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FUN3D Overview

• Established as a research code in late 1980s; now supports numerous internal 
and external efforts across the speed range

• Solves 2D/3D steady and unsteady Euler and RANS equations on node-based 
mixed element grids for compressible and incompressible flows

• General dynamic mesh capability: any combination of rigid / overset / morphing 
grids, including 6-DOF effects

• Aeroelastic modeling using mode shapes, full FEM, CC, etc.

• Constrained / multipoint adjoint-based design, mesh adaptation

• Distributed development team using agile/extreme software practices including 
24/7 regression, performance testing

• Capabilities fully integrated, online documentation, training videos, tutorials
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The Three Pillars of HPC
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FUN3D Performance
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• Early access during Summit construction enabled early 2018 performance demonstrations 

shown here
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2019 Summit Effort
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• CY19 allocations competitively awarded through Summit Early Science and INCITE programs

– Total award of 305,000 Summit node-hours

– Equivalent of ~305,000,000 Xeon Skylake core-hours

• Team includes NASA Langley, NASA Ames, NVIDIA, and Old Dominion University

– LaRC: Science and computational expertise

– ARC: Large-scale visualization, network transfers

– NVIDIA, ODU: Kernel optimizations

“Enabling Human Exploration of the Red Planet”

Entry 
AOA= -10 deg

Velocity = 4.7 km/s

FPA = 10.6 deg

Powered Descent Initiation
Mach =  3.0, 

Alt = 8.3 km

Pitch to 0 deg AOA

Approach
8x100kN engines

80% throttle

Deorbit & Deploy

Touchdown

Campaign Goals

• Science:  Advance the understanding of retropropulsion

flow physics during Mars EDL of a human-scale lander

• Computational:  Demonstrate production readiness and 

efficiency advantages of GPU implementation of the FUN3D

CFD code at scale



Human-scale Mars landers require new approaches to all phases of Entry, Descent, and Landing

• Cannot use heritage, low-L/D rigid capsules  deployable hypersonic decelerators or mid-L/D rigid aeroshells

• Cannot use parachutes  retropropulsion, from supersonic conditions to touchdown

• No viable alternative to an extended, retropropulsive phase of flight

Retropropulsion for Human Mars Exploration
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Viking Pathfinder MERs Phoenix MSL InSight M2020 Human-Scale 

Lander

(Projected)

Diameter (m) 3.505 2.65 2.65 2.65 4.52 2.65 4.5 16 - 19

Entry Mass (t) 0.930 0.584 0.832 0.573 3.153 0.608 3.440 40 - 65

Parachute Diameter (m) 16.0 12.5 14.0 11.8 19.7 11.8 21.5 N/A

Parachute Deploy (Mach) 1.1 1.57 1.77 1.65 2.2 1.66 1.75 N/A

Landed Mass (t) 0.603 0.360 0.539 0.364 0.899 0.375 1.050 26 - 36

Landing Altitude (km) -3.5 -2.5 -1.4 -4.1 -4.4 -2.6 -2.5 +/- 2.0

Landing Technology
Retro-

propulsion
Airbags Airbags

Retro-

propulsion Skycrane

Retro-

propulsion Skycrane

Retro-

propulsion

Steady progression of “in family” EDL

Entry Capsule

(to scale)

Low-L/D

New EDL Paradigm



Retropropulsion in an Atmosphere

• Retropropulsion environments impact vehicle performance

• Maturation requires balance between ground testing and 

computational analysis

• Infeasible to continue with conventional resources, given the 

computational expense of single solutions (several

weeks-to-months each)

• Incremental performance gains in computing will not solve this 

issue
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Examples of solutions with insufficient spatial and temporal resolution

J. Van Norman, NASA LaRC

A. Korzun, NASA LaRC

Infeasible to develop models and databases within

current conventional computational paradigm



Summit Campaigns
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• Rather than pursue small number of “hero” simulations, exploring large ensemble of 

asymmetric throttle conditions across freestream Mach numbers from 0.8 to 2.4

• Spatial mesh sizes ranging from ~1-10 billion elements

• Long temporal duration (~1.6 sec real time) to capture diverse transients and statistics

• Individual runs can reach 200 TB of output; average ~30 TB / day from ORNL to NASA Ames

• Total of ~2 PB of data generated

Mach 2.4 Mach 1.4 Mach 0.8



Results: Mach 2.4
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All engines at 80% throttle (individual engines are under-expanded)

Vorticity magnitude contours

Facing the heatshieldSide view

Vehicle-level design decisions are directly impacted by the ability to

characterize and bound aerodynamic-propulsive interference effects



Game-Changing Performance
Typical Job of 6.5B Elements, 200K Time Steps, 200TB Output

Conventional Computing Approach

• 9 months per run on 5,000 Xeon Skylake cores

(3 months compute, 6 months queues)

• Multiple runs would take years

Current Summit Campaign

• 4 days per run on 552 V100s

• 6 simultaneous runs on 3,312 V100s

→ 6 jobs done in a workweek

→ Equivalent throughput of

~600,000 Xeon Skylake cores
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Mach 2.4 

All engines over-expanded

Mach number contours



Thank you for having us!


