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Abstract. Nonlinear entropy stability and a summation-by-parts framework are used to derive
provably stable, polynomial-based spectral collocation element methods of arbitrary order for the
compressible Navier—Stokes equations. The new methods are similar to strong form, nodal discontin-
uous Galerkin spectral elements but conserve entropy for the Euler equations and are entropy stable
for the Navier—Stokes equations. Shock capturing follows immediately by combining them with a
dissipative companion operator via a comparison approach. Smooth and discontinuous test cases are
presented that demonstrate their efficacy.
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1. Introduction. Next generation numerical algorithms for use in large eddy
simulations (LES) and hybrid Reynolds-averaged Navier—Stokes (RANS)-LES sim-
ulations will undoubtedly rely on efficient high-order formulations. Although high-
order techniques are well suited for LES, most lack robustness when the solution
contains discontinuities or even underresolved physical features. Although a variety
of stabilization techniques have been developed for second-order methods (e.g., total
variation diminishing (TVD) limiters [35], and entropy stability [40]), extending these
techniques to high-order formulations has been problematic. High-order essentially
nonoscillatory (ENO) [20, 36] and weighted ENO (WENO) [31, 25] schemes provide
a partial remedy to the problem; they achieve high-order design accuracy away from
captured discontinuities and maintain sharp “nearly monotone” captured shocks. Un-
fortunately, nonoscillatory schemes experience instabilities in less than ideal circum-
stances (e.g., curvilinear mapped grids or expansion of flows into vacuum). Because
nonoscillatory schemes are largely based on stencil biasing heuristics rather than sta-
bility analysis, there is little theory to guide further development efforts focused on
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alleviating instabilities.

Recent references [12, 13, 4] provide a general procedure for developing entropy
conservative and entropy stable diagonal norm summation-by-parts (SBP) operators
for the Navier—Stokes equations. The generalization to multidomain operators fol-
lows immediately using simultaneous-approximation-term (SAT) penalty type inter-
face conditions [8]. The work generalizes entropy stability results appearing in the
finite-volume/finite-difference literature by several authors over the past two decades
[40, 41, 30, 24, 16]; an overview of the evolutionary developments is presented else-
where [3]. Although the primary focus of references [12, 13] is entropy stable WENO
finite-difference schemes, all proofs immediately generalize to any order spatial dis-
cretization that may be expressed as a nondissipative diagonal norm SBP-SAT oper-
ator [4].

Spectral collocation operators are readily expressed in SBP-SAT form [5, 22, 9,
17], although not all may be expressed as diagonal norm SBP operators; e.g., the
mass matrix of a Chebyshev operator is full. Legendre collocation schemes, however,
may be expressed as diagonal norm SBP operators and therefore satisfy the sufficient
conditions for an entropy stable implementation.

Conservation form entropy conservative Legendre spectral collocation schemes
are developed herein for the Navier—Stokes equations. An SBP-SAT developmental
framework is used to motivate the development. Because this framework differs from
the conventional approaches used in the spectral element and finite-element method
(FEM) literature [21], the resulting schemes have some desirable properties. The
SBP-SAT Legendre spectral collocation schemes are strictly conservative and entropy
conservative for the Euler equations, for arbitrary order polynomials. Simultane-
ously satisfying mass, momentum, energy, and entropy constraints is a very desirable
property. The entropy constraint enforces nonlinear neutral stability for the Euler
equations—a stability datum neither dissipative nor divergent against which all other
operators may be compared. The strong conservation form representation allows them
to be readily extended to capture shocks via a comparison approach [41, 13].

Nonlinear entropy stability for the Navier—Stokes equations is not new. Proofs
first appeared in the work of Hughes, Franca, and Mallet [23] in the context of Galerkin
and Petrov—Galerkin FEMs. Stability is achieved by rotating the conservative equa-
tions into symmetric form followed by a conventional FEM implementation. The flaw
in this approach is that symmetrizing the equations raises the question of whether
the method is consistent with the Lax—Wendroff theorem.

Conservation form entropy stability proofs for alternative nonlinear equations ap-
pear in many finite-element texts (e.g., see Hesthaven and Warburton [21] for a discus-
sion of the Burgers equation). A sharp extension to the compressible Navier—Stokes
equations in conservation form has not been forthcoming to the best of our knowledge.
Indeed, a fundamental obstacle in FEM proofs is the requirement for exact integra-
tion formulae, a feat that is all but impossible for the compressible Navier—Stokes
equations. (Recasting the equations in entropy variables again raises the question
of consistency with the Lax—Wendroff theorem.) The SBP-SAT Legendre entropy
stability proofs do not suffer these limitations.

The entropy stable spectral collocation element (SSSCE) schemes provide an im-
portant step toward a provably stable simulation methodology of arbitrary order for
complex geometries. All proofs generalize immediately to three dimensions via ten-
sor product arithmetic, to three-dimensional (3D) curvilinear coordinates [11], and
to multiple domains via an SAT penalty approach. Several major hurdles remain,
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however, on the path toward complete L? stability of the compressible Navier—Stokes
equations, including shocks.

A major difficulty is the formulation of the comparison algorithm used to capture
shocks. In a comparison approach, the entropy conservative formulation is used in
conjunction with a companion algorithm that is dissipative. The entropy generated
by the companion scheme is compared with the entropy datum, and if the entropy
condition is violated, then more dissipation is added locally. Several companion op-
erators are considered herein (e.g., WENO, MUSCL, and strong form nodal DG) for
the purpose of demonstrating the comparison approach for the SSSCE schemes. The
optimal companion operator for an SSSCE scheme is still an open question and is the
topic of ongoing research.

A second obstacle is the need for well-posed physical boundary conditions for the
Navier—Stokes equations that preserve the entropy stability property of the interior
operator. Nonlinearly stable boundary conditions for the Euler equations appear in
reference [39] but do not include viscous effects. Another obstacle is the need for
a temporal discretization that preserves the semidiscrete entropy stability properties
(e.g., the trapezoidal rule) [41] and maintains positivity of the density and tempera-
ture. Neither boundary conditions nor temporal discretizations are addressed herein.

The organization of this paper is as follows. The theory of SBP-SAT operators
and their relationship to polynomial spectral collocation formulations is presented in
section 2. This discussion is tutorial in extent and may be skipped by readers familiar
with SBP-SAT nomenclature and operators. Section 3 presents an introduction to
continuous entropy analysis followed by semidiscrete analysis that demonstrates the
entropy-mimetic properties of diagonal norm SBP operators. The analysis is valid
for arbitrarily high-order accurate Legendre spectral collocation operators. Section 4
presents the SAT inviscid and viscous coupling conditions used to connect adjoining
elements. Section 5 provides a discussion on the comparison approach as applied to
the SSSCE schemes. Details of the implementation of entropy conservative operators
in the context of the compressible Euler and Navier—Stokes equations are provided in
section 6. Finally, the accuracy of the resulting high-order schemes is demonstrated
in section 7, and conclusions are discussed in section 8.

2. Methodology. Consider the calorically perfect Navier—Stokes equations, which
may be expressed in the form

G+ (e, = (f)ay, 2€Q, te0,00),
(2.1) Bg=g,, x€09Q, te€]0,00),
q(z,0) = go(x), x €9,

where the Cartesian coordinates, © = (xl,xg,xg)T, and time, t, are independent
variables, and index sums are implied. The vectors ¢, f*, and f(*)* are the conserved
variables, the conserved inviscid fluxes, and the viscous fluxes, respectively. Without
loss of generality, a 3D box
Q= [CClL,:E{{] X [xé,xf] X [!’Eé,x?]

is chosen as our physical domain with 02 representing the boundary of the domain.
The boundary vector, g, is assumed to contain well-posed Dirichlet/Neumann data.
We have omitted a detailed description of the 3D Navier—Stokes equations, which may
be found elsewhere [11].
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The physical domain is divided into subdomains (elements). The Navier—Stokes
equations are then discretized on each element using an entropy stable spectral col-
location method; details of the semidiscrete operators are included in sections 2 and
3. Adjoining elements are then coupled in a conservative and design order fashion,
while preserving an entropy estimate across the interface; details are provided in sec-
tion 4. The analysis and simulations presented herein assume variable size Cartesian
elements.

2.1. Summation-by-parts operators.

2.1.1. First derivative. First derivative operators that satisfy the SBP con-
vention discretely mimic the integration-by-parts condition

TR - TR
(2:2) / $qx dx = dq|3 7 —/ ¢zqda.

This mimetic property is achieved by constructing the first derivative approximation,
D¢, with an operator in the form

D=PtQ, P=PL ¢TP¢>0, ¢#0,

2.3
(2:3) QT =B-Q, B=diag(—1,0,...,0,1).

While it is not true in general that P is diagonal, herein the focus is exclusively on
diagonal norm SBP operators based on fixed element-based polynomials. The matrix
P may be thought of as a mass matrix in the context of Galerkin finite elements and
incorporates the local grid spacing into the derivative definition. The nearly skew-
symmetric matrix, Q, is an undivided differencing operator where all rows sum to
zero and the first and last columns sum to —1 and 1, respectively. The accuracy of
the first derivative operator, D, may be expressed as

(2.4) 62(%) = Dp+ Tipr1), & = (@(21), $(w2),..., d(an))"

where 7,41y is the truncation error of the approximation, and p is the order of
the polynomial. Integration in the approximation space is conducted using an inner
product with the appropriate integration weights provided by the norm P,

(25) / : (qu dz ~ ¢T7:)Dq7 q= (q(xl)v Q(xQ)a ey Q(xN))T

Using the definitions provided in (2.3), the SBP property is demonstrated:
(2.6) ¢"PP'Qq=¢" (B- Q") a=dnay — ras — " D" Pa.

Note that in (2.6) the action of the discrete derivative is transferred directly onto the
test function with an equivalent order of approximation.
The specific operators used in this work are presented elsewhere [3].

2.1.2. The second derivative. The viscous approximations are written in gen-
eral as

(2.7) (0(2)q. (%)), = Da(9)q + T,

and also satisfy the SBP condition. Integration by parts yields

TR TR
(2.8) / ¢ (0qs), dz = ¢0q. |77 —/ 0p0q, dz.



ENTROPY STABLE SPECTRAL COLLOCATION B&39

The second derivative variable coefficient operator resulting from two applications of
the first derivative may be manipulated for diagonal norm, P, into the expression
(2.9)

Do (9) =P~ (-=D"PW|D + BYD), D'PWD= (DTP[ﬁ]D)T, [0] = diag (¥(x)),

¢F(DPWID) ¢ =0, ¢TWIC=0 VC.
The P-norm inner product yields the expression
(2.10) ¢" PP~ (=D'PWID + BW]D) q = ¢" BY|Dq — ¢" (D" P[Y]D) q,

which is the form used to show stability of the viscous terms. It is clear that the
continuous interface terms are mimicked. Likewise, based on the definition (2.9), the
expression

/ o ¢:0q, dz ~ ¢" (DTP]D) q

follows immediately.

2.1.3. Complementary grids. Most existing entropy analysis is performed in
indicial notation on a staggered set of solution and flux points. For example, Tadmor’s
telescopic entropy flux relation (fully defined in section 3.2.2) is written as

(wip1 —wi)" fi = i1 — U
and relates solution point data w;, w41, s, ;41 with a flux ﬁ located between the
grid points. Conventional SBP operators are not directly applicable to this form
of analysis; generalized operators suitable for a staggered grid implementation are
now developed. The complementary grids and their properties are defined in this
subsection. In subsection 2.1.4 it is shown that SBP operators satisfy a generalized

SBP property on the complementary grids.
Define on the interval —1 < z < 1 the vectors of discrete solution points

T
(2.11) X = [21,22,...,ZN-1,ZN] i —1 < wp,ae,. ., ono, 2y <1

Since the approximate solution is constructed at these points, they are denoted the
solution points. It is useful to create a set of (N + 1) intermediate points X defining
control volume bounds around each solution point. These points are denoted fluzx
points as they are similar in nature to the control volume edges employed in the finite-
volume method. The distribution of the flux points depends on the discretization
operator D = P~'Q. The spacing between the flux points is implicitly defined by
the norm P; the diagonal elements of P are equal to the spacing between flux points,

— _ _ _ T _ _
x = (%o, Z1,...,ZTN)" , To=2x1, IN=2N,

(2.12) )
T —Ti-1=Puyu, 1=12,...,N.

In operator notation, this is equivalent to

(2.13) Ax=P1 ; 1=(1,1,...,1)",
where the N x (N + 1) matrix A is defined as
1 1 0 0 0 0
0 -1 1 0 0 O
(2.14) A=l 0 o " 0 0
0 0o o0 -1 1 O
0 o 0 0 -1 1
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and calculates the undivided difference of the two adjacent flux points.
Note that in (2.12), the first and last flux points are coincident with the first and
last solution points. This fact enables the endpoint fluxes to be consistent:

(2.15) Jo=f(@), fv=[(an).

This duality is needed to define unique operators and is important in proving entropy
stability.

Remark. The introduction of complementary grids makes nomenclature signifi-
cantly more challenging. Herein, all vectors are represented in bold font, while matri-
ces (when possible) are represented using calligraphic font. The “over-bar” symbol is
reserved for flux point vectors; the N + 1 dimensional flux point vectors are numbered
from 0 < ¢ < N. In general, matrix ranks are inferred by the dimension of the vectors
on which they operate. If the rank of a matrix or vector is ambiguous, then the rank
is provided in the text.

2.1.4. Telescopic flux form. Reference [14] proves that any SBP matrix Q can
be expressed as @ = A (y41)[,: the product of the N x (N + 1) difference operator
A and a unique (N 4-1) x N interpolation operator (y41)l,. Thus, all SBP derivative
operators D = P~!Q can be manipulated into the telescopic flux form,

(2.16) fa(@) =P71Of + T(p1) = PTHAT + Tipiny

with f = (N+1)In £. Conservation follows immediately for telescopic derivative oper-
ators in the form of (2.16). The following lemma reiterates this telescopic property
of all SBP operators. (The original proof appears in reference [14].)

LEmMA 2.1. All differentiation matrices that satisfy the SBP convention given
in (2.3) are telescopic operators in the norm P and the difference operator A.

This telescopic flux form of D motivates a generalized SBP property. (See (2.34)
for the conventional SBP property.) The telescopic flux form defined in (2.16) com-
bined with the flux consistency condition results in a more generalized relation,

(2.17) PTPPIAT = ¢T(B— A = fgn)on — f(q1)d1 — @7 AT,
where
0 -1 0 0 0 0 -1 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 00
A=19 o o ol B=|1 0 0 - . 00|
0 0 0 1 —-10 0 0 0 0 00
0 0 0 0 1 0 0 0 0 0 01

and

L 75 T

—¢ A= 06

= ®"A = ¢ + 0(x)
with dz an average distance between collocation points.

This is equivalent to the commonly used explanation of SBP in indicial form,

N—-1

(218) Zd’l i fz 1 = f(QN)(bN - Q1 (bl Z fz ¢1+1 d)z)

=1
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Like the conventional SBP operator, the action of the derivative is moved onto the
test function. However, the test function derivative is only first-order accurate. This
generalized SBP property is used herein to construct entropy conservative fluxes and
is also instrumental for satisfying the Lax—Wendroff theorem [28] in weak form.

Likewise, the variable coefficient viscous operators presented in section 2.1.2 may
be expressed in the form

(2.19) (040 (x))a ~ P~1 (~=DTPI)D + BID) q = P~ AF "
and satisfy a telescopic conservation property which is identical to that of the inviscid
terms.

2.1.5. The semidiscrete operator. Based on the previous discussion of SBP
operators and their equivalent telescopic form, the semidiscrete form of (2.1) becomes
(2.20)

a: = —Dilf'(v)] + Dild];;Dja+ P g + &) = P A, (—?i +f(v)i) +P e+ 8
q(z,0) = go(z), =€Q,

with g, and g; enforcing of physical boundary conditions and element-element inter-
face conditions, respectively. Full implementation details of the interior operators,
including the viscous Jacobian [c];; tensors, are included in previous works [14, 15].
Both g, and g; are constructed using a penalty approach. Specific details on the
construction of boundary g, and interface g; penalty terms are given in subsection
2.4 and in section 4, respectively.

2.2. Spectral discretization operators. Spectral collocation methods are com-
monly implemented on computational grids based on the nodes of Gauss quadrature
formulas (i.e., Gauss, Gauss-Radau, or Gauss-Lobatto (GL)).

The numerical methods developed herein are all collocated at the Legendre GL
(LGL) points and include both endpoints of the interval. Including the endpoints in
the grid distribution allows the operators to be written in terms of flux differences,
analogous to a finite-volume method and consistent with (2.17) and (2.19). The
complete discretization operator for the p = 4 element is illustrated in Figure 1.

fo fu fa f3 fa fs

f fa f3 fa fs

0 uy Uz us 4
x e x . x °

T T2 xs3 T4 Zs5

To ©1 o I3 F4 Ts
-9 3 —16 +16 3 +9

-1 1 -7 Fo 0 o Vi 1w

Fic. 1. The one-dimensional discretization for p = 4 Legendre collocation is illustrated. Solu-
tion points are denoted by e and flux points are denoted by X.

2.2.1. Lagrange polynomials. Define the Lagrange polynomials on the dis-
crete points x as

N
r — T .
(2.21) Li(z) = [[ ——=, 1<j<N
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With a slight abuse of notation, define the vector of Lagrange polynomials as

(2.22) L(z) = [L1(2),Ly(),...,Ly_1(x), Ly(2)]".

2.3. Differentiation. Assume that a smooth and (infinitely) differentiable func-
tion, f(x), is defined on the interval —1 < z < 1. Reading the function f and
derivative f’ at the discrete points, x, yields the vectors

f(x) (@), f(2), oo, flan—), flan)]s
F(x) = [f'(@n), f'(@2),o o f'anmn), fan)]"

The interpolation polynomial, fn(x), that collocates f(x) at the points x is given
by the contraction

(2.24) f@) = fov-n(z) = L) f(x).

Derivative operators expressed in terms of the Lagrange polynomials on the interval
are derived in the following theorem, presented without proof. (The proof appears in
many texts, e.g., reference [26].)

THEOREM 2.2. The derivative operator that exvactly differentiates an arbitrary
nth order polynomial at the collocation points, X, is

(2.23)

(2.25) D = [Lj(x;)] .
The elements of D are d; j for 1 <14, j <p.

An equivalent representation of the differentiation operator may also be used; it
satisfies all the requirements for being an SBP operator (but in general will not be a
diagonal norm SBP operator).

THEOREM 2.3. The derivative operator that exvactly differentiates an arbitrary
pth order polynomial (p = N — 1) at the collocation points, x, may be expressed as

(2.26) D=P'Q.

Proof. First note that in addition to (2.33), the exact derivative dj;(;) of the
function f(x) may be approximated by

o dfn(z)

(2.27) fa) ~ D = L) o).

The Galerkin statement demands that the integral error between the two expressions
be orthogonal to the basis set which in this case is the Lagrange polynomials L(z).
This statement may be expressed as

(2.28) / 11L<x> (@) ") - [LXx)]Tf(x)) dv =0,

or in the equivalent form

(2:29) Pf(x) = Qf(x),

with

(2.:30) P = [LL@L@ d Q= [ L@ @) do
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Equation (2.26) follows immediately when P is symmetric positive definite (SPD) and
therefore invertible.

The symmetry of P follows immediately from definition (2.30). Positive defi-
niteness of P is established by pre- and postmultiplying P by an arbitrary nonzero
discrete vector, v, which yields the expression

(2.31) WTPy = [ L)L) Y de = [1 v(x)’ do

which is strictly greater than zero unless v is the null vector. Thus, the matrix P is
SPD and therefore invertible, and (2.26) follows immediately. |
A proof that Q is nearly skew-symmetric is as follows.

THEOREM 2.4. The matriz Q = fil L(x)[L’ (a:)]de is structurally of the form

(2.32) 9+ 0" =

Thus, by virtue of the structure of P and Q, the differentiation operator, D, is
indeed an SBP operator defined by (2.3).

Proof. Integrating by parts the definition of Q yields the expression
(2.33)

o / dz = L()(+1)[L(2) (+1)]” L) (- ) [L(x) (~ 1))~ / @)L

All Lagrange polynomials based on the GL collocation points vanish on the bound-
aries for 1 < 4, j < N. Thus, the boundary matrices reduce to the form

L(+1)[L(+1)]" - L(-1)[L(-1)]" = & x6;x — 8;,10;,1.

Writing (2.33) in indicial nomenclature leads to ¢; j + ¢j,; = d; nNOj N — 0;,10;,1, which
is the desired result. O

2.3.1. Collocation. A Legendre collocation operator may be constructed by
approximating the integrals in (2.30), (2.31), and (2.4) by the LGL quadrature for-
mula. Let n = (n1,72,...,IN— 1,77N) be the nodes of the LGL quadrature formula
(i.e., the zeros of the polynomial P, ,(z)(1 — z?) [26]), and let w;, 1 <1 < N, be
the quadrature weights. Define L(m, x) as the vector of Lagrange polynomials L(x)
evaluated at the quadrature point 7;; i.e.,

L(m;x) = [Li(m), La(m), ..., Ln(m)]".

Using these definitions, the mass and stiffness matrices P and Q. are given by
the expressions

T

(2.34) = 3, L %) [Ln; %)) w ;o Qe = S, Lux)[L (n;x)] w -

The matrix P is SPD for any x [5].

Note that, in general, P # P. The LGL formula is exact for polynomials of
degree 2p — 1, but fil L(a:)[L(x)]T dz is of degree 2p. Thus, the integration differs
for the highest-order term (i.e., the 2pth). Indeed, the two matrix norms differ by a
rank one perturbation, i.e., P = P + vpDPeq [DPeO]T, where g = [1,0,..., ()]T, DP
is the highest derivative supported by the polynomial, and 7y, depends on polynomial
order.
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The matrices Q and Q. are equivalent. This follows from the fact that the two

T
matrices are defined by the polynomials fil L(z)[L (x)] dz that have a combined
rank of 2p—1. Therefore, integration is exact when using the LGL integration formula.
The uniqueness of the differentiation matrix D yields the expression

D=P"'0="P"Q.

This statement does not contradict the fact that P # P. Indeed, it can be shown
using the Sherman—Morrison formula that the difference (i.e., P~ —P~1) lies in the
null space of the singular Q matrix.

2.3.2. Diagonal norm SBP operators.

THEOREM 2.5. The matriz P is diagonal for collocation points located at the
LGL quadrature points, i.e., x = n. Furthermore, the diagonal coefficients of P are
the integration weights wy, 1 <1 < N, used in the quadrature.

Proof. Recall that the Lagrange polynomials evaluated at the knot points satisfy
the property L;(x;) = J; ;. Thus, the result follows immediately from the definition

of the norm P = >, L x)[L(m; x)]Twl. O

2.4. SAT penalty boundary and interface conditions. Physical boundary
conditions and coupling conditions between adjoining elements greatly influence the
stability and accuracy of the solution. A straightforward method that permits for-
mal analysis is the SAT penalty method. The SAT method solves the governing
equation on the boundary (interface) and simultaneously penalizes the numerical so-
lution against well-posed physical (interface) data. This technique is design order
accurate provided the solution is penalized against accurate data and can be used to
design conservative boundary (interface) conditions that are provably stable. Gen-
eral construction and implementation details of penalty type boundary conditions
can be found in [6]. A full description of the boundary conditions that are designed
specifically for the Navier—Stokes equations can be found in [38, 37, 34, 2].

Remark. The test problems studied herein are limited to open boundaries. The
numerical SAT boundary conditions are based on the linear analysis of Svérd, Car-
penter, and Nordstrém [37] and are enforced via the term g in (2.20). Boundary
conditions that preserve the nonlinear entropy stability of the interior operator are
currently not available (to the best of our knowledge) for the Navier—Stokes equations.

3. Entropy stable spectral collocation: Single domain.
3.1. Continuous analysis.

3.1.1. Smooth solutions. Consider a nonlinear system of equations (e.g., the
Navier—Stokes equations given in (2.1)), and assume that the solution is smooth for
all time. The objective is to bound the solution as sharply as possible. A quadratic or
otherwise convex extension of the original equations is sought, that when integrated
over the domain depends only on boundary data and dissipative terms. The convex
extension for the Navier—Stokes equations is the entropy function and provides a
mechanism for proving stability of the nonlinear system.

DEFINITION 3.1. A scalar function S = S(q) is an entropy function of (2.1) if
it satisfies the following conditions:

e The function S(q) is conver and, when differentiated, simultaneously con-
tracts all spatial fluzes as follows:

(3.1) Seft, = Sqfite, = Fige, = Fi, ; i=1,....d,
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for each spatial coordinate, d. The components of the contracting vector, Sy,
are the entropy variables denoted as wl' = S,. F(q) are the entropy fluzes
in the i-direction.

e The entropy variables, w, symmetrize (2.1) if w assumes the role of a new
dependent variable (i.e., ¢ = q(w)). Ezpressing (2.1) in terms of w is
(3.2)
qt + (fl)rl - (.f(v)l)zz = quWi + (f’;)wmm - (éljwry)zl =0 ; ¢=1,....4

: " T i iTo T
with the symmetry conditions ¢, = [quw]” , fo, = fu » Cij = &j;-
Because the entropy is convez, the Hessian Sqq = wq is SPD,

(33) (T84 >0 V¢ #£0,

and yields a one-to-one mapping from conservation variables, q, to entropy variables,
wl = S,. Likewise, w, is SPD because q, = w,~ ' and SPD matrices are invertible.
The entropy and corresponding entropy fluz are often denoted an entropy—entropy flux
pair, (S, F). Likewise, the potential and the corresponding potential flux (defined next)
are denoted a potential-potential fluz pair, (p,) [41].

The symmetry of the matrices ¢, and fi indicates that the conservation vari-
ables, ¢, and fluxes, f?, are Jacobians of scalar functions with respect to the entropy
variables,

(3.4) " =pu, [ =i,

where the nonlinear function, ¢, is called the potential and ¢! are called the potential
fluxes [41]. Just as the entropy function is convex with respect to the conservative
variables (S, is positive definite), the potential function is convex with respect to the
entropy variables.

The two elements of Definition 3.1 are closely related, as is shown by Godunov
[18] and Mock [33]. Godunov proves the following theorem.

THEOREM 3.2. If (2.1) can be symmetrized by introducing new variables w, and
w s a convex function of ¢, then an entropy function S(q) is given by

(3.5) o=wlq- 8,
and the entropy fluzes F'(q) satisfy
(3.6) Pt =wl ff — F1

Mock proves the converse to be true.

THEOREM 3.3. If S(q) is an entropy function of (2.1), then wl = S, symmetrizes
the equation.

See reference [19] for a detailed summary of both proofs.

Entropy stability analysis is now performed on the Navier—Stokes equations. Con-
tracting (2.1) with the entropy variables forms the convex extension; the differential
form of the entropy equation is
(3.7)

S4t+Saf (@)a, = St Fs, = Syf0 = (wT ) —wl f0 = (wTf0) —wleijwn,.
Integrating (3.7) over the domain yields a global conservation statement for the en-
tropy in the domain

d T ¢(v T A
(3.8) E/S)dei: [w 1 )—F]aﬂ—/ﬂw%cijwmidxi.
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It is shown elsewhere [12, 13] that the second integral term in the entropy equation
(3.8) accounts for viscous dissipation and is always negative. Thus, the entropy equa-
tion is the convex extension of the original Navier—Stokes equations and serves as an
integral measure of stability of the system.

3.1.2. Discontinuous solutions. The Euler terms in (2.1) (the convective terms
to the left of the equal sign) admit discontinuous solutions in finite time even for
smooth initial and boundary data. Thus, weak solutions to the integral form of (2.1)
are appropriate for these situations. Although (3.8) is an integral statement of en-
tropy conservation, it is not strictly valid in the presence of discontinuities, because
it does not accurately account for the dissipation of entropy at the discontinuity (i.e.,
shocks).! Although the precise amount of entropy dissipated at a shock is not known
a priori, what is known is the sign of the jump in entropy. Thus, a general (though
not sharp) statement of the conservation of entropy in the domain is

d T
. < (v) _ _ T & v dr:.
(3.9) g /Q Sdz; < [w f F} - /wajc”wggz dz;

Weak solutions in general may not be unique [28, 29]. In these cases, (3.9) is available
to identify spurious solutions that violate the entropy condition from those that are
physically admissible.

3.2. Semidiscrete entropy analysis. The semidiscrete entropy estimate is
achieved by mimicking term by term the continuous estimate given in (3.8). The
nonlinear analysis begins by contracting the entropy variables, w”, with the semi-
discrete equation (2.20). (For clarity of presentation, but without loss of generality,
the derivation is simplified to one spatial dimension. Tensor product algebra allows
the results to extend directly to three dimensions.) The resulting global equation that
governs the semidiscrete decay of entropy is given by

(3.10) wlPq +wlAf = WTA?(U) +wh (8b + i)
where

w = (w(g) w(e)..... wian)")"

the vector of entropy variables. The semidiscrete terms are now analyzed to demon-
strate that they mimic the corresponding term in the continuous entropy estimate,
provided that a diagonal norm SBP operator is used. The analysis of the interface
penalty terms g; is presented in section 4. Recall that the boundary terms g; are
linear and thus are outside the scope of the entropy analysis presented herein.

3.2.1. Time derivative. The time derivative is in mimetic form for diagonal
norm SBP operators. The entropy variables are defined by the expression w? = S,
which when combined with the definition of entropy yields the pointwise expression

wl (@) = (83)q (@) = (Si)e Vi

Now, define the diagonal matrices Sq4 = W = Diag[w]. Since P is a diagonal matrix
and arbitrary diagonal matrices commute, the semidiscrete rate of change of entropy
becomes

wiPq = 1"WPq, = 1"PWq, = 17PSqq; = 17PS,.

INote that mathematical entropy has the opposite sign from thermodynamic entropy in gas
dynamics.
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3.2.2. Inviscid flux conditions. The inviscid portion of (3.10) is entropy con-
servative if it satisfies

(3.11) wlAf = Fqy) — F(q1) = 1TAF.

Recall that w and f, F are defined at the solution points and flux points, respectively.
Tadmor [41] developed a pointwise relation between adjoining solution and flux-point
data that satisfies (3.11); the relation is given by the expression

(wig1 —w)" fi = Pip1 — i

Entropy conservative fluxes that satisfy this two-point shuffle relationship telescope
across the domain when contracted against the entropy variables, leaving only entropy
fluxes on the boundaries. This relationship was developed for second-order centered
operators.

A general strategy for constructing entropy conservative fluxes for high-order SBP
operators is presented in [12, 13, 3]. The proofs of this general approach for building
entropy conservative operators of any order are quite involved. For brevity only the
three essential theorems are included herein.

A general expression that satisfies a pointwise telescopic property similar to Tad-
mor’s entropy flux relation is summarized in the following theorem.

THEOREM 3.4. The local conditions

(312) (wi+1_wi)Tﬁ:¢i+l_¢iﬂ 7’:17277N_1 ) ’@[;1:2/]17 &N:%/JNa
when summed, telescope across the domain and satisfy the entropy conservative con-

dition given in (3.11). A flux that satisfies this condition given in (3.12) is denoted

fi(s). The potentials ;11 and 1@- need not be the pointwise ;11 and ;, respectively.
Proof. See Theorem 3.3 in [3] for the proof of this theorem. O
Note that although Theorem 3.4 provides a functional constraint for the general-

ized entropy flux fi(s), it provides no insight on how to construct the flux or the flux
potentials.

A critical observation on how to construct fi(s) appears in [13]. The generalized
entropy conservative flux fi(s) may be constructed from linear combinations of two-
point entropy conservative fluxes, combined using the coefficients in the SBP matrix
Q. Because it requires only the existence of a two-point entropy conservative flux
formula and the coefficients of the Q, it is valid for any SBP operator which satisfies
the constraints given in (2.3). Thus, it is valid for Legendre spectral collocation
operators.

The next theorem establishes that the generalized entropy flux fi(s) constructed
from a linear combination of two-point entropy conservative fluxes retains the design
order of the original discrete operator for any diagonal norm SBP matrix Q.

THEOREM 3.5. A two-point entropy conservative fluz can be extended to high
order with formal boundary closures by using the form

N

(3.13) 79 = Z Z2Q(e,k)fs (ge,qr), 1<i<N-1,
k=it1 =1

when the two-point nondissipative function from Tadmor [41] is used:

(3.14) fs(qr,qe) = /O g (w(gr) + & (w(ge) —wlqr))) d§,  g(w(w)) = f(u).
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The coefficient, qi, gy, corresponds to the (k,£)th row and column in Q, respectively.
Proof. To show the accuracy of approximation, the flux difference is expressed as

N i—1
Y =18 = Z ZQqek)fs upuR) = Y Y 2 fs (upug), 2<i<N -1,
k=i+1 (=1 k=i (=1

which may be manipulated into the form (see [12, 13])

(3.15) A i 1—Z2Q(zg)fs (uiyuj), 1<i<N.
Jj=1

This form facilitates an analysis by Taylor series at every solution point by using the
expression for the two-point fluxes given in (3.14). The remainder of the proof is
presented elsewhere [12, 13]. a
The final theorem establishes that the linear combination does indeed preserve
the property of entropy conservation for any arbitrary diagonal norm SBP matrix Q.
THEOREM 3.6. A two-point high-order entropy conservative flux satisfying (3.12)
with formal boundary closures can be constructed using (3.13),

N
9= Z ZQL](M)fs (ge;qr), 1<i<N-1,

k=i+1 (=1

where fs(qe,qr) is any two-point nondissipative function that satisfies the entropy
conservation condition

(3.16) (we — wi)” fs (a0, k) = Ve — V.

The high-order entropy conservative flux satisfies an additional local entropy conser-
vation property,

(3.17) wIP~IAFY = P-1AF = F,(q) + T,
or, equivalently,
(3.18) Wl (FO-F8)) = (R-F), 1<i<N,

where
—_ N —
(3.19) Fi= Y ey [(we +wi)" fs (qe,qr) — (e +vx)], 1<i<N -1

Proof. For brevity, the proof is not included herein but is reported elsewhere
[12, 13]. d

Remark. The existence of a local second-order entropy flux satisfying the two-
point shuffle relation given in (3.16) is a very strong constraint and has until recently
been a computation bottleneck [24]. The two-point entropy consistent flux of Ismail
and Roe [24] is used exclusively in this work and is discussed in section 6.1.2.

Remark. The entropy consistency proof is satisfied for all two-point fluxes that
satisfy (3.16). The accuracy proof is proven only for fluxes in the integral form (3.14).
Currently, the proof does not extend to any flux satisfying (3.16), so such fluxes should
be validated for accuracy independent of Theorem 3.5.
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3.2.3. Entropy stable viscous terms. Using the formalism introduced in sec-
tion 2.1.2, viscous terms are derived that discretely mimic the continuous entropy
properties. As with the continuous estimate, the proof requires the viscous fluxes to
be written as functions of the discrete gradients of the entropy variables,

(éllwz)z = ,P_lAf(U) = 'Dg(éll)w + 7;;,

(3.20) . . S .
Dy(é11)w =P~ (=D' Plen1]D + B[é11]D) w.

The accuracy requirements are automatically satisfied. The coefficient matrix [¢11]
is positive semidefinite because it is constructed from block-diagonal combinations of
positive semidefinite matrices.

The contribution of the viscous terms to the semidiscrete entropy decay rate is

(3.21) wlAFY = wBen|Dw — (Dw)T Pley](Dw).

The last term is negative semidefinite. As with the continuous estimate given in (3.8),
only the boundary term can produce a growth of the entropy, and thus the approxi-
mation of the viscous terms is entropy stable. (Well-posed boundary conditions that
bound these terms are currently a topic of investigation.)

4. Entropy stable spectral collocation elements: Discontinuous inter-
faces. Entropy stable, conservative, and design order consistent interface operators
are now presented. Inviscid and viscous coupling operators between adjoining el-
ements can take many forms; a discontinuous penalty approach closely resembling
that of a strong form nodal discontinuous Galerkin (DG) FEM method is adopted
herein for both the inviscid and viscous terms.? Each is developed independently to
guarantee an entropy stable inviscid penalty in the limit of vanishing viscosity.

The interface coupling of the inviscid terms is precisely equivalent to that used
in the DG-FEM method. Two independent collocated solutions are defined on each
side of an interface, and a single conservative interface flux is reconstructed from the
collocated solutions. Herein, an interface flux that is more dissipative than an entropy
conservative flux is used.

The coupling of the viscous terms is again reminiscent of the techniques used
in the discontinuous Galerikin (DG) FEM method; the approach closely resembles
the local DG (LDG) FEM method of Cockburn and Shu [10], although additional
dissipation terms are added in the spirit of the internal penalty (IP) FEM approach
of Wheeler [42] and Arnold [1].

The novelty of the current approach is that it uses entropy stable inviscid and
viscous fluxes that preserve the accuracy and entropy estimate of the two adjoining
elements. Thus, a global statement of accuracy and entropy stability for the Navier—
Stokes equations is achieved. Note that any entropy stable inviscid flux would lead to
a global entropy estimate, although the accuracy estimate would not necessarily be
retained.

4.1. Navier—Stokes in one spatial dimension. Define an entropy stable in-
viscid interface flux fssr(qff), q§+)) as the sum of an entropy conservative interface

flux f”(qgf), qf“) and a dissipation term (AI)[w(+) - wgf)]:

(41) (g7, qfP) = £7(g 7 gl + AT = w7,

% 4

2The combined interior/interface algorithm is essentially of the strong form nodal DG family,
with collocated fluxes constructed to telescope the entropy across the element and the interface [21].
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where A’ is a symmetric interface matrix with zero or negative eigenvalues. The

entropy stable flux fssr(ql(_)7 q§+)) is more dissipative than the entropy conservative

inviscid flux given in (3.16), as is easily verified by contracting f*5" (qg_), qf”) against

the entropy variables to yield the expression

(42) (=T8¢ qi7) = o =7 4 (T~ TA (w7,
Next, consider two elements, each discretized with an entropy stable formulation

described in the previous section. A coupling procedure between the adjoining ele-

ments that preserves the entropy stability of the inviscid and viscous terms in the
Navier—Stokes equations can be constructed as follows:

(4.3a)
’Pl[% + AT, — Di¢110©)] = [—J—?Z(f) - fssr(qqf_)7 q£+))] ei(—)
+ S+ a)E el = 7o) + 4AY (wiT —w()] e,
(4.3b) PO —Dyw) = [—3(1— a)(w —wM) el
(4.3¢)
Pl + AF, - Den®,] = [-B 7+ 857 (¢, ¢lP)] et
+ 3 -e@Erer” - ar o) A  w —wi )] e
(4.3d) Pr(©, —Dyw,) = [+3(1+a)(w!” —w()] ef".

The following nomenclature is used in (4.3). The subscripts [, denote variables
defined in the “left, right” elements, respectively. The first and third subequations
describe the discretization of the conserved variables, ¢, ¢,, while the second and
fourth describe the discretization of the gradients of the entropy variables, @;, ©,..
The subscript ¢ denotes an interface quantity, while the superscripts “(—), (+)” de-
note the collocated values on the left and right sides of the interface, respectively.
The vectors ei(_) and ei(+) are zero at all points except at the “(—), (4)” interface
points and enforce the penalties at the interface. The LDG penalty terms involve the
coefficients %(1 + a), while the IP-FEM terms involve the parameter matrix AY. The
remainder of the penalty is the entropy stable inviscid contribution.

The entropy stability of (4.3) is established in the following theorem.

THEOREM 4.1. The approximation of the one-dimensional Navier—Stokes equa-
tions given in (4.3) is entropy stable for any value of the parameter «, provided that
the matriz AV is negative semidefinite, i.e., AV < 0.

Proof. Assume that suitable boundary conditions and initial data are provided
and that an entropy stable formulation is used to discretize each adjoining element.
Entropy stability of (4.3) follows immediately if the interface treatment at x = x; is
more dissipative than an entropy conservative interface treatment.

The entropy method is used to prove the stability of (4.3). Multiplying the two
discrete equations in the left element by wlT and (é11; @l)T, respectively, and the two

discrete equations in the right element by w! and (é11, @T)T, respectively, and then
summing the four equations and collecting terms results in the expression

= 2 = 2
(4.4) LS, + 1515,) + 2[ Ve il HIVer: ©llp ] = s,
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where
(4.5) _
T = [wéiu Oy + Oé1yw — F(g)) + [w76117 O, + O,¢11, wr — F(q)]L

+ w (flg )= £ (g yal ) —w P (f(af) - £ (a ) af7)
o A —u] - (14 a) wl e el
- (1-a) 07w —wh)]
+ w(+) AV[ +) ( )] + (1-a) w§+) [651—)95_‘—) _égz)eg—)]
+ (14a) 67 &P [w! o) — w7

The viscous dissipation terms ||v/¢11; @l”’?)l and ||v/¢11, ®T”3>r are uniformly dissipa-
tive. Thus, entropy stability of (4.4) follows immediately if the term Y; is dissipative.
Note that Y; is composed of both inviscid and viscous terms; i.e., T; = TF + TV.
The inviscid and viscous terms are bounded individually to guarantee that the inviscid
terms are stable in the limit of Re — oc.

Inviscid stability. The inviscid interface terms in Y; are
(4.6)
T o= P - Fa)

o) ) - e e a6 )).

Substituting the definitions for the entropy fluxes,

Flg)y =wP f@) =0 5 Fg)) = w7 @) -7,
into (4.6) and simplifying using (4.2) yields the equation
(4.7)
— T — — — —
1= (wf ™) 00— ) = f )T A (wP —wf)

3

which is a dissipative term provided A’ is negative semidefinite.
Viscous stability. The viscous interface term in Y; is

TY = [wlélll @l + @lélll 'LUL]Z.,_l + [wréllr 67‘ + @réllr wT]%+
b Al — ] () ul) 6l - D6
(4.8) - (1-a) @( ) 4 (—)[wl(—) _ wlﬁ-)]
bt AV —ul] 4 (1 ) w60 - el ]
+ (1+a) 0P P — w7,

which simplifies to

(4.9) T = ! —w AV W) - wM),
and is dissipative provided AV is negative semidefinite. Combining (4.7) and (4.9)
yields the desired result

Yi=T! + 1 = [ — M)A+ AV —wM] D

Remark. The parameter values a = 0 and o« = +1 yield a symmetric LDG and
“flip-flop” narrow stencil LDG penalty, respectively. An LDG value of o = 0 produces
a global discrete operator that has a neutrally damped spurious eigenmode. The TP
dissipation effectively damps this mode.

Remark. The first component of the vector (¢é1y; @l)T is zero, as are the first
row and column of the matrix (¢11;). Thus, the matrix (¢11;) and v/é11; are only
semidefinite. The proof is still valid because definiteness is never assumed.
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Remark. Extension of Theorem 4.1 to three dimensions follows immediately.
Contract the two conservative equations with the entropy variables and the six LDG

gradient equations with their respective viscous flux f(v) on either side of the interface.

4.1.1. Inviscid interface dissipation. The entropy stable interface flux

fosr (qz( ), qf”) used in (4.2) is composed of the sum of an entropy conservative flux

fsr (qz( ), q§+)) and a dissipation term (AI)[wE_) - wf’L)]. Adjusting the inviscid dis-
sipation matrix (Af) leads to different levels of interface damping. (See (4.7) for the
precise relationship between A and entropy dissipation.)

A local Lax—Friedrichs interface flux is typically defined as

w10y FUETat) = 3@ @) = 12V YT () —wi),
Aithe = maxq_) 4 |f'(q)],

where |f'(q)| denotes the maximum eigenvalue of g—f;. Note that scaling the dissipation

coefficient A!YY by any positive factor greater than one produces more dissipation

(e.g., the global maximum value rather than the local value).
The maximum eigenvalue A/ is well approximated in the context of the Euler

equations of gas dynamics by the expression
1

ES NN ESICN s
+ @) + () = A

max”®

(1) Apar = [ + ()

Define an entropy stable local Lax—Friedrichs flux by the expression
(412) (g7 gl ) = £ a ) + 12V (T —w ).

Note that (4.12) differs from (4.10); the linear average interface flux %(f(qg_)) +
f (qf”)) in fif (qg_), qf”) is replaced with the nonlinear average entropy conservative
flux f”(ql(_)7 q§+)). By definition, the flux f””f(qg_), qf”) is entropy stable as given
n (4.1).

Both forms of Lax—Friedrichs dissipation are overly dissipative for convective
waves at the interface. A more refined approach dissipates each characteristic wave
based on the magnitude of its eigenvalue. A flux that includes dissipation of this form
is denoted an entropy stable characteristic flux and is implemented as
£ g ") = £, ”’) + 12V (=),

(4.13) ¢
£g) = YT gL = W7

Note that the relation g, = YY7 is achieved by an appropriate scaling of the rotation

eigenvectors. See the work of Merriam [32] for more details. Unless otherwise noted,

the entropy stable characteristic flux is used in all test simulations.

5. The comparison approach using entropy conservative schemes. En-
tropy conservative formulations suffer breakdown when used without dissipation to
capture shocks. The entropy discontinuity at the shock is inconsistent with the un-
derlying premise of an isentropic algorithm, and large amplitude oscillations around
the shock are the result. More problematic, however, is that entropy conservative
formulations cannot converge to the weak solution; there is no mechanism to admit
the dissipation physically required at the shock.
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Herein a comparison approach is adopted to facilitate the addition of dissipation
to the entropy conservative baseline formulation. A comparison approach uses a
companion algorithm in conjunction with an entropy conservative formulation. At
every point, the entropy generated by the companion scheme is compared with that
of the entropy datum. If the entropy condition is violated (i.e., the inequality derived
in (3.9)), then more dissipation is added locally. Local conditions that guarantee the
entropy stability of a comparison approach are now derived.

An inviscid semidiscrete condition analogous to (3.11) that guarantees entropy
stability is

(5.1) w Pq, + F(qn) — F(q) < w' (g + 8i),

which is satisfied if the “baseline” entropy stable inviscid fluxes satisfy the comparison
condition

(5.2) wlAf > 1TAF.

Using the result for the entropy conservative flux in (3.11), this condition can be
rewritten as

wl AT > WTAf(S).

Substituting the generalized SBP property,?

(53)  wl(B-A)TY 1) =wlAF-T7) = w"A(T - [')1 <0,
yields the sufficient local conditions for entropy stability,

(5.4) wA[f] < wTA[F'Y)
or, in indicial form,

(5.5) (wigr —w)” (fi = f¥) <0, i=1,2,...,N-1

These conditions can be enforced by using a limiter function of the form

(5.6)

<33 _ <9 = V2 +c2—b T,#8) 7 —12
79 = fivs(f9~F), 6 = Wab = (wipr —w)" (FV =), c =107,
with fi(SS) the entropy stabilized flux. The pointwise entropy stability conditions
given in (5.5) and (5.6) are valid for any pair of comparison fluxes f; and fi(s) provided
that both can be expressed in telescopic flux form. Note, however, that the local
conditions in (5.5) do not provide insight on the magnitude of dissipation required to
achieve a nonoscillatory shock.

5.1. Candidate schemes for a comparison approach. Both the entropy
conservative and companion operators should (ideally) be of equivalent order; the
formal order of the comparison approach is the lesser of the two individual orders.
A natural high-order comparison candidate for shocks is a WENO operator of com-
parable accuracy. This is the strategy adopted in [13]. WENO schemes are design

3The bracket nomenclature around a vector denotes a diagonal matrix with vector elements
injected on the diagonal.
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order accurate for smooth solutions and capture shocks with minimal oscillations but
can be overly dissipative for underresolved smooth features and are computationally
intensive. Furthermore, they are difficult to formulate in the context of unstructured
FEMs, owing to the extensive set of smooth interpolants that are needed, some of
which belong to adjoining elements.

A second approach is to use a “troubled element” detector to identify elements
that contain discontinuities. This information is then used to switch from the baseline
high-order formulation to a shock capturing approach. One could use a conventional
shock capturing approach (e.g., monotonic upstream-centered scheme for conservation
laws (MUSCL), TVD, piecewise parabolic method (PPM), total variation bounded
(TVB)) in the troubled elements, keeping in mind that the formal accuracy drops
locally to first order. Provided that the smoothness detector is sufficiently discrim-
inating between shocks and smooth extrema, the drop in local accuracy does not
further degrade the formal accuracy since captured shocks are inevitably first-order.

5.2. Entropy stable spectral collocation element: Dissipation. Four forms
of dissipation appear in SSSCE schemes used to simulate the Navier—Stokes equations.
The physical viscous terms and dissipative Dirichlet or Neumann boundary conditions
appear naturally in the equations. A third dissipation arises at element interfaces—
the result of upwinding the interface fluxes. The first three dissipative mechanisms
generally are not sufficient to stabilize the algorithm for capturing strong discontinu-
ities. Finally, a fourth dissipation is introduced locally during the entropy correction
phase of the algorithm, but only where the entropy condition is violated. The level
of dissipation depends on the dissipative properties of the companion operator.

The goal herein is to demonstrate the potential of the comparison approach used
in conjunction with the entropy conservative spectral collocation element operator.
Three elementary companion operators are constructed and used with the baseline
entropy conservative element operator. The first is a P3 WENO element scheme. The
basic algorithm is constructed following the ideas provided in [44]. Only the inter-
element stencil biasing mechanics is included in the formulation. (Indeed, obtaining
smooth interpolants from adjoining elements is nontrivial and is the topic of a future
paper.)

A second approach uses a piecewise linear MUSCL reconstruction companion
operator. In this case, the MUSCL reconstruction is implemented using the data
on the LGL grid and intermediate fluxes. Local data as well as that from the two
adjoining elements are used in the reconstruction. The limiter function of Koren [27]
is used in this study.

The final companion operator is the strong form nodal DG spectral collocation
scheme, recast into flux conservation form. This operator does not introduce dissi-
pation within the element and uses the same interface fluxes. Indeed, the additional
dissipation arises solely from the differences between two internally nondissipative
operators. The entropy stabilization arising from this operator is design order small
for smooth solutions. At shocks, however, the two fluxes differ significantly owing
to different nonlinear aliasing properties of the internal fluxes. Furthermore, the DG
does not have a stability proof and can be unstable at shocks.

The studies that follow differentiate the different forms of dissipation. Although
the optimal companion operator for the SSSCE schemes remains to be determined,
it is demonstrated herein that very little dissipation is required for the companion
operator. The natural and interface dissipation combined with the entropy correction
procedure is shown to be sufficient to stabilize the capturing of strong shocks.
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6. Entropy analysis for the Navier—Stokes equations.

6.1. Euler and Navier—Stokes equations. The calorically perfect form of the
Navier—Stokes equations is given in (2.1). The conservative variables for the Navier—
Stokes equations are

T
(6.1) q = (p, pv1, pva, pv3, pE)"
where p denotes density, v = (v1, va, U3)T is the velocity vector, and E is the specific
total energy. The convective fluxes are

(6.2) F1 = (pui, poivy + 61D, puiva + diap, puivs + Gisp, puiH)T

where p represents pressure, H = E + p/p is the specific total enthalpy, and ¢;; is the
Kronecker delta. The viscous flux terms are

(6.3) FO =0, 71, Tia, Tiz, TjiV; — a)’,
where the shear stress and heat flux are
2
(6.4) Tij = H <(Ui)wj + (Vj)a; — 5ij§(W)u> ;o Qi = —KTy,.

The variable T' denotes the static temperature, with u = p(7) and xk = &(T) the
dynamic viscosity and thermal conductivity, respectively.

The constitutive relations for a perfect gas are
(6.5)

1 R,
h:H—§UjUj:cpT ;i p=pRT ; R ; i

= . c=\ART ; = ,

MW 7 R—
where ¢, is the constant specific heat, R, is the universal gas constant, MW is the
molecular weight of the gas, and c is the speed of sound. In the entropy analysis that

follows, the definition of the thermodynamic entropy is the explicit form

R T p)
6.6 s = log| — | — Rlog | — |,
(6.6) y—1 g<To> g<po

where Ty and pg are the reference temperature and density, respectively.

6.1.1. Entropy analysis. A continuous entropy stability analysis is conducted
first to illustrate the entropy characteristics of the governing equations. Discrete spa-
tial operators that mimic these continuous properties are derived next via semidiscrete
entropy analysis.

The entropy—entropy flux pair and the potential-potential flux pair for the Navier—
Stokes equations are

(6.7) S=—ps, F'=—pus ; ©=pR, " = pv;R.
The entropy variables consistent with the definitions provided in (6.7) are
h VjU; U] Uz U 1\"
_or _ (1YY Y1 2 Y3+
(6.8) w=5 (T T T T T T)

and may be shown to have a one-to-one mapping with the conservative variables
provided p,T > 0. Expressly,

(TS4q¢" >0 YC#0, p,T>0.

The entropy equation is constructed by contracting the Navier—Stokes equations with
the entropy variables. The differential and integral forms of the entropy equation are
given by (3.7) and (3.8).
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6.1.2. Entropy stable spatial discretization. The inviscid terms in the dis-
cretization of the Navier-Stokes equations are calculated using (3.13); the two-point
entropy conservative flux is that of Ismail and Roe [24]. Although this flux is com-
plicated, it is the first entropy conservative flux for the convective terms with low
enough computational cost to be implemented in a practical simulation code. Previ-
ously, Tadmor [40] derived an entropy conservative flux form that required integration
through phase space, but this was deemed too expensive to be practical.

7. Accuracy validation.

7.1. Test equations. The accuracy and robustness of the algorithms developed
herein are tested using four smooth and three discontinuous problems. The smooth
problems are the nonlinear Burgers equation, the propagation of an isentropic com-
pressible Euler vortex, and the propagation of the viscous Navier—Stokes shock with-
out and with an entropy correction. All smooth problems demonstrate the design
order convergence of the new entropy conservative formulation. All the discontinuous
problems involve simulations using the one-dimensional Euler equations and include
the Riemann shock tube of Sod, a sine-shock interaction test case, and a simulation
of colliding blast waves.

7.1.1. The Burgers equation. The nonlinear Burgers equation is a one-
dimensional model for the inviscid-viscous interaction found in the full Navier—Stokes
equation. The Burgers equation is given by

fé) 10u® _ 9?2 . . _
(7.1) 8_?—'_58_1;_68_; ; —lszs<1;1>=0,

au(—1,t) — euy(—1,t) = g_lgt) , Bu(—=1,t) + eur(—1,t) = g_1(t) .

An exact solution is given by
(7.2)

aexp((b—a)(x —ct — d)/(2¢)+b . _ _ _ _
u(z,t) = 1oxg((((b—a))((z—ct—d?%Qe;—H :oa= —%,b— l,e= %(a—i—b),d_

N [=

Initial and boundary data consistent with the exact solution are provided.

7.1.2. Isentropic vortex. The isentropic vortex is an exact solution to the
Euler equations and is an excellent test of the accuracy and functionality of the
inviscid components of a Navier—Stokes solver. It is fully described by

flay.z,t) = 1= (o~ 20— Usscos(a) 1 + (y — o — Uso sin(a) 1)°]
T(z,y,2,t) = [1— M2 3Fexp (f(x,y,2.0)], play,zt) = T,

872 /
(7.3) u(z,y, z,t) = Usocos(a) — €, y—yo—U;; sm(a)texp(f(r,g,z,t))’
. x—x9—Uso cos(a)t x,y,2,t
v(x,y,2,t) = Ussin(a) — €, === ( )exp(f( Y )),
w(z,y,z,t) = 0.
In this study the values Uy, = My Coo, €y = 5.0, Mo, = 0.5, and v = 1.4 are used.

The Cartesian grid test case is described by
x € (—15,15), ye€ (=15,15), (zo,y0) = (0,0), a=0.0, ¢t>0.

7.1.3. The viscous shock. The Navier-Stokes equations support an exact so-

lution for the viscous shock profile, under the assumption that the Prandtl number

is Pr = %. Mass and total enthalpy are constant across a shock. Furthermore, if
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Pr = %, then the momentum and energy equations are redundant. The single mo-
mentum equation across the shock is given by

<oo , t20;

-8

avvy, —(v—1)(v—vf)=0 ; —o0<
(7.4) Wy _wn g =

T — Ur — Jy—1_p
V=0 U T ¢ = 2y Prm’

An exact solution is obtained by solving the momentum equation for the velocity
profile:

14v v—
(7.5) z = %o (Logl(v — 1)(v—vy)| + T Log =L ).

A moving shock is recovered by applying a uniform translation to the solution. A full
derivation of this solution appears in the thesis of Fisher [11].

7.1.4. Sod’s shock tube. Sod’s shock tube problem is a classical Riemann
problem that evaluates the behavior of a numerical method when a shock, expansion,
and contact discontinuity are present. Of particular interest is smearing in the shock
and contact, or oscillations, at any of the discontinuities. Sod’s problem is initialized
with

wof b w<0s o L <05
(7.6) PO =18, 2>05, PW 7 1710, 2>05,
u(x) =0, z € (0,1), t>0.

All simulations use the value v = 7/5 for the ratio of specific heats.

7.1.5. Sine-shock interaction. Numerical results are presented for the shock
entropy-wave interaction problem. The solution of this benchmark problem contains
both strong discontinuities and smooth structures and is well suited for testing high-
order shock capturing schemes. The governing equations are the time-dependent
one-dimensional Euler equations subject to the following initial conditions:

an ) [ (3:857134,2.629369,10.33333)  if 0 <w <45,
: PPIZ (14 0.2sin52,0,1) if 45<z<9.

The governing equations are integrated in time up to t = 1.8. The exact solution to
this problem is not available. Therefore, a numerical solution that is obtained using
1024 uniformly distributed P3 elements is used as the reference solution.

7.1.6. Blast wave. The final problem provides a severe test of the robustness of
the entropy stabilized algorithm by simulating the collision of two strong shock waves.
It is motivated by the test case originally proposed by Woodward and Colella [43]. The
governing equations are the time-dependent one-dimensional Euler equations subject
to the following initial conditions:

1,0,1073) if 0<x<1.7,
(7.8) (p,u,p) = 1,0,1072) it 1.7<z<2.5,
(1,0,10%2) if 25<x<34.

The governing equations are integrated in time to ¢ = 0.038. The exact solution to
this problem is not available. A reference numerical solution is obtained using 1024
uniformly distributed P3 elements. Coarse grids and high polynomial orders (P < 9)
are used in the simulations to test the likelihood of algorithmic failure due to negative
pressures.
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7.2. Test results. Smooth and discontinuous sets of problems are simulated. All
smooth tests include elements of polynomial degrees 1 < p < 4. Three smooth tests
are performed without an entropy correction (Tables 1, 2, and 3), and one is performed
with an entropy correction (Table 4). All tests include a uniform grid refinement study
performed using a grid-doubling procedure. When possible, a randomly distributed
grid is used. A properly nested set of uniformly refined random grids is generated
as follows. First, a random grid is generated at the coarsest resolution. This grid is
then scaled and replicated 2°, 3 < s < 8, times on the intervals —1 < z,y < 1. Thus,
the randomness of the coarsest grid is preserved on all levels. Polynomial degrees
1 < p <9 are used for the discontinuous problems. The unusually high polynomial
degrees are used to assess the robustness of dissipation strategies. All simulations
are advanced in time using a fourth-order low-storage Runge-Kutta scheme [7]. A
suitably small time step is chosen to ensure that temporal error is subordinate to
spatial error and does not contaminate the results obtained in the spatial accuracy
studies.

7.3. Smooth tests.

7.3.1. The nonlinear Burgers equation. Elsewhere [3], design order conver-
gence of p 4+ 1 in both the L?- and L*°-norms is demonstrated on the linear wave
equation. The first test presented herein extends these results to include nonlinear
hyperbolic and parabolic terms. Table 1 contains data from both a uniform and
nonuniform grid refinement study of the nonlinear Burgers equation. The nonuni-
form grid refinement study is included to identify superconvergence resulting from
fortuitous cancellation of viscous error terms at element interfaces. (See [9] for a
discussion of this phenomenon.)

Sharp design order convergence of p+1 is achieved in both the L?- and L>-norms
on the uniform grid for polynomials of even order. This sharp convergence may be
the result of fortuitous cancellation of errors. Design order convergence is achieved
asymptotically for polynomials of odd order in both L? and L>. The nonuniform
refinement study shows asymptotic design order convergence for both even and odd
polynomial orders.

This test verifies that the superconvergence observed in the linear advection study
extends to nonlinear inviscid terms and that the entropy stable LDG implementation
is design order accurate for the viscous terms. Furthermore, superconvergence may
be achieved on irregular grids.

7.3.2. The Euler vortex. The convergence rate for the isentropic Euler vortex
is evaluated on a properly nested sequence of uniform two-dimensional grids. The
vortex profile is initially located in the middle of the domain and is simulated until
t = 0.25. The reference Mach number is M = 0.5, and the translation velocity of the
vortex is unity. The errors for the uniform grids are shown in Table 2.
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TABLE 1

Error convergence is shown for the nonlinear Burgers equation.
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Uniform grid

Nonuniform grid

p=01 LZerror L?>rate L> error L> rate L?error L2 rate L™ error L™ rate
8 1.16E-02 2.40E-02 1.77E-02 2.94E-02
16 4.43E-03 -1.38 9.67E-03 -1.31 5.65E-03 -1.64 1.25E-02 -1.24
32 1.55E-03 -1.51 3.56E-03 -1.44 1.87E-03 -1.59 4.36E-03 -1.51
64 4.94E-04 -1.65 1.19E-03 -1.57 5.66E-04 -1.72 1.41E-03 -1.62
128 1.46E-04 -1.75 3.74E-04 -1.67 1.66E-04 -1.76 4.56E-04 -1.62
256 4.13E-05 -1.82 1.13E-04 -1.73 4.69E-05 -1.82 1.35E-04 -1.75
512 1.13E-05 -1.86 3.29E-05 -1.77 1.29E-05 -1.86 3.99E-05 -1.76
1024 3.04E-06 -1.89 9.36E-06 -1.81 3.44E-06 -1.90 1.12E-05 -1.82
p =02
8 1.00E-03 2.42E-03 2.04E-03 3.91E-03
16 1.14E-04 -3.13 3.08E-04 -2.97 2.20E-04 -3.21 5.25E-04 -2.89
32 1.42E-05 -3.01 3.83E-05 -3.00 4.23E-05 -2.37 1.16E-04 -2.17
64 1.78E-06 -2.99 4.75E-06 -3.00 6.54E-06 -2.69 1.82E-05 -2.67
128 2.23E-07 -2.99 5.94E-07 -2.99 1.00E-06 -2.70 3.02E-06 -2.58
256 2.79E-08 -2.99 7.44E-08 -2.99 1.50E-07 -2.73 4.89E-07 -2.62
512 3.49E-09 -2.99 9.31E-09 -2.99 2.19E-08 -2.78 7.61E-08 -2.68
1024 4.36E-10 -2.99 1.16E-09 -2.99 3.07E-09 -2.83 1.14E-08 -2.73
p=03
8 7.83E-05 2.01E-04 2.23E-04 5.16E-04
16 7.87TE-06 -3.31 2.41E-05 -3.05 2.26E-05 -3.30 5.69E-05 -3.18
32 7.55E-07 -3.38 2.30E-06 -3.38 1.49E-06 -3.92 4.47E-06 -3.66
64 6.79E-08 -3.47 2.09E-07 -3.46 1.26E-07 -3.56 4.02E-07 -3.47
128 5.68E-09 -3.57 1.76E-08 -3.57 1.04E-08 -3.59 3.30E-08 -3.60
256 4.43E-10 -3.67 1.38E-09 -3.66 8.05E-10 -3.68 2.62E-09 -3.65
512 3.26E-11 -3.76 1.02E-10 -3.75 5.91E-11 -3.76 1.95E-10 -3.74
1024 2.31E-12 -3.81 7.59E-12 -3.75 4.14E-12 -3.83 1.38E-11 -3.81
p=04
8 5.51E-06 1.28E-05 1.26E-05 3.53E-05
16 1.22E-07 -5.49 4.57E-07 -4.80 4.72E-07 -4.74 1.67E-06 -4.39
32 3.60E-09 -5.08 1.32E-08 -5.11 3.39E-08 -3.79 1.20E-07 -3.80
64 1.11E-10 -5.01 4.13E-10 -5.00 1.66E-09 -4.35 5.83E-09 -4.36
128 3.66E-12 -4.92 1.37E-11 -4.91 7.69E-11 -4.42 2.87E-10 -4.34
256 2.83E-13 -3.69 1.67E-12 -3.03 3.38E-12 -4.50 1.32E-11 -4.44
512 3.08E-14 -3.20 1.19E-13 -3.81 1.41E-13 -4.58 6.00E-13 -4.45
1024 3.65E-14 0.24 7.21E-14 -0.71 3.67E-14 -1.94 7.79E-14 -2.94
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TABLE 2

Error convergence is shown for the isentropic Euler vorter equation.

Nested 2D nonuniform grids

Grid L? error L% rate L™ error L™ rate SSDC cost NDG cost Overhead

p=01

008x008  2.46E-03 1.04E-02 1 1 1.25
016x016 8.74E-04 -1.49 4.52E-03 -1.20 3 2 1.24
032x032  2.86E-04 -1.61 1.78E-03 -1.34 4 4 1.23
064x064  7.98E-05 -1.84 5.63E-04 -1.65 29 22 1.32
128x128  2.07E-05 -1.94 1.45E-04 -1.95 179 150 1.19
256x256  5.43E-06 -1.92 3.80E-05 -1.93 1348 1113 1.21
p =02

008x008  7.20E-05 4.55E-04 1 1 1.40
016x016  1.24E-05 -2.54 9.53E-05 -2.25 4 2 1.41
032x032 1.75E-06 -2.82 1.95E-05 -2.28 14 10 1.34
064x064  2.24E-07 -2.96 2.64E-06 -2.88 118 87 1.36
128x128  3.00E-08 -2.89 3.20E-07 -3.04 641 481 1.33
256x256  4.18E-09 -2.84 4.79E-08 -2.74 3570 2632 1.35
p=03

008x008  2.39E-06 2.27E-05 2 1 1.60
016x016  1.72E-07 -3.79 2.12E-06 -3.42 12 7 1.65
032x032  1.12E-08 -3.93 1.72E-07 -3.62 46 30 1.53
064x064  7.09E-10 -3.98 1.04E-08 -4.03 249 167 1.48
128x128  4.59E-11 -3.94 6.90E-10 -3.92 1391 974 1.42
p =04

008x008  3.37E-08 3.33E-07 8 4 1.81
016x016  1.68E-09 -4.32 2.21E-08 -3.91 32 18 1.77
032x032  5.14E-11 -5.03 7.26E-10 -4.93 84 53 1.56
064x064  1.65E-12 -4.95 2.18E-11 -5.05 463 286 1.61
128x128 7.48E-13 -1.14 4.16E-11 0.92 2602 1634 1.59
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Theorem 3.5 proves that design order entropy conservative fluxes may be con-
structed using a linear combination of two-point entropy fluxes. A critical assumption
used in the proof is that the two-point nondissipative fluxes satisfy Tadmor’s integral
relation given in (3.14). Herein, the nondissipative Euler fluxes of Ismail and Roe [24]
are used. The study provides evidence that the nondissipative Euler fluxes of Ismail
and Roe [24] do not degrade the formal accuracy. The interfaces are treated by using
the entropy stable characteristic fluxes with a weighting parameter tuned to produce
“upwind fluxes” at the interfaces. Design order convergence is achieved in all cases.

7.3.3. The viscous shock. The convergence rate for the viscous shock is eval-
uated on a properly nested sequence of uniform and nonuniform grids. The shock
profile is initially located in the middle of the domain and is simulated until ¢ = 1.00.
The Reynolds number is Re = 10, and the reference Mach number is M = 2.5. The
errors for the uniform and the nonuniform grids are shown in Table 3.

TABLE 3

Error convergence is shown for the one-dimensional Navier—Stokes equation.

Uniform grid

Nonuniform grid

p=01 LZ?error L?rate L% error L* rate LZ?error L?rate L* error L™ rate
4 1.95E-01 5.92E-01 4.14E-01 1.19E-00
8 7.11E-02 -1.46 2.73E-01 -1.11 1.81E-01 -1.19 7.30E-01 -0.71
16 2.10E-02 -1.76 9.51E-02 -1.53 5.26E-02 -1.78 2.52E-01 -1.53
32 5.57TE-03 -1.92 2.57TE-02 -1.89 1.51E-02 -1.80 8.85E-02 -1.51
64 1.42E-03 -1.97 6.50E-03 -1.98 4.05E-03 -1.91 2.40E-02 -1.88
128 3.58E-04 -1.99 1.63E-03 -1.99 1.03E-03 -1.97 6.06E-03 -1.98
p =02
4 2.64E-02 7.87E-02 1.02E-01 4.11E-01
8 6.16E-03 -2.10 3.04E-02 -1.37 1.22E-02 -3.07 5.04E-02 -3.03
16 8.22E-04 -2.91 4.13E-03 -2.88 5.54E-03 -1.14 3.74E-02 -0.43
32 9.90E-05 -3.05 8.73E-04 -2.24 7.46E-04 -2.89 7.41E-03 -2.33
64 1.22E-05 -3.02 1.09E-04 -2.99 9.17E-05 -3.03 8.78E-04 -3.08
p =03
4 8.08E-03 4.73E-02 1.54E-02 3.60E-02
8 4.94E-04 -4.03 3.93E-03 -3.59 7.22E-03 -1.09 5.53E-02 +0.62
16 3.45E-05 -3.84 3.77TE-04 -3.38 3.86E-04 -4.22 4.03E-03 -3.78
32 2.12E-06 -4.03 2.47E-05 -3.93 2.89E-05 -3.74 4.00E-04 -3.34
64 1.28E-07 -4.05 1.46E-06 -4.08 1.76E-06 -4.04 2.58E-05 -3.95
p=04
4 1.33E-03 7.03E-03 1.16E-02 8.84E-02
8 8.24E-05 -4.02 8.16E-04 -3.11 1.12E-03 -3.37 7.55E-03 -3.55
16 2.35E-06 -5.13 3.21E-05 -4.67 7.72E-05 -3.86 8.05E-04 -3.23
32 7.15E-08 -5.04 1.09E-06 -4.88 2.23E-06 -5.11 3.13E-05 -4.69
64 2.21E-09 -5.02 3.43E-08 -4.99 6.92E-08 -5.01 1.10E-06 -4.83

The interfaces are treated by using the entropy stable characteristic fluxes with a
weighting parameter tuned to produce “upwind fluxes” at the interfaces. Design order
convergence is achieved in both the L2- and L°-norms on uniform and nonuniform

grids.

The final smooth study simulates the two-dimensional viscous shock test problem

on a properly nested sequence of nonuniform grids.

The accuracy and efficiency

of the corrected SSSCE scheme is compared with the baseline strong form nodal

DG spectral operators.

Design order accuracy is achieved in this study for both
approaches; the nodal DG operators are slightly more accurate. The computational
overhead of the correction approach increases with polynomial order from about 15%
at P = 1 to about 40% at P = 4. Constructing the entropy fluxes accounts for a
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large portion of the computational overhead (e.g., the SSSCE scheme alone suffers a
30% overhead relative to nodal DG, with the correction accounting for the remaining
overhead). Note that relative overhead of the entropy stable formulation is smaller
for the Navier-Stokes equations (i.e., compare Tables 2 and 4); the Stokes terms are
a significant computational burden that partially amortizes the additional cost of
corrected SSSCE scheme.

TABLE 4
Error convergence is shown for the two-dimensional Navier—Stokes equation.

Nodal DG SSSCE + correction

p =01 L2 error Rate L°° error Rate Cost L2 error Rate L°° error Rate Cost Overhead
008x008 9.95E-3 6.20B-2 B 1.02E-2 6.22E-2 B B
016x016 5.17E-3 -0.94 5.97E-2 -0.05 - 5.35E-3 -0.93 5.32E-2 -0.22 -
032x032 2.04E-3 -1.34 2.58B-2 -1.20 - 2.23B-3 -1.26 2.70E-2 -0.97 - -
064x064 6.08E-4 -1.74 7.69E-3 -1.74 19 7.13E-4 -1.64 8.07E-3 -1.74 20 1.05
128x128 1.54E-4 -1.98 2.08E-3 -1.88 200 1.79E-4 -1.99 2.20E-3 -1.87 210 1.05
256x256 3.87E-5 -1.99 5.19E-4 -2.00 2600 4.16B-5 -2.10 5.32E-4 -2.04 3088 1.18
p = 02

008x008 T.79E-3 2.13B-2 T.84E-3 2.22E-2 B
016x016 4.20B-4 -2.08 7.35E-3 1.53 4.45B-4 2.04 7.85E-3 1.49 -
032x032 7.40B-5 -2.50 1.09E-3 2.75 7 7.82E-5 2.50 1.27E-3 2.62 9 0.99
064x064 8.70E-6 -3.08 1.55E-4 -2.81 138 9.22E-6 -3.08 1.69E-4 -2.90 168 1.21
128x128 1.14E-6 -2.92 2.27E-5 -2.76 1972 1.22E-6 2.92 2 -2.91 2346 1.18
p = 03

008x008 2.486-4 3.07E-3 2.736-4 3.226-3 B
016x016 2.32E-5 -3.42 5.96E-4 -2.36 - 2.59E-5 3.39 6.11E-4 -2.39 - -
032x032 1.53E-6 3.92 6.12E-5 -3.28 45 1.71E-6 3.92 6.25E-5 -3.28 47 1.04
064x064 8 4.05 2.42E-6 -4.66 557 1.02E-7 4.06 2.76E-6 -4.49 764 1.37
p = 04

008x008 3.41E-5 6.545-4 3.71B-5 8. B
016x016 1.51E-6 4.49 4.81E-5 -3.76 5 1.70E-6 4.44 5.73E-5 -3.83 8 1.41
032x032 5.03E-8 4.90 1.47E-6 -5.03 102 5.70E-8 -4.89 1.79E-6 -5.00 147 1.43
064x064 1.67E-9 4.91 6.69E-8 -4.45 2056 1.88E-9 4.92 8.25E-8 -4.43 2876 1.39

7.4. Discontinuous tests. The following nomenclature is used to identify dif-
ferent permutations of the entropy stable schemes. The baseline uncorrected scheme
of polynomial order three is denoted SSSCEps. An entropy correction based on the
conventional DG scheme is denoted SSSC FEp3-DG.

7.4.1. Sod’s test problem. The solution for Sod’s problem is plotted at ¢t =
0.2 in Figure 2. A numerical reference solution is obtained using 1024 uniformly
distributed elements with the SSSCFEp3-DG scheme. For clarity, only two different
algorithms are compared with the reference solution in each subfigure 2(a) and 2(b).
Figure 2(a) compares a conventional fourth-order energy stable weighted essen-
tially nonoscillatory (ESWENO4) scheme [44] with the entropy corrected SSSCE

scheme: SSSCEp3-DG. A uniform distribution of 128 elements is used for the SSSCFEp3

scheme, while the ESWENO4 scheme uses a uniform distribution of points. Both sim-
ulations contain 512 degrees of freedom, and both algorithms are fourth-order accurate
for smooth solutions.

Resolution of the expansion and contact discontinuity is adequate with either
approach, with the SSCEps-DG scheme being less dissipative than the ESWENO4.
The SSSCEp3-DG scheme exhibits oscillations at the shock, although it captures the
location correctly. Note that the only mechanisms for dissipation in the SSSCFEp3-
DG scheme are (1) boundary conditions, (2) element interface upwinding, and (3)
pointwise entropy correction of the fluxes; this is a remarkably low level of dissipation.

Figure 2(b) provides insight into the efficacy of the pointwise entropy correction
of the fluxes. Compared is an uncorrected SSSC Eps3 scheme with the exact solution.
Note the significant oscillations in the vicinity of the contact and the shock as com-
pared with the SSSCEp3-DG case shown in Figure 2(a). Also included in Figure
2(b) is the solution from an SSSCEpg-DG scheme, run on an extremely coarse grid.
Remarkably, even this combination provides reasonable resolution of the expansion
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and contact waves. Again, oscillations are observed at the shock.

Neither the corrected nor the uncorrected SSSCE scheme experienced instability
on this test problem for elements of polynomial order 1 < p < 9. The entropy cor-
rected algorithm always outperformed the uncorrected one in terms of smoothness
of solution. The best results for the corrected algorithm were obtained in the range
3 < p < 4. Note that the relative dissipation (dissipation per degree of freedom)
introduced by flux upwinding at the element interfaces decreases with increased poly-
nomial order. Inevitably, some form of hyperviscosity is required for extremely high
polynomial orders; the baseline SSSCE scheme is entropy conservative and cannot be
used to independently capture shocks.

Not shown are results obtained using the SSSCEp3.5-MUSCL and SSSCEps-
WENO schemes. Even the highly accurate SSSCFEps-MUSCL corrected combination
produced excessive smearing at the contact and shock, although oscillations at the
shock were suppressed. The SSSCFEp3-WENO element correction was unsatisfactory
on this test problem, indicating that stencil biasing into the adjoining elements is at
the very least required.
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Fic. 2. Density profiles for Sod’s shock tube problem. Left subfigure compares ESWENO with
the SSSCEp3-DG scheme. Right subfigure compares the uncorrected SSSCEp3 scheme with the
SSSCEpg-DG coarse grid scheme.

7.4.2. Sine-shock test problem. The solutions for the interaction of a shock
and a sinusoidal entropy wave are plotted at ¢ = 1.8 in Figure 3. This test case exhibits
a complex array of smooth and discontinuous features and provides insight into the
potential of high-order shock capturing formulations. A numerical reference solution
is obtained using 1024 uniformly distributed elements with the SSSCFEp3-DG scheme.
Figure 3(a) compares the SSSCEp3-DG scheme and the ESWENO4 scheme with an
accurate reference solution, while Figure 3(b) compares the uncorrected SSSCEps
scheme and the coarse grid SSSCFEpg-DG scheme.

The algorithmic observations made in Sod’s problem are equally valid for the sine-
shock interaction problem. Figure 3(a) demonstrates the efficacy of the SSSCEps-
DG scheme relative to the ESWENO4 scheme. The SSSCFEp3 scheme is less dissi-
pative than the ESWENO4 scheme but experiences minor oscillations at the shock
not present in the ESWENO4 solution. Figure 3(b) demonstrates the inadequacy of
the uncorrected SSSCFEps scheme. Significant oscillations are present in the vicinity
of the shocks. Similarly, the coarse grid SSSCFEpg-DG simulation shows inadequate
resolution as well as oscillations in the vicinity of the shock. None of the simulations
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exhibited numerical instability triggered by negative pressures.

The SSSCFEps-MUSCL corrected combination produced excessive smearing of
the smooth high frequency sinusoidal part of the solution. The work continues to
develop a more discriminating shock sensor for this combination of operators.
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F1G. 3. Density profiles for the interaction of a shock and a sinusoidal entropy wave. Left subfig-
ure compares ESWENO with the SSSCEp3-DG scheme. Right subfigure compares the uncorrected
SSSCFEp3 scheme with the SSSCEpg-DG coarse grid scheme.

7.4.3. Interacting blast waves. The collision of two shocks is used as the
final discontinuous test problem. Recall that although the entropy stable discrete
operators satisfy an Lo entropy estimate (modulo boundary conditions), they still
could experience pointwise instabilities triggered by negative pressures. This test
problem is deliberately designed as a torture test with multiple discontinuous features,
characterized by extremely large pressure discontinuities. An exact solution is not
available for this case; a numerical reference solution is obtained using 1024 uniformly
distributed elements with the SSSCFEp3-DG scheme.

The solutions for the interacting blast waves are plotted at ¢ = 0.038 in Figure
4. This test case exhibits a complex array of smooth and discontinuous features. The
blast waves test problem was successfully completed by SSSCFEp,-DG schemes of
polynomial orders 1 < p < 8 on coarse grids. Only the p <= 3 formulations were
stable on all grids. The failure mode typically occurred as the two waves met and
negative pressures were encountered.

8. Conclusions. Entropy stable spectral collocation element (SSSCE) methods
of arbitrary polynomial order are derived for the nonlinear Navier—Stokes equations.
The discrete operators are formulated using a summation-by-parts (SBP) framework
and are similar to strong form nodal DG spectral operators. The SSSCE schemes
are strictly conservative for the Euler equations and also conserve the mathematical
entropy over the element. Special entropy fluxes are used to achieve element entropy
conservation. The individual entropy conservative spectral elements are coupled to-
gether in a conservative and entropy stable fashion using an SAT penalty approach.
Characteristic upwinding is used for the inviscid fluxes; an entropy stable local dis-
continuous Galerkin (LDG) plus an internal penalty scheme are used to couple the
viscous terms. A comparison approach is used to combine the SSSCE scheme with a
conservative companion operator to produce an algorithm capable of capturing shocks.
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F1G. 4. Density profiles for the interaction two blast waves. The figure compares two SSSCFEp3-

DG schemes at different resolutions.

The new operators are tested on both smooth and discontinuous test problems.

All smooth test problems are shown to achieve design order accuracy of p 4+ 1 on the
model problems. The discontinuous test problems are simulated with and without
entropy corrections. It is shown that the base entropy conservative algorithm with
upwinded interface fluxes is remarkably robust despite large oscillations at flow discon-
tinuities. Entropy corrections derived from MUSCL, WENO, and conventional DG
operators are tested. Remarkably little dissipation is needed to achieve satisfactory
solutions for strong shocks.
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