through a coordinate rotation in the (x, y) Cartesian directions.

To reconstruct an interior state for the flux computation at a control-volume face location, rf ,
the coordinates associated with the mapping at r0 are introduced, as

ξ0
f = (rf − r0) · t̂0, (9)

η0
f = (sf − s0). (10)

The coordinate sf is approximated as

sf = (s0 + s1)/2, (11)

where, for node-centered schemes, s0 and s1 correspond to the distance function of the two nodes
defining the edge; for cell-centered schemes, s0 and s1 correspond to the nodes defining the face.
The interior state is linearly reconstructed using the state at r0 and gradients in the (ξ, η) directions.

IV. Complexity

In this section, the complexity of FVD schemes is evaluated per degree of freedom. On a
given grid, cell-centered schemes typically have many more degrees of freedom than node-centered
schemes.

A. Flux integration complexity

In this section, the complexity associated with flux integration in 3-D is estimated. The complexity
is measured as the number of flux-reconstruction instances required for one residual evaluation.
Flux reconstructions are the main contributers to the operation counts associated with flux integra-
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tion. Three types of primal meshes are considered: (1) fully-tetrahedral, (2) fully-prismatic, (3)
fully-hexahedral.

An underlying Cartesian grid is considered and split into the various elements. The splitting
into tetrahedra assumes each hexahedral cell defined by the grid is split into 5 tetrahedra with one
of the tetrahedra being completely interior to the hexahedral cell (i.e., its faces are not aligned with
any of the hexahedral-cell faces – see Figure 4). Other partition strategies are possible, but not
considered.

Figure 4. Splitting of a hexahedral cell into 5 tetrahedra.

Table 2 shows complexity estimates for one cell-centered and two node-centered FVD schemes.
Only interior discretizations are estimated as boundary effects are neglected. The cell-centered
formulation uses a face-based flux integration scheme with one flux reconstruction per control
face. The node-centered schemes assume a median-dual partition of the domain and use both an
edge-based and a face-based flux integration.

In a median-dual partition, the constituent dual control volumes are bounded by generally non-
planar dual faces formed by connecting 3 types of points: (1) edge midpoints, (2) element-face
centroids, and (3) element centroids. The edge-based flux integration approximates integration
over all of the constituent dual faces adjacent to an edge by a product of the flux evaluated at
the edge midpoint and a lumped directed area. The face-based flux integration multiplies fluxes
reconstructed at each of the constituent dual faces with the corresponding local directed areas. For
the present estimation, each flux-reconstruction instance requires the same operation count.

Two estimates of complexity are given. The first estimate assumes that any constituent quadri-
lateral face in the control surface is broken into two triangular faces. The second estimate (in
parentheses) assumes any constituent quadrilateral face is approximated as planar. The former
is required to ensure a precise (water-tight) definition of the control surface and can serve as a
measure of the complexity in integration of the physical flux terms. The latter can serve as an
estimate of the complexity associated with numerical dissipation terms, in which details of the
control-surface can be neglected.
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Elements Cell-centered Node-centered Node-centered
face-based flux integration edge-based flux integration face-based flux integration

Tetrahedral 4 (4) 12 120 (60)
Prismatic 8 (5) 8 72 (36)

Hexahedral 12 (6) 6 48 (24)

Table 2. Number of flux-reconstruction instances per equation for FVD schemes with precise (water-tight)
definition of the control-volume boundary; in parentheses, the number of flux-reconstruction instances with
planar approximations to the control-volume boundary.

The complexities of cell-centered and node-centered edge-based-flux-integration schemes are
reasonably close. Unfortunately, as shown in this paper and also previously,4, 6, 7 the accuracy of
node-centered edge-based-flux-integration schemes degenerates to first order on perturbed quadri-
lateral and general mixed-element grids. To maintain second-order accuracy on general grids, one
can employ the node-centered scheme with a face-based flux integration, but the integration com-
plexity of this formulation substantially exceeds the complexity of the cell-centered scheme. These
results are in agreement with the observations made by Delanaye and Liu1 leading to their selection
of a cell-centered discretization.

B. Size of inviscid stencil

Another important measure of complexity of an FVD scheme is the size of the full-linearization
stencil. The size of the 2-D and 3-D full-linearization stencil is examined for inviscid cell-centered
and node-centered FVD schemes. Cartesian meshes are split into triangular and tetrahedral el-
ements, as in the previous section, again neglecting boundary effects. Estimates of the stencil
complexity are compared to numerical calculations on an actual 3-D grid that includes boundary
effects. The grid is a fully-tetrahedral grid composed of 16,391 nodes.

For the inviscid discretization, the DCI with a first-order driver is generally used to converge
the residual. Thus, it is important to consider first-order and second-order linearizations. For the
first-order cell-centered FVD scheme, the size of the linearization stencil is simply the number of
faces plus one (to account for the central node). For the first-order node-centered discretization,
the size of the linearization stencil is the number of edges connecting to a node plus one. Table 3
shows 2-D and 3-D linearization stencil sizes. The cell-centered discretization has nearly a factor
of 3 smaller stencil in 3-D.

For second-order accuracy, all schemes reconstruct gradients in the control volumes. The node-
centered discretizations use a least-squares approach and require solutions at the neighbor and
neighbor-of-neighbor nodes and a correspondingly large linearization stencil. The cell-centered
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Elements Node-centered Cell-centered
Estimate 2-D 7 4
Estimate 3-D 13 5

Numerical 3-D 14 5

Table 3. Average size of the inviscid, first-order FVD stencil on triangular/tetrahedral grids in 2-D/3-D.

CC-NA discretizations have even larger linearization stencils which include all cells contributing
to solution reconstruction at any node of a face-neighboring cell. Stencils of CC-FA discretizations
are the same as CC-NA stencils. The CC-NN discretization requires a much smaller stencil which
includes only face-neighbor and neighbor-of-neighbor cells. The CC-SA least-squares stencil in-
cludes additionally one cell per vertex and approximately doubles the size of the CC-NN stencil.
Table 4 shows stencil sizes for 2-D and 3-D. The splittings used in the estimates are shown in Fig-
ures 4 and 5 for 3-D and 2-D, respectively. In 3-D, the CC-SA discretization stencil is more than
two times smaller than the node-centered discretization stencil; the latter, in turn, is significantly
smaller than the CC-NA and CC-FA discretization stencils. In both 2-D and 3-D, the CC-NN
discretization stencil is the smallest.

Elements NC CC-NA CC-NN CC-SA
Estimate 2-D 23 25 9 18
Estimate 3-D 75 139 15 28

Numerical 3-D 63 118 15 27

Table 4. Average size of the inviscid, second-order stencil for 2-D/3-D discretizations with triangular/tetrahedral
elements.

(a) NC scheme. (b) CC-FA and CC-
NA schemes.

(c) CC-NN scheme. (d) CC-SA scheme.

Figure 5. Inviscid 2-D stencil for the shaded control volume.

For illustration, the 2-D stencils for a single shaded control volume are shown in Figure 5 for
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each approach. The stencil sizes are 25, 25, 9, and 18 for the NC, CC-NA, CC-NN, and CC-
SA schemes, respectively. Note that the stencil size for the NC control volume with four edges
adjacent to the shaded one shown in Figure 5 is 21; thus, the average of 23 is shown in Table 4.

For 3-D NC schemes, the nodes with 6 and 18 edges have stencil sizes of 57 and 93, respec-
tively. Thus, the average of 75 is shown in the table. For the CC-NA and CC-FA schemes, the cells
at the corners of the original Cartesian cell have a stencil size of 149 and those fully interior to the
original Cartesian cell have a stencil size of 99. Since there is one interior tetrahedron for each of
the four corner tetrahedrons, the average of 139 is shown in the table. The CC-SA stencil on an
interior tetrahedron adds 12 cells to 15 cells of the CC-NN stencil resulting in the 27-cell CC-SA
stencil. For a corner tetrahedron, the CC-SA stencil includes 13 additional cells and has 28 cells
total. Thus, the rounded average of 28 is shown for the CC-SA scheme in the table. The stencil
complexity observed on realistic computational grids is shown in the last row of Table 4 and is
reasonably close to the corresponding estimates.

V. Analysis

The accuracy of FVD schemes is analyzed for known exact or manufactured solutions. The
forcing function and boundary values are found by substituting this solution into the governing
equations, including boundary conditions. The discrete forcing function is defined at the data
points. Boundary conditions are over-specified, i.e., discrete solutions at boundary control volumes
and at their neighbors are specified from the manufactured solution.

A. Discretization error

The main accuracy measure is the discretization error, Ed, which is defined as the difference
between the exact discrete solution, Uh, of the discretized equations (2) and the exact continuous
solution, U , to the corresponding differential equations.

Ed = U − Uh, (12)

where U is sampled at data points.
Discretization errors measured on specific grids may depend on particular irregularity patterns.

To account for this dependence, all numerical tests are performed stochastically, i.e., several grids
(ten) with different irregularity patterns are independently generated on each scale (same number
of nodes). In all tests, where the variation of a discretization error norm for the same scale is
significant, the mean error as well as the maximum and the minimum errors are shown.

16 of 43

Page 16 of 43

Submitted to AIAA Journal. Confidential - Do not distribute.

AIAA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

B. Accuracy of gradient reconstruction

The accuracy of the gradient approximation at a control volume is also important. For second-
order convergence of discretization errors, the gradient accuracy is usually required to be at least
first order. For each control volume, the accuracy of the gradient is evaluated by comparing the
reconstructed gradient, ∇rU , with the exact gradient, ∇U , computed at the control-volume center.
The gradient reconstruction uses a discrete representation (usually injection) of the exact solution
U at the data points on a given grid. The accuracy of the gradient reconstruction is measured as
the relative gradient error:

Erel =
‖εg‖

‖g‖
, (13)

where functions εg and g are the amplitudes of the gradient error and the exact gradient, respec-
tively, evaluated at control-volume centers;

εg = |∇rU −∇U |, and g = |∇U |; (14)

‖ · ‖ is a norm of interest. In this paper, the gradient errors are measured only at fully interior
control volumes.

C. Convergence of defect-correction iterations (DCI)

Besides accuracy, an important quality of a practical discretization is the availability of an afford-
able solver. For FVD schemes with low complexity, such as CC-NN and CC-SA, an efficient solu-
tion method would directly iterate the target FVD scheme. For FVD schemes with high complexity,
such as CC-NA, CC-FA, and NC schemes, direct iterations are not affordable. DCI schemes with
linearized first-order drivers are common methods used in practical computations.

Let uh be the current solution approximation. The DCI method is defined in the following two
steps:

1. The correction vh is calculated from

Lh
dv

h = Rh
(

uh
)

, (15)

where Rh
(

uh
)

is the residual of the target FVD scheme and Lh
d is a driver scheme. Equa-

tion (15) is solved to zero residual.

2. The current approximation is corrected

uh = uh + vh. (16)
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The DCI method considered in this paper is applied to second-order FVD schemes and uses the
corresponding first-order upwind FVD scheme as a driver. In DCI tests, the forcing term and the
boundary conditions are set to zero so the exact solution is zero. The initial solution perturbation
is random.

The DCI asymptotic convergence rate is estimated either as the spectral radius of the DCI
matrix on a given (small) grid or as the ratio of residuals obtained in the two last iterations per-
formed. Note that convergence observed in individual iterations may significantly differ from the
corresponding asymptotic convergence rate. On one hand, the initial convergence is typically fast,
and, in some cases, the residual tolerance (e.g., machine zero) can be achieved before convergence
slows down to the asymptotic rate. On the other hand, some norms of the iteration matrix (e.g.,
maximum sum of row-entry absolute values) are much larger than the spectral radius, allowing
slower convergence rates or even divergence in individual iterations.

VI. Class (A): isotropic grids in rectangular geometry

A. Grid specification

Grids of types (IIIp) and (IVp) are chosen to represent isotropic grids of poor quality. Sequences
of consistently refined grids are generated on the unit square [0, 1] × [0, 1]. Irregularities are intro-
duced at each grid independently, so the grid metrics, such as cell volumes and face areas, remain
discontinuous on all the grids. The ratio of the neighboring cell volumes can be arbitrarily high.
The CC-NA-CLIP scheme clips about 10% and 3% of the interior nodes on grids of types (IIIp)

and (IVp), respectively.

B. Gradient reconstruction accuracy

On unperturbed isotropic grids of types (I)−(IV ) and on perturbed quadrilateral grids of type (Ip),
all gradient reconstruction methods provide at least first-order accurate gradients. Figure 6 shows
the convergence of the L∞ norms of relative gradient errors for the manufactured solution U =

− cos (2πx − πy) on grids of types (IIIp) and (IVp). Only errors computed with the CC-NA-CLIP
scheme do not converge in grid refinement. Similar absence of convergence has been observed and
reported previously3 for gradients reconstructed with the CC-NA-CLIP scheme within control-
volume faces. All other methods provide first-order gradient approximations on all isotropic grids.

C. Convergence of discretization errors

Discretization errors of all cell-centered schemes, except the CC-NA-CLIP scheme, converge with
second order on grids of all types, and the errors of the node-centered schemes converge with
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(a) Grids of type (IIIp).
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(b) Grids of type (IVp).

Figure 6. Accuracy of gradient reconstruction on isotropic irregular grids. Manufactured solution is U =
− cos (2πx − πy).
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(a) Grids of type (IIIp).
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(b) Grids of type (IVp).

Figure 7. Convergence of L1-norms of discretization errors on isotropic irregular grids. Manufactured solution
is U = − cos (2πx − πy). The convection direction is a =

(

cos
(

7π

16

)

, sin
(

7π

16

))

second order on grids of types (I) − (III), (IIp) and (IIIp). As predicted in [4, 7], discretization
errors of node-centered schemes on perturbed quadrilateral and mixed-element grids converge with
first order. The reason for this convergence degradation is the edge-based flux integration scheme,
which is second-order accurate on simplex (triangular and tetrahedral) grids, but only first-order
accurate on perturbed quadrilateral and general mixed-element grids.

Figure 7 shows convergence of the L1 norms of discretization errors for the manufactured so-
lution U = − cos (2πx − πy) on grids of types (IIIp) and (IVp). The convection direction is
a =

(

cos
(

7π
16

)

, sin
(

7π
16

))

. The deviations of discretization errors observed in stochastic runs on
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grids with the same number of nodes are very small, so the error bounds are not shown. Although
barely discernible, convergence of the discretization errors of the CC-NA-CLIP scheme deterio-
rates on finer grids. Detailed tests performed on finer grids and reported in Appendix A show
that the discretization error convergence deteriorates to first order. Although not shown, the con-
vergence of the L∞ norms of the CC-NA-CLIP scheme exhibits signs of deterioration on coarser
grids. For other schemes, convergence slopes are the same for all norms and do not change on finer
grids.

The second-order discretization errors differ by less than an order of magnitude at a given
effective mesh size. For reference, Figures 7(a) and 7(b) include the convergence plots of “ideal”
discretization errors computed with the cell-centered exact-gradient (CC-EG) scheme that uses
gradients evaluated at each cell from the manufactured solution. The CC-EG plots represent the
best-possible second-order convergence, which can be achieved with a second-order cell-centered
formulation on given grids. Close proximity of the actual and the ideal second-order discretization
errors indicates that the accuracy of the tested schemes is nearly optimal.

D. Convergence of defect-correction iterations
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(a) Grids of type (IIIp).
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(b) Grids of type (IVp).

Figure 8. DCI convergence on isotropic irregular grids. The convection direction is a =
(

cos
(

7π

16

)

, sin
(

7π

16

))

On grids of type (I), the NC schemes and the CC-NN scheme correspond to the Fromm dis-
cretization of the convection equation (1). A detailed study of DCI for the Fromm discretization
on Cartesian grids has been reported in [16]. The study concludes that the error evolution can
be divided into three stages: initial convergence, transition, and asymptotic convergence. Initial
convergence is typically fast for random initial solutions, the transition convergence slows down,
and the asymptotic convergence is fast again. The number of iterations within the transition region
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can grow slightly on finer grids. Asymptotic convergence rates do not deteriorate on finer grids.
Convergence of DCIs on representative isotropic grids of types (IIIp) and (IVp) with 652 nodes is
illustrated in Figure 8. Convergence plots follow the pattern predicted in [16].

Asymptotic convergence rates on grids of each type is systematically studied by performing
stochastic tests on 172 grids generated on the unit square. The spectral radius of the DCI matrix
serves as the estimate of the asymptotic convergence rate. The spectral radius is computed on 32
independently generated grids for 32 representative flow directions. The following conclusions
have been reached: DCIs converge fast for all schemes on unperturbed grids of types (I) − (IV )

and on perturbed quadrilateral grids of type (Ip). The asymptotic rates for the CC-FA-ULSQ,
CC-FA-WLSQ, CC-SA, CC-NA, and CC-NA-CLIP schemes are fast (better than 0.4) on all grids
independent of grid type. The asymptotic rates for the NC-ULSQ and NC-WLSQ schemes are
around 0.5. Note that reported problems with the stability of DCIs for the NC-WLSQ schemes17

and for the CC-NA scheme without clipping8 are not observed on these isotropic grids.
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(a) CC-NN scheme.
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(b) CC-FA-ULSQ scheme.
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(c) CC-SA scheme.

Figure 9. Distribution of spectral radius of the DCI matrix observed in 1024 stochastic tests on 172 isotropic
grids of type (IIIp).

The DCI iterations may diverge for the CC-NN scheme on grids of type (IIIp) and (IVp). The
CC-NN convergence rate is strongly dependent on a specific combination of local grid geometry
and flow direction; many stochastic tests are required to observe divergence in actual computations.
Figure 9 shows the histograms of the spectral radius on grids of type (IIIp) for the CC-NN, CC-
FA-ULSQ, and CC-SA schemes. The spectral radii of the CC-FA-ULSQ and CC-SA schemes are
small for all cases. The spectral radii of the CC-NN scheme are much larger. CC-NN spectral
radii larger than 0.9 have been observed in 171 of the 1024 stochastic tests; one divergence case (a
spectral radius larger than 1) has occurred.
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Figure 10. Perturbed random triangular stretched grid with 17 × 65 nodes.

VII. Class (B): anisotropic grids in a rectangular geometry

A. Grid specification

In this section, FVD schemes are studied on stretched grids generated on rectangular domains.
Figure 10 shows an example grid of type (IIIp) with the maximal aspect ratio A = 103. A
sequence of consistently refined stretched grids is generated on the rectangle (x, y) ∈ [0, 1] ×

[0, 0.5] in the following 3 steps.

1. A background regular rectangular grid with N = (Nx + 1)× (Ny + 1) nodes and a uniform
horizontal mesh spacing hx = 1

Nx
is stretched in the vertical direction toward the horizontal

line y = 0.25. The y-coordinates of the horizontal grid lines in the top half of the domain
are defined as

yNy

2
+1

= 0.25; yj = yj−1 + ĥyβ
j−

“

Ny

2
+1

”

, j =
Ny

2
+ 2, . . . , Ny, Ny + 1. (17)

Here ĥy = hx

A
is the minimal vertical mesh spacing; A = 103 is a fixed maximal aspect ratio;

β is a stretching factor, which is found from the condition yNy+1 = 0.5. The stretching in
the bottom half of the domain is defined analogously.

2. Irregularities are introduced by random shifts of interior nodes in the vertical and horizontal
directions. The vertical shift is defined as ∆yj = 1

4
ρ min(hj−1

y , hj
y), where ρ is a random

number between −1 and 1, and hj−1
y and hj

y are vertical mesh spacings on the background
stretched mesh around the grid node. The horizontal shift is introduced analogously, ∆xi =
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1

4
ρhx. With these random node perturbations, all perturbed quadrilateral cells are convex.

3. Each perturbed quadrilateral is randomly triangulated (or not triangulated) depending on the
grid type.

B. Gradient reconstruction accuracy

A recent study18 assessed the accuracy of gradient approximations on various irregular grids with
high aspect ratio A = hx

hy
� 1. The study indicates that for rectangular geometries and functions

predominantly varying in the direction of small mesh spacing (y-direction here), gradient recon-
struction is accurate, providing small relative error converging with at least first order in consistent
refinement on grids of all types. For manufactured solutions significantly varying in the direc-
tion of larger mesh spacing (x-direction), the gradient reconstruction may produce extremely large
O(Ahx) relative errors affecting the accuracy of the y-directional gradient component. Figure 11
shows examples of first-order accurate gradient approximations that exhibit large relative errors on
high-aspect-ratio grids of type (III).
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(a) Aspect ratio A = 106.
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(b) Aspect ratio A = 103.

Figure 11. Relative gradient errors for the manufactured solution U = − cos (2πx − πy) on anisotropic grids
of type (III) downscaled toward the focal point (x, y) = (0.3, 0.5).

Evaluation of gradient reconstruction accuracy is performed with the methodology of down-
scaling.4, 7 The computational tests are performed on a sequence of downscaled narrow domains
L × (L/A) centered at the focal point (x, y) = (0.3, 0.5). The scale L changes as L = 2−n, n =

0, ..., 8 and the considered aspect ratios are A = 106 and A = 103; the latter corresponds to the
highest aspect ratio observed at the central line of the stretched grid shown in Figure 10. On each
domain, an independent high-aspect-ratio random grid of type (III) with 92 nodes is generated.
The grid aspect ratio is fixed as A on all scales. The gradient reconstruction accuracy is measured
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at the interior control volumes. The NC-WLSQ and CC-FA-WLSQ schemes provide accurate gra-
dients independent of the aspect ratio A; the relative errors of gradient reconstructions provided
by all other tested schemes are several orders of magnitude larger and directly proportional to A.
All methods converge with first order in grid refinement.

A summary of the results concerned with gradient accuracy on anisotropic grids is presented
in Table 5. Only the NC-WLSQ scheme provides gradient reconstruction accuracy on all unper-
turbed grids. All considered gradient reconstruction methods may generate large relative errors on
perturbed grids of types (Ip)− (IVp). The WLSQ method is ineffective on perturbed grids because
all stencil points can be essentially equidistant from the stencil center. Such situations occur more
frequently for cell-centered schemes. All cell-centered schemes may generate large gradient errors
even on unperturbed mixed-element grids of type (IV ). The CC-NN, CC-NA, and CC-FA-ULSQ
methods may also have large relative errors on unperturbed random triangular grids of type (III);
however, the CC-FA-WLSQ method always provides accurate gradients on these grids.

Grid Types (I) (II) (III) (IV ) (Ip) − (IVp)

NC-ULSQ O(h2
x) O(h2

x) O(Ahx) O(Ahx) O(Ahx)

NC-WLSQ O(h2
x) O(h2

x) O(hx) O(hx) O(Ahx)

CC-SA O(h2
x) O(h2

x) O(Ahx) O(Ahx) O(Ahx)

CC-NN O(h2
x) O(h2

x) O(Ahx) O(Ahx) O(Ahx)

CC-FA-ULSQ O(h2
x) O(h2

x) O(Ahx) O(Ahx) O(Ahx)

CC-FA-WLSQ O(h2
x) O(h2

x) O(hx) O(Ahx) O(Ahx)

CC-NA O(h2
x) O(hx) O(Ahx) O(Ahx) O(Ahx)

Table 5. Relative error of gradient reconstruction on anisotropic irregular grids for solutions with significant
variation in the x-direction of larger mesh spacing.

C. Convergence of discretization errors

A poor gradient reconstruction accuracy does not necessarily imply large discretization errors, and
accurate gradients do not guarantee small discretization errors. To illustrate these properties, Fig-
ure 12 shows discretization and gradient errors observed in stochastic tests performed on stretched
grids of type (IIIp) with small random node perturbation. The perturbations are limited by 1

4
hy in

each dimension, where hy is the local vertical mesh spacing. The convection direction is a = (1, 0).
Figure 12(a) shows the L∞ norm of discretizations errors for the NC-WLSQ and CC-FA-WLSQ
schemes. For comparison, the L∞ norms of discretization errors for the NC-ULSQ scheme and for
the “ideal” cell-centered scheme (CC-EG) using exact gradients evaluated from the manufactured
solution are also shown. The plot symbols indicate the mean errors and bars indicate the maximum
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(a) Discretization errors.
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(b) Gradient errors.

Figure 12. Convergence of discretization and gradient errors for NC-ULSQ, NC-WLSQ, and CC-FA-WLSQ
schemes on stretched grids of type (IIIp) with small node perturbations. The manufactured solution is U =
sin (πx + 2πy). Discretization errors are computed for the horizontal convection direction a = (1, 0).

and minimum errors observed on ten grids independently generated for each scale. Figure 12(b)
shows convergence of relative gradient errors on the same grids. In agreement with results col-
lected in Table 5, the NC-WLSQ and CC-FA-WLSQ schemes on such grids reconstruct gradients
with small relative errors; conversely, the relative gradient errors of the NC-ULSQ scheme are
large.

The accurate solutions obtained with the NC-ULSQ scheme in spite of large relative gradient
errors are explained by the nature of the errors. The O(Ahx) gradient errors may occur on high
aspect ratio grids and affect the y-gradient component aligned with the direction of small mesh
spacing. On such grids, the y-coordinates of the flux reconstruction locations differ from the y-
coordinate of the control volume center by O(hy). Thus, the errors in flux reconstruction caused
by the inaccurate y-gradient component are O(Ahxhy) = O(h2

x), comparable with other errors oc-
curring in the FVD scheme, and sufficient to enable the second-order convergence of discretization
errors.

The large and erratic discretization errors of the NC-WLSQ and CC-FA-WLSQ schemes are
explained by random occurrences of unstable patterns characteristic for FVD schemes with the
WLSQ gradient reconstruction. With these patterns, the main-diagonal coefficients of the FVD
scheme may become negative. This instability is analyzed in Appendix B. Note that some coarse
grids may not contain unstable patterns, leading to discretization errors comparable with the errors
of the NC-ULSQ and CC-EG schemes, and that the probability and severity of unstable patterns
on the tested grids is lower for cell-centered schemes.

To illustrate the effect of this instability on discretization errors in a simpler setting, stochastic
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(a) 1st family: small perturbations.
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(b) 2nd family: large perturbations.

Figure 13. Two 172 grids with A = 1000 representing families of grids of type (Ip) with small and large node
perturbations.

tests have been performed for the NC-WLSQ scheme on a narrow domain [0, 1] × [0, 0.001] with
the manufactured solution U = sin(πx + 2000πy). Two families of anisotropic (A ≈ 1000), ir-
regular, quadrilateral grids are derived from Cartesian grids with 92, 172, 332, 652, and 1292 nodes.
First-family grids are derived by a small random shift of the x-coordinate of each Cartesian-grid
node, in the range of 2ρhy, where ρ ∈ [−1, 1] is a uniformly distributed random number. Second-
family grids are derived by a larger shift of the x-coordinate of each Cartesian-grid node, in the
range of ρhx/3, and the random parameter ρ at vertically neighboring nodes is required to differ by
at least 0.2. The latter requirement on ρ-variation is added to avoid occurrences of negative diago-
nal coefficients in the residual operator. Representative grids are shown in Figures 13(a) and 13(b).
The grid from the first family appears unperturbed, while the grid of the second family is obvi-
ously strongly irregular. However, the grids of the first family are prone to negative main-diagonal
coefficients.

The convergence of the L1 norms of the discretization errors is shown in Figure 14. The
symbols indicate the mean errors and bars indicate the maximum and minimum errors observed
on ten grids independently generated for each scale. For the first grid family, the discretization
errors do not decrease with grid refinement. In fact, the L∞ norm of the errors is growing. For the
second family, the discretization errors converge with first order in any norm, as expected for an
edge-based node-centered scheme on irregular quadrilateral grids.

Second-order accurate solutions have been previously reported3, 19 on grids with large gradi-
ent reconstruction errors. Here, similar results are observed for cell-centered and node-centered
FVD schemes for constant-coefficient convection. Convergence histories of the L1 norms of dis-
cretization errors for the manufactured solution U = sin (πx + 2πy) on a sequence of consistently
refined stretched grids of types (IIIp) and (IVp) are shown in Figure 15. The convection direc-
tion is a =

(

cos
(

7π
16

)

, sin
(

7π
16

))

. Grids with large node perturbations specified in subsection A
of this section are used. The tests have been performed stochastically, but only small deviations
of the error norms have been observed on different grids of the same scale. Therefore, only one
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Figure 14. Convergence of discretization errors for the NC-WLSQ scheme on two families of type (Ip) grids.
Manufactured solution is U = sin (πx + 2000πy). The convection direction is a = (1, 0).
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(a) Grids of type (IIIp).
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(b) Grids of type (IVp).

Figure 15. Convergence of discretization errors on irregular stretched grids for solution U = sin (πx + 2πy)
and convection direction a =

(

cos
(

7π

16

)

, sin
(

7π

16

))

.

representative norm is shown.
On grids of type (IIIp), all discretization errors converge with second order. Note that, from

the convergence results reported in Appendix A, the discretization-error convergence order for
the CC-NA-CLIP scheme is expected to deteriorate to first order on finer grids. The NC-ULSQ
solutions converge with first order on grids of type (IVp), as predicted.4, 7 Discretization errors of
all cell-centered schemes converge with second order and are close to each other and to the ideal
discretization errors of the CC-EG scheme.
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D. Convergence of defect-correction iterations

Similar to the Class (A) stochastic tests reported in Section VI, the DCI convergence on anisotropic
grids is evaluated on 172 grids stochastically generated on a sequence of rectangular domains
[0, 1] × [0, 1

A
], with aspect ratios varying as A = 1, 10, 100, and 1000. For each combination

of scheme, grid type, and aspect ratio, the spectral radius of the DCI matrix is computed on 32
independently generated grids for 32 representative flow directions. The flow directions are hori-
zontally inclined, with inclination angles (i.e., angles between the flow directions and the positive
x-direction) varying within the intervals [− π

2A
, π

2A
] and [π − π

2A
, π + π

2A
]. This range of flow direc-

tions is chosen to expose the worst possible convergence rates. The rates observed for other flow
directions are typically much better.

The following observations have been made: DCIs converge fast for all schemes on unper-
turbed grids of types (I)− (IV ) and on perturbed quadrilateral grids of type (Ip). The asymptotic
rates for the NC-ULSQ, CC-FA-ULSQ, CC-NA, and CC-NA-CLIP schemes are fast (0.5 or bet-
ter) on all grids independent of grid type and aspect ratio. The rates of the CC-SA scheme are
somewhat slower (but still no worse than 0.8) on perturbed high-aspect-ratio grids of types (IIIp)

and (IVp). For certain combinations of local geometry and flow direction, DCIs for the CC-NN
scheme may diverge on grids of types (IIIp) and (IVp). The iterations for the NC-WLSQ and
CC-FA-WLSQ schemes diverge on high-aspect-ratio (A ≥ 100) grids of types (IIp), (IIIp), and
(IVp). Somewhat surprisingly, for this rectangular geometry, the CC-NA scheme converges with-
out clipping even though the grids are highly irregular.
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(a) CC-NN scheme.
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(b) CC-FA-ULSQ scheme.
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(c) CC-SA scheme.

Figure 16. Distribution of spectral radius of DCI matrix observed in 1024 stochastic tests on 172 grids of type
(IIIp) with aspect ratio A = 100 and horizontally-inclined flow directions.

Figure 16 shows histograms of the spectral radius distributions for the CC-NN, CC-FA-ULSQ,
and CC-SA schemes on grids of type (IIIp) with aspect ratio A = 100 and horizontally inclined
flow directions. Many tests for the CC-NN scheme exhibit slow DCI convergence, and divergence
has been observed in 13 (out of 1024) stochastic tests. The DCI convergence of the CC-FA-ULSQ
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scheme is always better than 0.33. For the CC-SA scheme, the largest observed DCI spectral radius
is 0.8. Only seven tests showed the spectral radius larger than 0.6; only three of them showed the
spectral radius larger than 0.7.

VIII. Class (C): grids with curvature and high aspect ratio

A. Grid specification

In this section, we discuss FVD schemes on grids with curvature and high aspect ratio. The grid
nodes are generated from a cylindrical mapping, where (r, θ) denote polar coordinates with spac-
ings of hr and hθ, respectively. The grid aspect ratio is defined as the ratio of mesh sizes in the
circumferential and the radial directions, A = Rhθ/hr, where R is the radius of curvature.

A measure of the curvature-induced mesh deformation is Γ defined as:

Γ =
R (1 − cos(hθ))

hr

≈
Rh2

θ

2hr

= A
hθ

2
. (18)

The following assumptions are made about the range of parameters: R ≈ 1, A � 1, and Γhr � 1,
which implies that both hr and hθ are small. For a given value of A, the parameter Γ may vary:
Γ � 1 indicates meshes that are locally (almost) undeformed. As a practical matter, grids with
Γ < 0.2 can be considered as nominally non-curved. In a mesh refinement that keeps A fixed,
Γ = O(Ahθ) asymptotes to zero. This property implies that on fine enough grids with fixed
curvature and aspect ratio, the discretization error convergence is expected to be the same as on
similar grids generated on rectangular domains with no curvature.

Four basic types of 2-D grids are studied in the cylindrical geometry. Unlike the computational
grids used in the rectangular geometry, random node perturbation is not applied to high-Γ grids
because even small perturbations in the circumferential direction may lead to non-physical control
volumes.

Computational grids used in the grid-refinement study are radially stretched grids with a radial
extent of 1 ≤ r ≤ 1.2 and an angular extent of 20◦ with a fixed maximal aspect ratio A ≈ 1000.
The grids have four times more cells in the radial direction than in the circumferential direction.
The maximum value of Γ changes approximately as Γ ≈ 22, 11, 5.5, . . . . The corresponding grid
stretching ratios change as β = 1.25, 1.11, 1.06, . . . . Representative grids of types (III) and (IV )

are shown in Figure 17.

B. Accuracy of gradient approximation

Our main interest is solutions varying predominantly in the radial direction on grids with Γ � 1

corresponding to meshes with large curvature-induced deformation. Computations and analysis
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Figure 17. Representative 9 × 33 irregular stretched high-Γ grids.

reported earlier17, 19, 20 concluded that the ULSQ gradient approximation is zeroth-order accurate
for such solutions on grids with high Γ. The errors of gradient reconstruction for the manufac-
tured solution U = sin(5πr) on high-Γ grids of types (I) − (IV ) are summarized in Table 6. The
approximate mapping (AM) method described in Section C enables accurate gradient reconstruc-
tion. The NC-WLSQ and all AM schemes reconstruct accurate gradients on grids of all types. All
other schemes show large O(1) errors on mixed-element grids of type (IV ). The CC-FA-WLSQ
provides accurate gradient reconstruction on grids of type (III). Schemes using ULSQ gradient
reconstruction in Cartesian coordinates produce large gradient errors even on regular grids.

For illustration, Figure 18 shows relative accuracy of gradients reconstructed on grids of type
(IV ). The erratic convergence and large gradient errors of the CC-NA scheme are explained
by node-averaging degeneration on high-Γ mixed-element grids. On these grids, there are local
geometries where the nodal solution is averaged from four neighboring cells. The four cell centers
involved in such averaging may be located on a straight line, thus leading to degeneration. The
sketch in Figure 19 illustrates this phenomenon. The topology of the sketch (two quadrilaterals on
top of two triangles) is identical to the topology causing the degradation on high-Γ mixed-element
grids generated by the method of advancing layers. Note that such degradation cannot be realized
on single-element (types (I), (II), or (III)) and/or low-Γ advancing-layer grids.

C. Discretization error convergence

Convergence of L1-norms of discretization errors of FVD schemes with and without approximate
mapping is shown in Figure 20 for grids of type (III) and for the manufactured solution U =
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Grid Types (I) (II) (III) (IV )

NC-ULSQ O(1) O(1) O(1) O(1)

NC-WLSQ O(h2
θ) O(h2

θ) O(hθ) O(hθ)

NC-ULSQ-AM O(h2
θ) O(h2

θ) O(hθ) O(hθ)

CC-NN O(1) O(1) O(1) O(1)

CC-FA-ULSQ O(1) O(1) O(1) O(1)

CC-FA-WLSQ O(h2
θ) O(hθ) O(hθ) O(1)

CC-SA O(1) O(1) O(1) O(1)

CC-NA O(h2
θ) O(hθ) O(1) Degenerate

CC-NA-CLIP O(hθ) O(hθ) O(1) Degenerate
CC-NN-AM O(h2

θ) O(hθ) O(hθ) O(hθ)

CC-FA-ULSQ-AM O(h2
θ) O(hθ) O(hθ) O(hθ)

CC-SA-AM O(h2
θ) O(hθ) O(hθ) O(hθ)

Table 6. High-Γ grids: relative errors of gradient reconstruction in global Cartesian coordinates. Manufactured
solution is U = sin(5πr).
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(a) Cartesian x, y-coordinates.

10
0

10
1

10
−2

10
0

10
2

10
4

10
6

10
8

Γ

R
el

at
iv

e 
gr

ad
ie

nt
 e

rr
or

 (
L ∞

 n
or

m
)

 

 

CC−SA−AM
CC−NN−AM
CC−FA−ULSQ−AM
NC−ULSQ−AM
1st order

(b) Approximate mapping.

Figure 18. Convergence of relative gradient errors on high-Γ stretched grids of type (IV ) with maximum
aspect ratio A = 1000. Manufactured solution is U = sin(5πr). The gradients are computed either in standard
Cartesian x, y-coordinates or in local coordinates constructed by the approximate mapping method.

sin(5πr) and the convection direction a =
(

cos
(

7π
16

)

, sin
(

7π
16

))

. All discretization errors converge
with the second order. The level of discretization errors obtained by the schemes with O(1) error
in the gradient reconstruction is similar to the level obtained by the schemes with either the AM
method or the exact gradient. Indeed, an O(1) error is associated only with the radial component
of the gradient. If the face center location is shifted from the control-volume center in the purely
radial direction, then the error in flux reconstruction is O(hr). If both circumferential and radial
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grid nodes
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Figure 19. Sketch of a grid leading to collinear cell centers and degradation of the node-averaging procedure.
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(a) Cartesian coordinates.
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(b) Approximate mapping.

Figure 20. Convergence of L1-norms of discretization errors on high-Γ stretched grids of type (III) with
maximum aspect ratio A = 1000. The manufactured solution is U = sin(5πr). The convection direction is
a =

(

cos
(

7π

16

)

, sin
(

7π

16

))

.

shifts are involved, then the radial shift is O(Γhr) = O(h2
θ) at most. On high-Γ grids, hr � h2

θ.
Therefore, the maximum error in the flux reconstruction is bounded by O(h2

θ).
On unperturbed grids of types (I) − (IV ), the level of discretization errors on grids with the

same number of degrees of freedom varies significantly depending on the locations of the data
points with respect to the manufactured solution. This property is illustrated in Figure 21, where
the L1 norms of discretization errors of the CC-NN-AM, CC-EG, and NC-ULSQ-AM schemes are
shown for the stretched grids of type (I), horizontal convection, a = (1, 0), and three manufactured
solutions. Excluding boundary effects, the number of degrees of freedom on grids of type (I) is
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(b) U = sin(πr).
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(c) U = sin(0.2πr).

Figure 21. Discretization errors for three manufactured solutions on stretched grids of type (I) with maximum
aspect ratio A = 1000. The convection direction is a = (1, 0).

the same for cell-centered and node-centered formulations, but the locations of the data points are
slightly different. The cell-centered errors are close to each other on fine grids in all the tests.
For U = sin(5πr), the errors of the NC-ULSQ-AM scheme is about four times smaller than cell-
centered errors; for U = sin(πr), all errors are about the same; and for U = sin(0.2πr), the cell-
centered errors are about two times smaller than the node-centered errors. Note that the differences
between the cell-centered and node-centered errors disappear on grids with no stretching. The
large variations between cell-centered and node-centered discretization errors observed even on
mildly stretched grids of type (I) indicate significant accuracy gains that can be achieved with
grid optimization. They also indicate that a conclusion that the discretization accuracies of good
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cell-centered and node-centered schemes are similar on grids with similar degrees of freedom,
(such a conclusion would benefit cell-centered schemes that typically provide more degrees of
freedom on the same grids) is not straightforward for inviscid flows. To make such a conclusion,
one should compare errors on optimized grids with the same number of degrees of freedom; the
grid optimization should be done individually for each FVD scheme.

D. Convergence of defect-correction iterations

DCI convergence rates on high-Γ grids are sensitive to the flow direction, improving for flows
aligned with the radial direction of the strong anisotropy. In this section, the horizontal flow
direction is chosen to expose the worst-case scenario. The tests are performed on computa-
tional domains with the angular extent of 20◦ and the radial extent of r ∈ [1, 1 + L], where
L = 0.2, 0.02, 0.002, 0.0002. The grids with 172 nodes correspond to Γ ≈ 0.02, 0.2, 2, 20. The
asymptotic convergence rates are computed as the spectral radius of the corresponding DCI ma-
trices and then confirmed in actual tests. On irregular grids of types (III) and (IV ), the tests are
performed stochastically. For each scheme and grid type, the DCI spectral radius is computed for
30 independently generated grids.

Γ 0.02 20

NC-ULSQ 0.43-0.48 0.8-0.98

NC-WLSQ 0.44-0.50 Diverge
NC-ULSQ-AM 0.43-0.47 0.49-0.58

CC-NN 0.45-0.52 0.13 (I), Diverge (II, III, IV )

CC-FA-ULSQ 0.23-0.48 0.09-0.17

CC-FA-WLSQ 0.31-0.48 0.49 (I), Diverge (II, III, IV )

CC-SA 0.26-0.48 0.11-0.18

CC-NA 0.24-0.48 Diverge
CC-NA-CLIP 0.24-0.48 0.94 (I, IV ), 0.27-0.35 (II, III)

CC-NN-AM 0.45-0.52 0.45-0.52

CC-FA-ULSQ-AM 0.23-0.48 0.23-0.45

CC-SA-AM 0.23-0.48 0.32-0.48

Table 7. Ranges of asymptotic convergence rates of DCI on anisotropic curved grids. If no grid type shown, the
range describes convergence rates for grids of all types. Special cases are indicated by grid types in parenthesis.

Ranges of DCI convergence rates on grids of various types with Γ = 0.02 and Γ = 20 are
shown in Table 7. DCIs converge well for all schemes on low-Γ grids. On high-Γ grids, DCI
divergence has been observed for the NC-WLSQ and CC-NA schemes on grids of all types. For the
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CC-NN and CC-FA-WLSQ schemes divergence has been observed on grids of types (II), (III),
and (IV ). DCIs for the NC-ULSQ scheme converge slowly. Clipping was originally introduce
to stabilize convergence of the CC-NA scheme, and DCIs for the CC-NA-CLIP scheme converge
for all grids considered, demonstrating fast rates on triangular grids of types (II) and (III). DCI
convergence dramatically improves for schemes with approximate mapping; DCIs for the NC-
ULSQ-AM and CC-NN-AM scheme converge much better than their unmapped counterparts on
the same grids. Overall, DCI convergence rates are fast for the CC-SA, CC-FA-ULSQ and all AM
schemes on grids of all types; for the CC-NA-CLIP scheme, on grids of types (II) and (III); and
for the CC-NN and CC-FA-WLSQ schemes, on grids of type (I).

The DCI behavior can be analyzed in a very simple setting. For example, DCI convergence
for node-centered FVD schemes can be considered for a pair of interior grid nodes under the
assumption that solutions in all surrounding nodes are over-specified. Representative interior grids
of type (I) and type (II) are sketched in Figure 22. DCIs have been analyzed on sequences of
grids corresponding to various values of Γ with fixed circumferential mesh spacing and varying
radial mesh spacing. For simplicity, convection with the unit horizontal velocity is assumed.

1

2

(a) Grid of type (I)

 

 

1

2

(b) Grid of type (II).

Figure 22. Sketch of interior grids of class (C). The unknown solutions are at nodes 1 and 2. Black bullets
indicate nodes with over-specified solutions. Dashed lines indicate control volumes around nodes 1 and 2.

The variations of the spectral radius of the DCI matrix are shown in Figure 23. On high-Γ
grids of both types, DCIs diverge for the NC-WLSQ scheme, converge slowly for the NC-ULSQ
scheme, and converge fast for the NC-ULSQ-AM scheme. The DCIs are unstable for the NC-
WLSQ scheme on type (I) meshes even though the coefficients of NC-WLSQ gradient reconstruc-
tion are very nearly the same as the coefficients of the NC-ULSQ-AM gradient reconstruction. The
main cause of the divergence is the interior-state interpolation in the nearly-circumferential-edge
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Figure 23. Asymptotic convergence rates for node-centered schemes.

directions. On high-Γ grids, the radial coordinates of the edge-midpoints are displaced by O(Γhr)

from the nodes. Within the simple setting of a type (I) grid (Figure 22(a)), such displacement re-
sults in off-diagonal terms in the target scheme that are larger than the diagonal terms. In contrast,
the driver scheme has zero off-diagonal terms. Although not shown, DCIs exhibit fast convergence
for the target node-centered operator constructed using either WLSQ or ULSQ gradients and AM
interior-state interpolations. Thus the improvements in DCI with the mapping technique accrue
mainly through the state-variable interpolations.

IX. Conclusions

Two node-centered and six cell-centered schemes have been compared for finite-volume dis-
cretization of a constant-coefficient convection equation as a model of inviscid flow terms. All
schemes are nominally second-order accurate and use either weighted (WLSQ) or unweighted
(ULSQ) least-squares minimization. The schemes have been compared for complexity, accuracy,
and convergence rates of defect-correction iterations (DCIs) with a first-order driver. The cell-
centered nearest-neighbor (CC-NN) scheme has the lowest complexity; in particular, its stencil
involves the least number of neighbors. A version of the scheme that involves smart augmen-
tation of the least-squares stencil (CC-SA) has only a moderate complexity increase. All other
schemes have larger complexity; the complexity of node-centered (NC) schemes is lower than the
complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes.

Comparisons of accuracy and convergence rates of DCI have been made for three grid classes:
Class (A) includes isotropic grids in a rectangular geometry. Class (B) includes anisotropic grids
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representative of adaptive-grid simulations. Class (C) includes anisotropic advancing-layer grids
representative of high-Reynolds number turbulent flow simulations over a curved body. Regular
and irregular grids are considered, including mixed-element grids and grids with random perturba-
tions of nodes. Computations on irregular grids have been performed stochastically. All tests have
been performed on consistently refined grids for smooth manufactured solutions.

For the tests on grids of class (A), the following observations have been made. The CC-NA
scheme with clipping (CC-NA-CLIP) fails to approximate gradients and degrades solution accu-
racy to first order. As expected, the NC discretization errors converge with second order on triangu-
lar and regular quadrilateral grids and with first order on mixed-element and perturbed quadrilateral
grids. Second-order discretization errors are quantitatively similar on grids with the same degrees
of freedom and closely approach “ideal” second-order errors exhibited by the cell-centered scheme
with exact gradients (CC-EG). The DCIs may diverge for the CC-NN scheme on perturbed grids
with random triangular elements.

For the tests on grids of class (B), all schemes may produce O(Ahx) large relative errors in
gradient reconstruction on perturbed grids; here A is the grid aspect ratio and hx is the larger
mesh spacing. Discretization errors of the NC-WLSQ and CC-FA-WLSQ schemes diverge in
grid refinement on grids with small perturbations. For all other schemes, the errors converge with
second order and closely approach the CC-EG errors. DCIs may diverge for the NC-WLSQ, CC-
NN, and CC-FA-WLSQ schemes and converge fast for all other schemes.

On grids of class (C), the range of grid parameters has been chosen to enforce significant
curvature-induced grid deformations, characterized by the large values of the parameter Γ. All
tests have been performed for manufactured solutions smoothly varying in the radial direction only.
Accurate gradients are reconstructed on all grids by the least-squares minimizations performed in
local approximate-mapping (AM) coordinates and by the NC-WLSQ scheme. All other schemes
generate O(1) errors in gradient reconstruction on at least some grids. The node-averaging schemes
may degenerate on mixed-element grids. All other schemes provide second-order discretization
errors. Consistent with previous observations, DCIs may diverge for the CC-NA, CC-NN, CC-
FA-WLSQ, and NC-WLSQ schemes. The asymptotic convergence for the NC-ULSQ scheme is
slow and may stagnate. Convergence rates of DCI for the CC-SA, CC-FA-ULSQ, CC-NN-AM,
and NC-ULSQ-AM schemes are fast on all grids.

Overall, the CC-SA scheme is the most attractive; it offers low complexity, accuracy com-
parable with that of the CC-EG scheme, and fast DCI convergence on all grids. The CC-NN-AM
scheme is a good choice for discretization within boundary layers on high-aspect-ratio grids gener-
ated by the advancing-layer method. The NC-ULSQ-AM scheme presents the best node-centered
option.

Several other observations have been made in the course of this work:
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• Smoothness of grid metrics, such as volume and face area, is often used as a grid quality
measure implying that a better accuracy can be achieved on grids with smoother metrics. The
examples in the paper showed that, with robust discretization schemes, accurate solutions
can be achieved on grids with discontinuous metrics. Moreover, metrics smoothness may be
misleading when considered in isolation from specific schemes. In particular, it was shown
that the discretization accuracy of the NC-WLSQ scheme is much better on strongly irregular
grids with discontinuous metrics than on certain almost regular grids with minimal metric
perturbations.

• On high-aspect-ratio grids, gradient reconstruction accuracy is neither necessary nor suffi-
cient for obtaining design-order discretization errors. Indeed, schemes with large relative
errors in gradient reconstruction provided discretization errors comparable with the errors
of the CC-EG scheme. This phenomenon is explained by the specific nature of the gradient
errors introduced on high-aspect-ratio grids that typically affect only certain gradient com-
ponents and result in flux reconstruction errors that are small enough to enable second-order
convergence of discretization errors. On the other hand, the WLSQ reconstruction provides
locally accurate gradients, but the obtained schemes may lose stability and accuracy. Note,
however, that gradient accuracy is expected to be critical for discretizations involving gradi-
ent sources, entropy fixes, and/or gradient-based limiters.

• In many tests, the observed discretization errors were similar on grids with similar degrees
of freedom. However, some tests performed on stretched quadrilateral grids that provide
similar degrees of freedom for both cell-centered and node-centered formulations showed
large variations in discretization errors. These variations have been traced to slight differ-
ences in the locations of the degrees of freedom with respect to the manufactured solutions.
This sensitivity indicates that there is a large potential accuracy gain that can be achieved by
grid optimization. On the other hand, the conclusion about the true relationship between the
discretization errors and degrees of freedom cannot be drawn from the tests performed on
the non-optimized grids considered in this paper.
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A. Effects of clipping
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(b) Gradient errors.
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(c) Discretization errors.

Figure 24. Accuracy of CC-NA schemes on isotropic, irregular, triangular grids of type (IIIp). Manufactured
solution is U = − cos (2πx − πy).

The isotropic grid tests reported in this appendix are performed for the CC-NA and CC-NA-
CLIP schemes and demonstrate the detrimental effects of clipping on the convergence of gradient
and discretization errors in grid refinement. Irregular triangular grids of type (IIIp) are considered.
These grids are characterized by a higher percentage of clipped nodes; about 10% of the interior
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nodes are clipped. Figure 24(a) shows an example of a grid of type (IIIp) with 172 nodes; nodes
where clipping occurs are circled.

Figure 24(b) shows that the gradients reconstructed by the CC-NA-CLIP scheme do not ap-
proximate the exact gradients. The CC-NA scheme provides a first-order accurate gradient recon-
struction, which is sufficient for second-order discretization accuracy. Figure 24(c) presents the
convergence of the L1 norms of discretization errors. The CC-NA scheme demonstrates second-
order convergence of discretization errors, which is consistent with results reported by Mitchell21

for Ringleb flow. The discretization error convergence of the CC-NA-CLIP scheme exhibits sec-
ond order on the coarse grids, but then degrades to first order. Although not shown, the L∞ norm
of discretization errors of the CC-NA-CLIP scheme shows degradation on coarser grids in grid
refinement. Asymptotically, L∞ norms of both node-averaging schemes converge with the same
orders as the corresponding L1 norms. Note that on grids with a smaller percentage of clipped
nodes, convergence degradation becomes visible only on finer grids. This may explain why such
degradation has not been reported for practical computations.

B. Instability of FVD schemes with WLSQ gradient reconstruction on

grids with small perturbations

As shown in Sections VII and VIII, WLSQ methods improve gradient reconstruction accuracy
on high-aspect-ratio unperturbed grids of types (I) − (IV ). These grids have well-defined lines
aligned with the direction of strong anisotropy. Analysis presented in this section shows that FVD
schemes using the WLSQ gradient reconstruction become unstable with small perturbations of this
grid alignment. This instability manifests itself in the appearance of large negative coefficients on
the main diagonal of the residual operator. As a result, defect-correction iterations diverge and
discretization errors behave erratically in grid refinement.

012

3 4

5

7 6

Figure 25. Sketch of perturbed grid; dashed line indicates control volume around node 0

For illustration, we consider the NC-WLSQ scheme on a quadrilateral grid with uniformly
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high aspect ratio A = hx

hy
, where hx and hy are horizontal and vertical mesh sizes, respectively.

Small periodic perturbations are introduced to every other node on every second horizontal line;
the nodes are shifted left by a distance s̄. A sketch of a perturbed grid is shown in Figure 25. The
goal of the analysis is to compute the contribution to the residual at node 0 from the solution at the
same node — the main diagonal coefficient of the residual operator. For simplicity, the convection
velocity is taken as a = (1, 0).

First, gradients at the nodes 0 and 1 are reconstructed with the WLSQ method. For node 0,
assuming the node is at the origin, the coordinates xk and yk of all stencil nodes are given in
Table 8, where the subindex is a node indicator.

k xk yk

0 0 0

1 −hx + s̄ 0

4 s̄ hy

5 hx + s̄ 0

6 s̄ −hy

Table 8. Coordinates of stencil points for gradient reconstruction at node 0.

The linear reconstruction U r(x, y) of a general function U(x, y) over the control volume around
the node 0 is defined as

U r ≡ U0 + ax + by, (19)

where U0 = U(0, 0). The components of the reconstructed gradient, ∇rU = (a, b)T , are found by
minimizing the sum of the squares of the (weighted) differences between the actual function and
the linear fit at the stencil points.

∑

k

[µk(U
r
k − Uk)]

2 → min, (20)

where µk are weights
µk =

1
√

x2
k + y2

k

. (21)

The gradient reconstructed at node 0 is

a0 = 1

2

h2
y+s̄2

h2
y+2s̄2

[

U5
1

hx+s̄
− U1

1

hx−s̄
+ (U4 + U6 − 2U0)

s̄
h2

y+s̄2 + U0

(

1

hx−s̄
− 1

hx+s̄

)]

,

b0 = 1

2hy
[U4 − U6] .

(22)
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Analogously, the gradient reconstructed at node 1 is

a1 = 1

2

[

U0
1

hx−s̄
− U2

1

hx+s̄
− U1

2s̄
h2

x−s̄2

]

,

b1 = 1

2hy
[U3 − U7] .

(23)

For the chosen convection direction, the FVD residual operator on the control volume around
node 0 is formed as

hy

V

[(

U0 + a0
hx+s̄

2

)

−
(

U1 + a1
hx−s̄

2

)]

, (24)

where V = hxhy. The coefficient of U0 is

1

hx

[

3

4
− 1

2

s̄hx

h2
y+2s̄2 −

1

2

s̄2

h2
y+2s̄2 + 1

2

h2
y+s̄2

h2
y+2s̄2

s̄
hx−s̄

]

. (25)

Assuming A � 1 and 0 < s̄ � hx, the last term in the brackets is negligibly small compared to
the other terms and may be ignored. In particular, if s̄ = hy, the leading part of the coefficient
would be

1

hx

[

7

12
− A

6

]

, (26)

which is a large negative number on grids with high aspect ratio. All WLSQ schemes are prone to
this type of instability, including cell-centered discretizations.
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