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ABSTRACT
An overview of twenty years of adjoint-based aerodynamic

design research at NASA Langley Research Center is presented.
Adjoint-based algorithms provide a powerful tool for efficient
sensitivity analysis of complex large-scale computational fluid
dynamics (CFD) simulations. Unlike alternative approaches for
which computational expense generally scales with the number
of design parameters, adjoint techniques yield sensitivity deriva-
tives of a simulation output with respect to all input parame-
ters at the cost of a single additional simulation. With modern
large-scale CFD applications often requiring millions of com-
pute hours for a single analysis, the efficiency afforded by ad-
joint methods is critical in realizing a computationally tractable
design optimization capability for such applications.

NOMENCLATURE
CL Lift coefficient
CMx , CMy Lateral and longitudinal moment coefficients
D Vector of design variables
f Objective function, also general function
i

√
−1

K Linear elasticity coefficient matrix
L Lagrangian function
n Time level
Q Vector of volume-averaged conserved variables
R Vector of spatial undivided residuals
X Vector of grid coordinates
x Independent variable
ε Perturbation
θ Blade pitch
θc Collective input
θ1c Lateral cyclic input
θ1s Longitudinal cyclic input

∗Address all correspondence to this author.

ΛΛΛ f Flowfield adjoint variable
ΛΛΛg Grid adjoint variable
ψ Blade azimuth

INTRODUCTION
As access to powerful high-performance computing re-

sources has become widespread in recent years, the use of high-
fidelity physics-based simulation tools for analysis of complex
aerodynamic flows becomes increasingly routine. The availabil-
ity and affordability of high-fidelity analysis tools has in turn
stimulated an enormous body of research aimed at applying such
tools to formal design optimization of complex aerospace con-
figurations. A survey of the relevant literature shows that op-
timization methods based on the Euler and Reynolds-averaged
Navier-Stokes equations have indeed gained a strong foothold in
the design cycle [1, 2].

For gradient-based optimization of aerospace configurations
involving many design variables, the ability to generate sensitiv-
ity information at a relatively low cost is critical. Unlike forward
differentiation techniques such as finite differencing [3] or di-
rect differentiation [4], the adjoint approach performs sensitivity
analysis at a cost comparable to that of a single flow solution and
independent of the number of design variables [5].

Efficient evaluation of sensitivities of an output with re-
spect to all input parameters has led to numerous applications of
adjoint-based methods in various areas of research and engineer-
ing. Some of the earliest work in the field of adjoint methods for
aerodynamic design can be found in the work of Pironneau [5]
and Angrand [6]. Jameson developed an adjoint approach for the
Euler equations in [7].

Adjoint methods can be classified into continuous and dis-
crete variants, depending on the order in which the differentia-
tion and discretization of the governing equations is performed.
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Both approaches are used extensively in practice and the reader
is referred to examples cited in the excellent overviews in [1, 2].
Based largely on the findings demonstrated in [8], a discrete ad-
joint approach to sensitivity analysis is used exclusively in the
work presented here.

In this paper, an overview of two decades of adjoint-
based algorithm development, implementation, and application
at NASA Langley Research Center are presented for steady and
unsteady flows. Example aerodynamic optimization problems
include a high-lift application involving active flow control, a
fighter aircraft with propulsion and simulated aeroelastic effects,
and a rotorcraft simulation. A multidisciplinary application of
the methodology is also shown for a sonic boom minimization
problem. The role of adjoint methods in the field of error esti-
mation and mesh adaptation is briefly covered, and a long-term
challenge of sensitivity analysis for chaotic flows is presented.

BASELINE SOLVER

The CFD analysis solver used in the studies highlighted here
has been in active development for three decades and is used to
solve compressible and incompressible, steady and unsteady, in-
viscid, laminar, and turbulent flow equations discretized on un-
structured grids [9]. The governing equations are discretized us-
ing a node-based finite-volume scheme in which the solutions
are stored at the vertices of meshes comprised of any arbitrary
combination of tetrahedral, prismatic, pyramidal, and hexahedral
elements.

Convective fluxes are discretized in an upwind manner and
second-order accuracy is achieved using an unstructured recon-
struction procedure [10]. Viscous terms are formed using an ap-
proach equivalent to a Galerkin finite-element procedure [10].
For non-simplicial element types, the viscous terms are aug-
mented with edge-based gradients to improve the h-ellipticity of
the operator [11]. Several classes of temporal discretizations are
available, including conventional backwards difference formu-
lae, as well as various multistep/multistage schemes [11].

A broad range of gas dynamics models may be used, in-
cluding a classical perfect gas assumption and considerably more
complex models encompassing thermochemical nonequilibrium
effects [12]. Available turbulence closures range from the one-
equation model of Spalart and Allmaras [13] to full Reynolds
stress models and hybrid RANS-LES approaches [9]. These
models use spatial and temporal discretizations consistent with
the mean flow.

Dynamic mesh computations are accommodated using ei-
ther rigid- or deforming-mesh paradigms, or combinations
thereof. The global computational domain may consist of any
number of overset component meshes. Each individual mesh
may be assigned a specific motion or deformation schedule; al-
ternatively, such attributes may be driven by external models rep-
resenting complementary disciplines such as aeroelasticity, six
degree of freedom motion, or ablation [11]. To leverage mas-
sively parallel hardware architectures, domain decomposition ap-
proaches are combined with message passing techniques [9].

ADJOINT EQUATIONS FOR STEADY FLOWS
Consider the vector of discretized residual equations R for

the Euler or Navier-Stokes equations as a function of the design
variables D, computational mesh X, and flowfield variables Q.
Given a steady-state solution of the form R(D,Q,X) = 0, a La-
grangian function L can be defined as

L(D,Q,X,ΛΛΛ f ,ΛΛΛg) = f (D,Q,X)+ΛΛΛ
T
f R(D,Q,X), (1)

where f (D,Q,X) represents an objective function of interest and
ΛΛΛ f represents a vector of Lagrange multipliers, or adjoint vari-
ables, corresponding to the governing flow equations. The sensi-
tivity d f

dD is computed by differentiating Eq. 1 with respect to D.
Regrouping terms to collect the coefficients of dQ

dD , and equating
those coefficients to zero yields the adjoint equation for steady
flow,

[
∂R
∂Q

]T

ΛΛΛ f =−
[

∂ f
∂Q

]T

. (2)

This linear system of equations is independent of D and is of-
ten solved in a pseudo-time marching fashion analogous to the
CFD analysis procedure. In this manner, the expense associ-
ated with solving the adjoint equations is similar to that of the
analysis problem. Moreover, if the solution algorithm is itself
carefully constructed in a discretely adjoint manner, the asymp-
totic convergence rates of the two systems are guaranteed to be
identical [14].

Upon solution of Eq. 2, dL
dD takes the following form,

dL
dD

=
∂ f
∂D

+ΛΛΛ
T
f

[
∂R
∂D

]
+
[

∂ f
∂X

][
dX
dD

]
+ΛΛΛ

T
f

[
∂R
∂X

][
dX
dD

]
. (3)

This expression can be used to evaluate the sensitivities of inter-
est. However, an explicit evaluation of the term dX

dD may become
prohibitively expensive. This term represents the sensitivities of
the mesh point locations to design parameters such as shape vari-
ables. For mesh deformations obeying the linear elasticity rela-
tions of solid mechanics, the following equation holds

KX = Xsur f , (4)

where K is an elasticity matrix based on local mesh properties
and Xsur f is the vector of surface mesh coordinates comple-
mented by zeros for all interior coordinates [11, 15]. By differ-
entiating Eq. 4 with respect to D,

K
[

dX
dD

]
=

dXsur f

dD
, (5)

a linear system of equations is obtained for the desired quan-
tity dX

dD . Unfortunately Eq. 5 must be solved for each geometric
parameter in D. In practice, the cost of solving Eq. 4 (or equiv-
alently, Eq. 5) for highly anisotropic meshes can be as much as
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30% of the computational cost associated with solving the flow
equations [15]. Thus, for even moderate numbers of geometric
design parameters, explicit evaluation of the term ∂X

∂D can be quite
costly, and can even dominate the overall design computation.

In [16], it was shown that an adjoint approach could be used
to account for the mesh sensitivity terms by extending the La-
grangian function in Eq. 1 to include the residual of the mesh
deformation equations as an additional constraint:

L(D,Q,X,ΛΛΛ f ,ΛΛΛg) = f (D,Q,X)

+ΛΛΛ
T
f R(D,Q,X)+ΛΛΛ

T
g (Xsur f −KX)

(6)

Here, an additional adjoint variable, ΛΛΛg, associated with the mesh
deformation has been introduced. Differentiating Eq. 6 with re-
spect to D and seeking to eliminate the coefficient of dX

dD yields
an adjoint equation for the mesh deformation,

KT
ΛΛΛg =

[
∂ f
∂X

]T

+
[

∂R
∂X

]T

ΛΛΛ f . (7)

After solving Eq. 2 for ΛΛΛ f , Eq. 7 can be solved for ΛΛΛg at an ex-
pense equivalent to that of solving Eq. 4. In this manner, the ef-
fects of mesh sensitivities can be formally included at an expense
independent of the number of design variables. This formulation
was enabling for efficient large-scale sensitivity analysis and de-
sign using a discrete adjoint formulation.

Once solutions for ΛΛΛ f and ΛΛΛg have been determined, the
remaining terms in dL

dD are as follows,

dL
dD

=
∂ f
∂D

+ΛΛΛ
T
f

[
∂R
∂D

]
+ΛΛΛ

T
g

[
dXsur f

dD

]
. (8)

The first two terms on the right hand side of Eq. 8 represent the
explicit dependence of the objective function and residual vector
on D. For shape design variables, these terms are identically
zero, and Eq. 8 reduces to an inexpensive matrix-vector product
over the parameterized surface meshes.

To summarize, the CFD analysis problem can be cast as
three steps: (1) Given D, determine the corresponding surface
grid, Xsur f ; (2) Solve the mesh deformation equations based on
the new surface grid to obtain X; and (3) Solve the flowfield
equations to determine the relevant objective function f . The
adjoint-based sensitivity analysis follows three similar steps, al-
beit in reverse fashion: (1) Solve the flowfield adjoint equations,
Eq. 2, for ΛΛΛ f ; (2) Solve the mesh adjoint equations, Eq. 7, for
ΛΛΛg; and (3) Perform an explicit matrix-vector product over the
surface to obtain the desired sensitivities dL

dD . In this manner, a
discretely-consistent sensitivity analysis may be performed at a
cost equivalent to that of the baseline CFD analysis problem and
independent of the dimension of D.

ADJOINT EQUATIONS FOR UNSTEADY FLOWS
A similar approach can be used to derive the adjoint equa-

tions for unsteady flows; however, this procedure is beyond the

current scope. Instead, the reader is referred to [17], which
presents a detailed derivation of the unsteady form of the adjoint
equations for a family of backward-difference temporal schemes.
Terms necessary for dynamic, deforming, parent-child, and over-
set mesh formulations are also included.

IMPLEMENTATION

A broad range of objective functions is available. These
include conventional surface integral quantities such as aerody-
namic coefficients as well as the lift-to-drag ratio, power, and tar-
get pressure distributions for inverse design. Application-specific
metrics such as equivalent area and off-body pressure distribu-
tions for sonic boom mitigation and the figure of merit function
for rotors in hover are also included. Note that any of these func-
tions may also be used as constraint functions in the optimization
problem; the implementation simply performs sensitivity analy-
sis for the specified functions regardless of their role in the design
problem statement.

Design variables may include global inputs such as the
freestream Mach number, angles of attack or sideslip, and nonin-
ertial rotation rates. For shape design, any geometric parameter-
ization of the surface mesh Xsur f (D) may be used, provided the

Jacobian ∂Xsur f
∂D is also supplied. For unsteady flows, kinematic

parameters such as rotation and translation origins, vectors, and
rates may be used as design parameters. The user may also desig-
nate inputs to a user-supplied kinematics routine, such as spline
coefficients, as design parameters. In this manner, very general
kinematic schedules such as that of a biologically-inspired de-
vice [18] may be prescribed and optimized.

To perform an adjoint-based sensitivity analysis, the discrete
residual vector R and the objective function f must be differen-
tiated with respect to the flowfield solution Q and the mesh co-
ordinates X. In the current implementation, this differentiation
is done entirely by hand and verified through an independent ap-
proach described in a subsequent section.

Equation 2 is solved in a pseudo-time marching fashion us-
ing a defect correction technique, which is directly analogous
to that of the baseline CFD analysis [17]. The matrix-vector

product
[

∂R
∂Q

]T
ΛΛΛ f may be evaluated on a term-by-term basis

for memory efficiency or stored explicitly for faster execution.
An arbitrary number of objective functions f may be prescribed;
unique adjoint solutions for each function are efficiently com-
puted in a single execution by accommodating multiple right-
hand side vectors in the solution of Eq. 2. In this manner,
the computational overhead associated with constructing ∂R

∂Q and
the approximate Jacobian matrices used by the defect correction
scheme are amortized over all user-specified functions [14].

Equation 7 is solved using a preconditioned Generalized
Minimum Residual algorithm [19], in which the linear elasticity
coefficient matrix KT is stored explicitly. Following the solu-
tion of Eqs. 2 and 7, Eq. 8 is evaluated to compute the desired
sensitivities.
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Challenges for Unsteady Flows
Unique challenges arise when applying adjoint-based sen-

sitivity analysis to unsteady flows. These include the increased
expense associated with time-dependent computations, big data
requirements, and in the case of eddy-resolving analysis schemes
such as large-eddy or direct numerical simulations, the effects of
chaotic dynamics. The first two challenges are discussed here,
while the third will be addressed in a subsequent section.

Expense For steady flows, the Jacobian matrix
[

∂R
∂Q

]T
is

typically formed once and stored as an explicit matrix to mini-
mize the time required to solve Eq. 2. Although not shown here,
the time-dependent form of the adjoint equations requires the lin-
earizations of R with respect to Q and X to be evaluated at each
physical time step of the solution.

Big Data The time-dependent adjoint equations must be
solved in reverse physical time. This requires that the complete
unsteady flowfield solution be available during reverse integra-
tion. For dynamic grid simulations, the mesh coordinates must
also be available. This storage requirement can amount to many
terabytes of data for realistic applications.

The flowfield solution and mesh coordinates are stored to
disk at the conclusion of each physical time step of the base-
line CFD analysis using a strategy designed to minimize file sys-
tem overhead. The approach is based on a massively parallel
paradigm, in which each processor writes to its own unformatted
direct-access file at each time step. The data writes are buffered
using an asynchronous paradigm, so that execution of floating
point operations for the subsequent time step may proceed simul-
taneously. This approach is described and evaluated in [20] and
has been found to scale well to several thousand processors using
a parallel file system. During the time-dependent adjoint solution
procedure, data are loaded from disk using a reverse paradigm,
such that data required for the solution at time level n− 1 are
preloaded during the computations for time level n. Although
not shown, the sensitivity derivatives computed from the time-
dependent form of Eq. 8 are collected during the reverse-time
solution of the adjoint equations, so no disk space is required to
store the adjoint solutions.

Verification Procedure
Historically, finite differencing has been extensively used to

verify the accuracy of the linearization matrices required by an
adjoint implementation. However, the shortcomings of this ap-
proach are well-known and include the difficulty in selecting an
appropriate step size and the accuracy limitations associated with
finite truncation error. These drawbacks typically limit the agree-
ment that may be obtained with analytic derivatives to 4-5 digits
of accuracy.

A simple, yet extremely powerful mathematical expression
for the derivative of a real-valued function f (x) based on the use
of complex variables was originally introduced in [21, 22] and
resurfaced in [23]. Using this formulation, an expression for the
derivative f ′(x) may be found by expanding the function in a
complex-valued Taylor series, using an imaginary perturbation

iε:

f ′(x) =
Im [ f (x+ iε)]

ε
+O(ε2). (9)

The primary advantage of this method is that true second-order
accuracy may be obtained by selecting a step size without con-
cern for subtractive cancellation errors typically present in real-
valued Frechet derivatives. For computations reported here, the
imaginary step size is chosen to be 10−50, which highlights the
robustness of the approach.

Though seldom referenced in the literature, the earliest
known use of the complex-variable methodology for large-scale
simulation was reported in [24, 25]. Here, the CFD analysis
solver described in the current work was coupled with a finite-
element structural solver and the complex-variable approach was
used to compute sensitivities of aerostructural simulations. To-
day, the technique is widespread not only within the CFD com-
munity, but across a broad range of computational disciplines in-
cluding bioprocess modeling [26], material science [27], chem-
istry [28], thermal analysis [29], geophysics [30], structural anal-
ysis [31], solid mechanics [32], systems and control [33], and
others.

The role of Eq. 9 in verifying adjoint implementations
cannnot be overstated. In early work in which verification studies
relied on real-valued finite differences such as [34], the accuracy
of linearizations could only be demonstrated to approximately
0.01%. The complex-variable methodology revolutionized the
process of adjoint code development, allowing an implementa-
tion to be systematically verified to machine precision, which is
now standard practice [17]. Through the use of an automated
scripting procedure outlined in [35], a complex-variable capa-
bility can be immediately recovered at any time for the analysis
solver used here.

While the complex-variable formulation is invaluable for
development and verification purposes, the method represents
a forward mode of differentation and is therefore generally not
used directly for aerodynamic design applications characterized
by many variables. However, a novel application of the ap-
proach was used to generate adjoint operators in [36]. Here,
complex-valued residual and objective function evaluations were
performed on local stencils to efficiently generate partial deriva-
tives used to assemble complete Jacobian matrices for the ad-
joint equations. The approach was used to demonstrate efficient
adjoint-based sensitivity analysis for complex governing equa-
tion sets involving chemical nonequilibrium effects, for which
hand-differentiation would be extremely cumbersome.

DESIGN APPLICATIONS
Several unsteady applications are included here as examples

of the current adjoint-based design capability. The governing
equations for each application are the compressible Reynolds-
averaged Navier-Stokes equations. Each of the cases shown was
executed on a few thousand computational cores and typically re-
quired O(1) day of wall-clock time to complete. Several widely-
available nonlinear programming packages have been used to
perform the optimizations, and any constraints specified have

4 This material is declared a work of the U.S. Government and is not subject to copyright
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FIGURE 1. SURFACE MESH FOR HIGH-LIFT WING SECTION,
WHERE REGIONS OF CLUSTERING INDICATE JET ORIFICES.
TAKEN FROM [20].

FIGURE 2. UNSTEADY LIFT PROFILES FOR THE BASELINE
AND OPTIMIZED HIGH-LIFT WING CONFIGURATION. TAKEN
FROM [20].

been posed in an explicit fashion. The examples are presented
in order of increasing complexity and the reader is encouraged
to consult the stated references for further details on each of the
simulations shown. The governing equations are the compress-
ible Reynolds-averaged Navier-Stokes equations.

Design of a High-Lift Wing Section with Active Flow
Control

Adjoint-based design of a high-lift wing section with an ac-
tive flow control system has been performed in [20]. The geom-
etry used in this study has been generated by extruding a three-
element airfoil section taken from [37] in the spanwise direction.
A series of ten rectangular jet orifices are located along the chord
of the airfoil, with two orifices located on the slat, three located
on the main element, and the remaining five orifices located on
the flap. An unsteady sinusoidal blowing condition is applied at
the base of each slot to increase the lift produced by the baseline
geometry. The computational mesh consists of 50,870,813 tetra-
hedral elements and the surface mesh is shown in Fig. 1. The
freestream Mach number is 0.1, the angle of attack is 19 deg,
and the Reynolds number is 3 million based on the chord of the

FIGURE 3. MODIFIED F-15 WITH ENGINE DUCT GEOMETRY.
TAKEN FROM [38].

wing.
The objective function is to maximize the time-averaged

value of the lift coefficient. The velocity magnitude, actuation
frequency, actuation phase, chordwise location, and incidence
angle for each individual jet actuator are used as design vari-
ables. The airfoil shape is parameterized using several B-splines,
and the displacements of each B-spline control point normal to
the surface are also used as design variables. Finally, the hor-
izontal, vertical, and rotational displacement of each body may
also vary during the optimization.

Several approaches to the optimization problem have been
evaluated and the unsteady lift histories are shown in Fig. 2. In
the absence of any flow control, the steady-state lift coefficient
for the baseline geometry is 3.79. Using the baseline actuation
parameters, the time-averaged value of the lift coefficient mea-
sured over the final 1,000 time steps is 4.33. As indicated in
the figure, the optimization procedure labeled as Case C results
in a configuration that yields a time-averaged lift coefficient of
5.50, an increase of 27% relative to the lift obtained with non-
optimized actuation.

Design of a Modified F-15 Configuration with Propul-
sion and Simulated Aeroelastic Effects

This example taken from [38] uses a deforming grid ap-
proach to simulate aeroelastic motion of the modified F-15
fighter jet configuration known as NASA research aircraft 837,
shown in Fig. 3.1 The computational model assumes half-
plane symmetry in the spanwise direction. The grid consists of
27,344,343 tetrahedral elements and includes detailed features of
the external airframe as well as the internal ducting upstream of
the engine fan face and the plenum/nozzle combination down-
stream of the turbine. For the current test, the freestream Mach
number is 0.90, the angle of attack is 0 deg, and the Reynolds
number based on the mean aerodynamic chord (MAC) is 1×106.

The prescribed grid motion consists of 5 Hz 0.3 deg oscil-
latory rotations of the canard, wing, and tail surfaces about their
root chord lines, with the wing oscillations 180 deg out of phase

1Data available online at http://www.nasa.gov/centers/dryden/aircraft/F-15B-
837/index.html [retrieved 15 January 2016].5 This material is declared a work of the U.S. Government and is not subject to copyright
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FIGURE 4. LIFT-TO-DRAG RATIO FOR MODIFIED F-15 BE-
FORE AND AFTER DESIGN OPTIMIZATION. TAKEN FROM [38].

FIGURE 5. CROSS-SECTION OF ENGINE PLUME CONTOURS
FOR MODIFIED F-15. TAKEN FROM [38].

with the canard and tail motion. In addition, the main wing is
also subjected to a 5 Hz oscillatory twisting motion for which
the amplitude decays linearly from 0.5 deg at the wing tip to 0
deg at the wing root and takes place about the quarter-chord line.
This composite motion results in a maximum wing tip deflection
of approximately 1.3% MAC.

The unsteady lift-to-drag ratio (L/D) for the baseline con-
figuration undergoing the specified motion for 300 time steps is
shown as the solid line in Fig. 4. The L/D behavior begins to
exhibit a periodic response after approximately 100 time steps.
The high-frequency oscillations in the profile are believed to be
due to a small unsteadiness in the engine plume shown in Fig. 5;
this behavior is also present when the mesh is held fixed.

The objective function for the design problem is to maxi-
mize L/D between time steps 201 and 300. Design variables
include thickness and camber distributions for the canard, wing,
and tail surfaces. Thinning of the geometry is not permitted, and
other bound constraints are chosen to avoid nonphysical geome-
tries.

FIGURE 6. SURFACE MESH FOR UH-60A CONFIGURATION.
TAKEN FROM [17].

Design Cycle
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FIGURE 7. CONVERGENCE OF THE OBJECTIVE FUNCTION
AND CONSTRAINTS FOR THE UH-60A CONFIGURATION.
TAKEN FROM [17].

The final L/D profile is included as the dashed line in Fig. 4.
Although not shown, the design procedure has increased the
thickness of the wing and canard, as well as the camber across
all three elements. The trailing edges of each surface have also
been deflected in a downward fashion.

Constrained Design of a UH-60A Blackhawk Helicopter
To demonstrate the adjoint-based design capability for sim-

ulations involving dynamic overset grids, an optimization of a
UH-60A Blackhawk helicopter has been presented in [17]. Here,
the composite overset grid system consists of four blade compo-
nent grids and a single component grid containing the fuselage
and outer extent of the computational domain. The complete grid
system contains 54,642,499 tetrahedral elements and the surface
meshes are shown in Fig. 6.

The simulation is based on a forward flight condition with a
blade tip Mach number equal to 0.6378 and a Reynolds number
of 7.3 million based on the blade tip chord. The advance ratio
is 0.37 and the angle of attack is 0 deg. The rotor blades are
subjected to a time-dependent pitching motion that is modeled as
a child of the azimuthal rotation and is governed by a sinusoidal

6 This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States. Approved for public release; distribution is unlimited.



FIGURE 8. SENSITIVITY OF GROUND-BASED NOISE METRIC TO SURFACE PERTURBATIONS IN THE NORMAL DIRECTION FOR A
SUPERSONIC VEHICLE CONCEPT, BEFORE AND AFTER OPTIMIZATION. TAKEN FROM [39].

variation based on collective and cyclic control inputs:

θ = θc +θ1ccosψ +θ1ssinψ (10)

Here, θ is the current blade pitch setting, ψ is the current azimuth
position for the blade, θc represents the collective control input,
and θ1c and θ1s are the lateral and longitudinal cyclic control
inputs, respectively. All three control inputs are set to 0 deg at
the baseline condition; i.e., the vehicle is initially untrimmed.

The objective for the current test case is to maximize the lift
acting on the vehicle while satisfying explicit constraints on the
lateral and longitudinal moments such that the final result is a
trimmed flight condition. The initial mean value of the unsteady
lift profile is 0.023. The design variables consist of 64 shape pa-
rameters describing the rotor blades, including 32 thickness and
32 camber variables. While the camber is allowed to increase or
decrease, no thinning of the blade is allowed. In addition, the
control variables θc, θ1c, and θ1s are also used as design vari-
ables. These control angles are allowed to vary as much as ±7
deg.

Figure 7 shows the convergence of the objective function
and constraints after three design cycles. The optimization pro-
cedure quickly locates a feasible region in the design space based
on the two moment constraints, and the value of the objective
function is successfully reduced. The mean value of the final
unsteady lift profile has been substantially increased to a value
of 0.103, and the vehicle is trimmed for level flight within the
requested tolerance.

OTHER USES
The adjoint-based capability described here has also had im-

pact in areas beyond fluid design problems. Examples of its ap-
plication to multidisciplinary optimization and error estimation
and mesh adaptation are briefly described here.

Multidisciplinary Design Problems
While many applications of adjoint-based sensitivity analy-

sis and design have been demonstrated for a broad range of CFD
simulations, a similar approach can also be formulated across
disciplines. In this manner, the algorithmic efficiency of adjoint
methods can be brought to bear on multidisciplinary design prob-
lems previously considered computationally intractable.

Such an approach has recently been applied to coupled sim-
ulations aimed at sonic boom mitigation. In this application, the
designer is interested in the impact of pressure disturbances gen-
erated by aircraft operating several miles above an observer at
ground level. In general, it is computationally infeasible to re-
solve the entire domain using a traditional CFD method. Instead,
high-fidelity CFD simulations are typically used to predict the
highly nonlinear flowfield only in the immediate vicinity of the
vehicle. This solution for the near-field pressure distribution is
then propagated to a ground-based observer using inexpensive
propagation techniques. Finally, the ground-level pressure dis-
tribution can be converted to a noise metric suitable for trade
studies.

In [39], an adjoint-based sensitivity analysis procedure
has been applied to a sonic boom prediction methodology
using CFD-based simulations for near-field analysis, a one-
dimensional Burgers equation for atmospheric propagation, and
noise-processing techniques to ultimately determine human im-

7 This material is declared a work of the U.S. Government and is not subject to copyright
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pact metrics. To perform a rigorous sensitivity analysis of this
coupled system, the sensitivities of the ground-based noise met-
rics with respect to the propagated pressure signal are first de-
termined. These sensitivities are then propagated from ground
level to the location of the CFD interface using a discrete ad-
joint formulation for the atmospheric propagation. Finally, these
sensitivities at the interface with the CFD mesh provide a forc-
ing function for the CFD adjoint problem, ultimately enabling
the computation of discretely-consistent sensitivities of ground-
based noise metrics with respect to geometric (or any other) pa-
rameters characterizing the aircraft configuration. Rather than
relying on conventional heuristic trial-and-error methods, air-
craft designers may instead apply the adjoint-based approach to
perform rigorous optimization of vehicle concepts using ground-
based noise metrics.

Figure 8 shows the sensitivity of the ground-based objec-
tive function to surface perturbations normal to the aircraft outer
mold line. Results are shown for the vehicle upper and lower sur-
faces before and after the optimization. The sensitivities on the
fuselage, wing, tail, and nacelle surfaces have been substantially
reduced by the design procedure. For this case, the A-weighted
and perceived loudness metrics computed at ground level were
reduced from 65.2 dBA to 59.8 dBA and 79.7 dB to 74.9 dB,
respectively.

Efforts are currently focused on similar integration strategies
for disciplinary models such as structures and materials, propul-
sion, multibody dynamics, acoustics, flight control, and optics.

Error Estimation and Mesh Adaptation

The adjoint-based methodology described here has also en-
abled a rigorous approach to error estimation and mesh adap-
tation for CFD simulations [40]. By inspection of Eq. 2, it is
apparent that the adjoint variable ΛΛΛ f represents the sensitivity of
the objective function to local truncation error. This sensitivity
vector can be used along with a measure of the local truncation
error to provide estimates of local contributions to the error in
computing the objective function f . Furthermore, a direct rela-
tionship between local grid spacing requirements and the desired
solution accuracy for f can be established. In this manner, mesh
adaptation can be systematically guided by the requirements of
the underlying partial differential equations. This approach has
proven vastly superior to feature-based adaptation processes re-
lying on heuristic measures such as solution gradients, which of-
ten produce visually attractive results but lack the mathematical
rigor.

An example of adjoint-based mesh adaptation taken from
[41] is included in Fig. 9. Here, the mesh for an engine noz-
zle operating in a supersonic external flow has been adapted to
reduce the error in computing an off-body pressure signal for
sonic boom analysis. The adjoint-based procedure has implic-
itly determined the regions of the domain critical to computing
the function of interest, refining the mesh in the vicinity of sev-
eral shock structures and smooth expansion regions as well as
the shear layers propagating downstream from the cowl and plug
surfaces.

FIGURE 9. ADJOINT-BASED MESH ADAPTATION FOR AN EN-
GINE NOZZLE IN A SUPERSONIC EXTERNAL FLOW. TAKEN
FROM [41].

AN EMERGING CHALLENGE: CHAOS
Gradient-based sensitivity analysis has proven to be an en-

abling technology for many applications, including design of
aerospace vehicles. However, conventional sensitivity analy-
sis methods break down when applied to long-time averages of
chaotic systems. This breakdown is a serious limitation because
many aerospace applications involve physical phenomena that
exhibit chaotic dynamics, most notably high-resolution large-
eddy and direct numerical simulations of turbulent aerodynamic
flows.

The breakdown of conventional sensitivity analysis can be
traced to certain fundamental properties of chaotic systems.
Specifically, Lorenz’s butterfly effect implies that the time evo-
lution of a chaotic system is highly sensitive to initial condi-
tions [42]. A small perturbation to initial conditions may grow
exponentially over time, resulting in large differences in instanta-
neous solutions. This high sensitivity is observed for all chaotic
systems.

A recently proposed methodology, Least Squares Shadow-
ing (LSS) [43], avoids this breakdown and advances the state
of the art in sensitivity analysis for chaotic flows. This method
transforms the conventional time-marching problem to a coupled
space-time system. The first application of LSS to a chaotic flow
simulated with a large-scale CFD solver was presented in [44].
The LSS sensitivity for a chaotic two-dimensional inviscid flow
was verified and shown to be accurate, but the computational cost
was estimated to be at least five orders of magnitude more than
the cost of the baseline analysis problem.

The LSS approach represents the most efficient sensitiv-
ity analysis method for chaotic flows developed to date; how-
ever, its application remains prohibitively expensive for practical
aerospace simulations. Revolutionary breakthroughs in solution
technologies for LSS sensitivity analysis as well as increased
availability of leadership-class computing resources are needed
to enable practical high-fidelity design for aerospace applications
involving chaotic flows.

SUMMARY
Adjoint-based techniques provide an enabling technology

for aerodynamic design of complex aerospace vehicles which
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require expensive physics-based simulations. The approach has
been successfully demonstrated across a broad range of problems
governed by both steady and unsteady flows. The methodology
has also had a significant impact on the field of error estima-
tion and mesh adaptation, and is increasingly used for sensitivity
analysis of multidisciplinary applications. However, consider-
able challenges continue to face the community, such as the ap-
plication of these techniques to problems involving chaotic dy-
namics.
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