A Mixed Precision Multicolor Point-Implicit Solver
for Unstructured Grids on GPUs

Aaron Walden and Eric Nielsen
NASA Langley Research Center
Hampton, Virginia

Abstract—This paper presents a new mixed-precision implemen-
tation of a linear-solver kernel used in practical large-scale
CFD simulations to improve GPU performance. The new im-
plementation reduces memory traffic by using the half-precision
format for some critical computations while maintaining double-
precision solution accuracy. As the linear-solver kernel is memory
bound on GPUs for practical CFD applications, a reduction
in memory traffic directly translates to improved performance.
The performance of the new implementation is assessed for a
benchmark steady flow simulation and a large-scale unsteady
turbulent flow application. Both studies were conducted using
NVIDIA® Tesla V100 GPUs on the Summit system at the Oak
Ridge Leadership Computing Facility.

Index Terms—mixed precision, high performance computing,
optimization, GPU

I. INTRODUCTION

The relations between velocity, pressure, density, and
temperature of a moving fluid are described by the Navier-
Stokes (NS) equations. The NS equations constitute a system
of time-dependent nonlinear partial differential equations
(PDEs) expressing the conservation of mass, momentum, and
energy and are characterized by tightly-coupled multiscale
interactions. The system is often closed using auxiliary
PDEs governing turbulence quantities. Accurate and efficient
simulations of aerodynamic flows are challenging and
require significant computational resources. FUN3D is a
suite of computational fluid dynamics (CFD) software [1]
developed at the NASA Langley Research Center to solve
the NS equations on unstructured grids for a broad range of
applications across the speed range [2], [3].

A system of nonlinear flow equations can be formally repre-
sented as

R(q) =0 6]

where q is the solution vector. The discrete operator R (q)
may, for example, represent a discretization of the steady-state
Reynolds-Averaged Navier Stokes (RANS) equations, where
the meanflow NS equations may or may not be tightly coupled
with the turbulence closure equations. The nonlinear iterations
are based on a correction scheme

~—Aqg+ 7qu =-R(q"))

Q" =q" + Aq 3)

Boris Diskin
National Institute of Aerospace
Hampton, Virginia

Mohammad Zubair
Old Dominion University
Norfolk, Virginia

Here, q™*! and q" are the solutions at iterations n + 1 and

n, respectively; %% is an approximation to the Jacobian; V'
is a median-dual control volume; and A7 is a pseudo-time
step. An approximate nearest-neighbor Jacobian for the
meanflow equations is formed at each control volume using
a linearization of first-order inviscid fluxes and second-order
viscous fluxes.

The approximate Jacobian is a large system of block-sparse
linear equations. The block size of the linearization matrix is
determined by the number of governing equations and may
range from one to several dozen in the case of general gas
mixtures. For perfect-gas simulations, the system of equations
describing the meanflow evolution in three dimensions is
composed of five equations. The linearization matrix derived
from these equations consists of 5 x 5 blocks. Here, multicolor
point-implicit iterations are used to solve the system of linear
equations. Compared to widely used Jacobi iterations [4],
multicolor iterations offer better iterative convergence, similar
opportunities to overlap communication and computation,
and comparable concurrency: the solution at grid vertices of
a color can be updated simultaneously.

The overall execution time of the FUN3D linear solver
is dominated by a block-sparse matrix-vector multiply
operation. Due to the operation’s low arithmetic intensity
(= 0.5), performance is bound by main memory bandwidth
on modern Central Processing Units (CPUs) and Graphical
Processing Units (GPUs). The primary challenges in achieving
good performance for the linear solver result from the nature
of unstructured grids: irregular memory accesses and a
variable number of non-zero blocks in each row of the
matrix. The need for high memory bandwidth and high
concurrency make the linear solver a suitable application
for GPUs. In earlier work, we reported an optimized
implementation of the linear-solver kernel on GPUs [5].
An optimized block-sparse matrix-vector kernel achieves
close to 90% of memory bandwidth on the NVIDIA® Tesla
V100 GPU. This results in a GPU speedup of 3.5-5.0x
over the current generation of dual-socket CPUs. Even with
optimized block-sparse matrix-vector operations, the linear
solver accounts for a significant (up to 55%) fraction of the
overall runtime in virtually all FUN3D simulations.

Algorithm 1 SOLVER

1: Initialize q

2: for i < 1 to maxiter do

3: Construct Jacobian matrix A at q

4 Construct vector b at q

5 Solve linear equation AAq = b for Aq
6: q+q+Aq

7: end for

In this paper, we describe a new mixed-precision linear-solver
implementation that takes advantage of the IEEE 754 format
for half-precision floating point (FP16) operations and further
improves GPU performance. Traditionally, CFD solvers use
single-precision (FP32) and double-precision (FP64) formats.
In general, using lower precision in intensive computations
improves performance by reducing the memory traffic
or/and speeding up the execution of arithmetic operations
by exploiting hardware support available for lower precision
in the latest GPU architectures. Potential adverse effects
of lower precision may include accuracy degradation and
deterioration of iterative convergence. As the linear-solver
kernel is memory bound on GPUs, we focus on reducing
memory traffic by using the FP16 format while maintaining
double-precision solution accuracy. A reduction in memory
traffic directly translates to improved performance. To avoid
adverse effects, the lower precision computations are used
to compute corrections to a higher-precision solution and
the lower-precision correction iterations restart frequently to
prevent accumulation of round-off errors. The methodology
is similar to the iterative refinement strategies of [6], [7].
The specific contributions of this paper include formulation,
evaluation, and optimization of mixed-precision computations
for large-scale CFD applications.

The paper is structured in the following manner. First, some
details of the solver are presented. Recent advances in the
implementation of the linear solver for GPUs are described.
This double-single (DS) precision implementation uses FP32
and FP64 formats. A new mixed-precision linear solver is then
introduced and analyzed; its double-single-half (DSH) preci-
sion algorithm uses the FP16 format for some critical com-
putations. Accuracy and speed-up of the DSH GPU solutions
are compared with the baseline DS GPU solutions, including
an assessment for an unsteady turbulent-flow simulation on a
grid with 1.14 billion grid vertices conducted on the Summit
system at the Oak Ridge Leadership Computing Facility. The
paper concludes with a brief summary and future research
directions.

II. FUN3D SOLVER

A high-level description of the nonlinear solver representing
iterations (Egs. 2,3) for Eq. 1 is shown in Algorithm 1. The
linearization matrix
VvV 0R
A=—TI+— 4
ALt 94 “)

and the nonlinear residual vector
b= -R(q) 5)

are computed at the current solution q; I is the identity matrix.
The correction, Aq, is computed as an approximate solution
of the linear system

AAq=Db (6)

For a spatial mesh containing n grid vertices, A represents
a sparse n X n block matrix, where each matrix entry is a
dense block of size ny X n; based on the linearization of the
nonlinear governing equations at each grid vertex.

The implicit approach used within FUN3D requires frequent
solutions of Eq. 6 during the course of a simulation. To opti-
mize efficiency and memory usage, the matrix A is segregated
into two separate matrices,

A=D+0 @)

where D and O represent the diagonal and off-diagonal
blocks of A, respectively.

The blocks contained in D and O are stored separately.
The block-sparse n x n matrix O contains nnz non-zero
np X ny blocks that are stored using a block compressed
sparse row (CSR) format [4]. Each of the n rows and columns
containing mn, X np blocks are referred to as a brow and a
beol, respectively. Two integer arrays ¢a and ja are used to
efficiently capture the sparsity pattern of the matrix. The array
ia is a rank-1 array of size n + 1 whose i-th entry indicates
the leading non-zero block index in the i-th brow of O. The
array includes a fictitious n + 1 entry to facilitate traversal of
the elements through the n-th brow. The ja array is a rank-1
array of size nnz that provides the bcol index for each non-
zero block. A third array data is used to store the non-zero
entries. Each nj X ny block is stored in column-major order.
Several linear-solver options are provided within FUN3D;
the scheme most commonly used in practice is a multicolor
point-implicit relaxation. The algorithm to solve the linear
system is shown in Algorithm 2. In this scheme, the grid
vertices are grouped, or colored, such that no two adjacent
(edge-connected) vertices are assigned the same color. Since
the matrix A is constructed using only nearest-neighbor
relations, unknowns defined at the grid vertices of the same
color do not depend on each other and can be updated
in parallel in a Jacobi-like fashion. Colors are processed
sequentially. Updates of unknowns at grid vertices of each
color use the latest updated values of Aq corresponding
to other colors. The overall process may be repeated using
several outer sweeps over the entire system. In a typical
simulation, n;, = 15 sweeps are performed within each
nonlinear iteration. This number of linear iterations is
empirically observed to result in suitable convergence of the
nonlinear solver.

Algorithm 2 MULTICOLOR LINEAR SOLVER

1: for ¢ < 1 to njter do

2 for c < 1ton. do
3: Ar <+ b, — O:.Aq
4: Age + D;lAr

5 end for

6: end for

To improve cache performance, the system of algebraic equa-
tions is renumbered such that unknowns corresponding to
vertices of the same color appear in a consecutive order, and
the arrays ¢a and ja are modified appropriately to reflect the
new matrix structure. In Algorithm 2, O, and D, represent
sub-matrices of O and D respectively defined by color ¢,
and b, represents the sub-vector defined by the color ¢, for
1 < ¢ < n.. The value n. represents the total number of
colors, which is generally about a dozen for typical meshes
encountered in practice. The vector Aq is initialized to zero.
Line 3 of Algorithm 2 represents a standard block-sparse
matrix-vector operation. Line 4 involves inversion of matrix
D.. For efficient inversion, an lower-upper (LU) decomposi-
tion of D, can be computed once and stored in place of De.
The solution for the current block row is then obtained through
a forward-backward substitution procedure.

III. GPU IMPLEMENTATION OF LINEAR SOLVER

The GPU is best suited for computations that can be
executed concurrently on multiple data elements. In general,
a computation is partitioned into thousands of fine-grained
operations, which are assigned to thousands of threads on
a GPU device for parallel execution. The GPU hardware
consists of a number of streaming multiprocessors (SMs),
which in turn consist of multiple cores. Threads are organized
in blocks, or cooperative thread arrays, where one or more
blocks run on an SM. The threads in a block are further
partitioned into subgroups of 32 threads known as warps. A
warp runs on eight or sixteen cores of an SM in multiple
clock cycles.

To develop an efficient GPU implementation of the multicolor
point-implicit solver, functions provided by the cuSPARSE and
cuBLAS [8] libraries were initially considered. The function
cusparseSbsrmy multiplies a block-sparse matrix with a vector,
and the function cublasStrsmBatched solves block systems of
equations by performing forward and backward substitutions
using an LU-decomposition matrix. Experiments showed
that the performance of the library functions is suboptimal
for linear systems representative of those encountered in CFD.

Optimized implementations of the cusparseSbsrmv and
cublasStrsmBatched functions were proposed [5]. To perform
a sparse matrix-vector product, the proposed algorithm
allocates a number of warps, or a group of 32 threads, to
process a subset of the blocks in one row of the sparse
matrix. To perform forward and backward substitutions, a
second kernel is invoked that assigns a single warp to process

one diagonal block. Several challenges were encountered,
including a variable extent of available parallelism, indirect
memory addressing, low arithmetic intensity, and the need
to accommodate different block sizes. To address these
challenges, particular emphasis was placed on coalesced
memory loads, the use of shared memory and pre-fetching,
minimal thread divergence within warps, and strategic use of
shuffle instructions available on recent hardware. Depending
on block size, the new implementations show performance
gains of up to 7x over the existing CUDA library functions.

CPU Node GPU
Core Core =M SN
Core Core % SN

PCle
CPU Memory < > GPU Global
Memory

Fig. 1: CPU and GPU interface.

Although the solution of the linear system can be a significant
fraction of overall runtime, all computational kernels required
to advance the solution of the nonlinear governing equations
should be moved to the GPU to realize maximum benefit of
the architecture. A peripheral component interconnect express
(PCIe) bus is used for moving data between the CPU and
GPU. The bandwidth of the PCle bus is an order of magnitude
smaller than the memory bandwidth between the GPU main
memory and SMs, see Figure 1. For example, PCle 2 has
a peak bandwidth of 16 GB/s, and the latest NVIDIA®
Tesla V100 GPU has a peak bandwidth of 900 GB/s. In a
typical application, the computationally intensive kernels are
offloaded to the GPU. In this approach, all required data are
moved to the GPU and results are brought back to the CPU
once the GPU computation is completed. However, the time to
move the data between the CPU and GPU can be significant
compared to the GPU execution time. For this reason, we have
moved the entire PDE solution procedure to the GPU as shown
in Figure 2. In this paper, we focus on a mixed-precision
implementation of the iterative linear solver. Future work will
focus on mixed-precision matrix construction (Algorithm 1
line 3) for GPUs.

IV. MIXED-PRECISION ALGORITHM USING
HALF-PRECISION FORMAT

In this section, we describe a new mixed-precision approach
to further improve the performance of the linear solver on
GPUs. Typically, the vectors b and q (Eq. 5) and the non-zero
values of the block-diagonal matrix D (Eq. 7) are stored with
double precision; the vector Aq (Eq. 6) and the non-zero
values of the block-sparse matrix O (Eq. 7) are stored using

for i = 1 to maxiter do
Construct A
Construct b

Serial code

Offload all
computation
inside the
loop using
several GPU
kernels

Non Linear
Iteration Loop i

Fig. 2: Moving all main-loop computations to GPU.

single precision. This implementation using double and
single precision is referenced as the DS implementation. To
further decrease the amount of data to be stored and moved,
the matrix O can be stored using half precision (16 bits).
This implementation is referenced as the DSH implementation.

The IEEE 754 FP16 format requires 1 bit for the sign, 5 bits
for the exponent, and 11 bits for the significand (10 bits are
stored explicitly). The NVIDIA® Tesla P100 and V100 GPUs
provide support for the FP16 format. The largest normal real
number that can be represented using the FP16 format is
65504. Typical CFD applications may involve linearization
matrices with entries that far exceed the largest FP16 real
number. To avoid accuracy degradation, the non-zero values
of the matrix O are scaled before converting them to half
precision. The scaling ensures that the maximum converted
value does not exceed 65504. The scaling factor 5 is given
by:
B = 65504/ MAXNZ,

where M AX N Z is the maximum absolute non-zero value in

the matrix O. The mixed-precision linear solver for Eq. (6)
is described in Algorithm 3.

Algorithm 3 MIXED PRECISION LINEAR SOLVER WITH FP16
FORMAT

1: O « ¢2h(B0O)

2: for ¢ < 1 to njter do

3 for c < 1 ton. do

4: Ar + b, — O Aq
5 Aqe + fTIDIAr
6 end for

7: end for

The operation c2h converts data stored in the FP32 format
to the FP16 format. The DSH linear solver is implemented
by altering slightly the existing CUDA DS linear solver
implementation (Algorithm 2). Scaled entries of O are loaded
as FP16 data and cast to the FP32 format to perform the
matrix-vector product. The vector b is multiplied by the

scaling factor (3. The correction Aq is multiplied by % prior
to storage.

If we assume linear solver performance to be constrained
entirely by memory bandwidth, then the speedup of the DSH
implementation over the DS implementation is dictated by
the amount of data loaded from main memory. This amount
depends on n; and the number of non-zero blocks in a row,
nnzr. The speedup is computed as the number of bytes loaded
in the DS implementation divided by the number of bytes
loaded in the DSH implementation:

nnzr(ng -s+mny-s+i)+dn +np)+np-s+2-i
nnzr(ng -h+mny-s+i)+dn? +np)+np-s+2-i

Here, h,s, and d denote the bytes required to represent a
floating-point number with half, single, and double precision,
respectively, and ¢ denotes the bytes to represent an integer
number. The number of non-zero blocks in a specific row
depends on mesh connectivity and differs from row to row.
For simplicity, we compute the speedup for nnzr averaged
over all rows of A. In the limit nnzr — oo, the speedup
approaches

ngos+nb~s+i
ng-h+mny-s+i

S

and as ny — oo, the speedup approaches 7, which is 2 in

this case.

1.9

1.8

1.7

1.6

15

1.4

Speedup (DSH Over DS)

13

1.2

nb=5 ——nb=10

nb=25
1.1

1 2 4 8 16 32 64 128 256 512
Average Non-zero Blocks Per Row

Fig. 3: Theoretical speedup for different block sizes and
average numbers of non-zero blocks per matrix row.

Figure 3 plots theoretical speedup for different n; and nnzr.
In practical FUN3D simulations, the average value of nnzr
falls between 14 and 19, which is high enough to achieve over
90% of the theoretical speedup for a given ny. In this paper,
the value of ny is fixed at 5. Improved speedup predicted for

higher values of n; provides a strong motivation to pursue
lower precision solvers for simulations involving reacting gas
flows, which may require much larger values of n.

There are several ways to construct the O matrix in the
FP16 format. In principle, the FP16 linearization matrix can
be constructed directly; however, there are several significant
obstacles to this approach. The CUDA kernels used to
perform matrix construction rely on the atomic memory
function, atomicAdd, to efficiently resolve race conditions.
As of version 10.1.168, CUDA does not support 16-bit
atomicAdd. The 32-bit function can be used, but memory
traffic would not be reduced. Another obstacle is that the
largest matrix entry and the sufficient scaling factor 3 are not
known in advance. Matrix construction must be restarted with
a reduced value of (3 if an exceedingly large matrix entry is
encountered. With no clear benefits for constructing the FP16
matrix directly, we elect to compute the FP32 matrix O first
and then to convert it to the FP16 matrix O®.

Because the matrix O accounts for approximately half of
the application memory footprint, it must be converted to
the FP16 format in place. Increasing memory usage by
25% could significantly degrade scaling performance since
GPU memory is limited and scaling depends heavily on the
ability to overlap communication with sufficient computation.
Algorithm 4 describes a parallel in-place storage reduction
algorithm (PIPSR). The specific PIPSR algorithm describes
reducing the storage size by a factor of two; however, it can
be readily adapted to reduce the original storage size by any
integer factor.

If matrix O has an odd number of elements, the final element
is processed separately. In the description below, it is assumed
that the matrix O has even number of elements, n, and that
the sufficient scaling factor 5 has been computed in advance.
The algorithm uses three passes (for loops) over the memory
space occupied by O. The first pass multiplies each FP32
element ¢ by 3, converts it to the FP16 format, and stores the
result in the first half of the space originally occupied by the
FP32 element 7. These actions leave the second half of the
bytes of each original FP32 entry unused. In the second pass,
the first 5 FP16 entries are copied into the second half of
the memory space, placed in the unused bytes created during
the first pass. All FP16 entries now reside in the second half
of the memory space, in the range from (O} to O%, _,).
The third pass copies FP16 entries from the second half of
the memory space into the first half, restoring the correct order.

Each for loop of the algorithm has no loop-carried
dependencies and is thus embarrassingly parallel. The
loops must be completed sequentially. Note that the largest
index of matrix O is twice as large as the largest index
of matrix O, but O" and O still occupy the same memory
space because the size of the elements of O is half the size
of the elements of O.

Algorithm 4 PARALLEL IN-PLACE STORAGE REDUCTION

1: if size(O) is even then
2 n < size(O)

3: else

4: n <+ size(O)—1

5: end if

6: fori < Oton—1 do
7 05 +c2h(80y)

8: end for

9: for i<~ 0to 5 —1 do
10: O} 211 + O
11: end for

12: fori+ Oton—1 do

pass one

pass two

pass three

13: if i < E then

14: Oi < 02+2i+1
15: else

16: O! — O},

17: end if

18: end for

19: if size(O) is odd then
20: O! « ¢2h(B0y)
21: end if

remainder loop

The three passes of Algorithm 4 may be implemented using
two CUDA kernels plus a remainder kernel. We fuse pass one
and pass two into a single CUDA kernel. This is achieved by
logically splitting the threads in a block into two, the first
half of which load from the first half of O, the second half
load from the second half of O, each group having the same
offset. After reading, each block synchronizes. The memory
location read by threads in the second half of the block may
now be written by threads in the first half, indicated by pass
two of Algorithm 4. Pass three is performed by the second
CUDA kernel. Memory operations are coalesced by assigning
chunks of the pass loops to warps of threads. This requires
that the size of O be a multiple of the number of threads in a
block. We process Lm;‘:;%] x threads_per_block with
the two kernels described and the remaining elements in a
remainder loop, the cost of which is negligible for a typical O.

On the NVIDIA® Tesla V100, the two-kernel-plus-remainder
approach provides a speedup factor of 1.7 over a naive
three-kernel-plus-remainder approach. Because the remainder
loop allows us to choose arbitrarily the size of O processed
by the main kernels, we can ensure all loads are aligned
and thus use CUDA vector intrinsic types, increasing the
efficiency of memory operations. Vector loads and stores
increase the performance of PIPSR by a factor of 1.2. The
bandwidth of the two kernels is measured at 846 and 826
GB/s, respectively, when n is sufficiently large, which is
close to peak bandwidth. The two-kernel in-place approach is
approximately twice as slow as simply copying O to O in
a separate array.

V. RESULTS

The first test case is based on transonic turbulent flow over
the semi-span wing-body configuration shown in Figure 4

Fig. 4: Wing-body configuration taken from [9].

[9]. The freestream Mach number is 0.85, the angle of attack
is zero degrees, and the Reynolds number based on the
mean aerodynamic chord is 5 million. The computational
mesh consists of 1,123,718 grid vertices, 1,172,171 prisms,
3,039,656 tetrahedra, and 7,337 pyramids.

Iterative convergence for a linear system corresponding to this
simulation is first examined. Here, a system Ax = b has been
extracted from the mean flow discretization of a single time
step of the simulation. The linear residual history based on
DSH and DS iterations is shown in Figure 5. The two plots
are indistinguishable until iteration 35, after which the FP16
format cannot accurately represent updates of Aq. Beyond this
point, the residual convergence of DSH iterations stagnates as
round-off error prevents further residual reduction while the
residual of DS iterations continues to decrease. This result
implies that DSH iterations should be frequently restarted; i.e.,
after several DSH iterations, the FP16 correction should be
applied to correct the double-precision solution, the Jacobian
matrix and nonlinear residual vector should be recomputed,
and the half-precision correction should be re-initialized to
zero. For the specific matrix considered here, the number of
DSH iterations should not exceed 35. Recall that the typical
number of linear solver iterations used in practice is 15.

A comparison of the DS and DSH approaches for the
full steady-state turbulent flow simulation is shown in
Figures 6 and 7. These simulations have been conducted
using a single NVIDIA® Tesla V100 GPU on the Summit
system at the Oak Ridge Leadership Computing Facility.
The DSH methodology has been implemented for the
meanflow linear system while the standard DS methodology
is used for the one-equation turbulence model. Figure 6
shows the convergence of the root-mean-square (RMS)
norm of the nonlinear density residual using both DS and
DSH linear-solver implementations. There is no discernible
difference in the convergence of nonlinear iterations using
DS and DSH linear solvers. However, the DHS simulation is
1.20x faster than the standard DS approach. This speedup
is illustrated in Figure 7, which compares the wall-clock
time of 10,000 nonlinear iterations using DS and DSH linear
solvers; the wall-clock time to complete the simulation with
the DS linear solver is taken to be 1.0. The plot breaks the

simulation down into several components: Linear_solver is
the subject of this paper; LHS is the formation of A of
Eq. 4; RHS is the formation of the nonlinear residual vector
b of Eq. 5; Turb is the turbulence model; Misc includes
utility functions which transform data structures, compute
norms, call CUDA API functions, etc.; PIPSR is Algorithm 4;
Overhead includes everything not captured by the NVIDIA
profile utility nvprof. The DSH linear solver is 1.53x
faster than the DS linear solver, however the speedup of
the full simulation (1.20x) is smaller because the linear
solver constitutes only a fraction of the runtime. PIPSR
takes ~ 1% of the runtime, and thus does not significantly
impact the speedup. The scenario of a steady simulation
on a single GPU leads to the greatest fraction of time
used by the linear solver. From this perspective, the 1.20x
speedup observed in this scenario is likely the best achievable.

To evaluate the implementation of the DSH approach on
a GPU architecture at scale, an unsteady Detached Eddy
Simulation of supersonic retropropulsion is performed on 92
nodes of the Summit system (552 NVIDIA® Tesla V100
GPUs). This case uses a mesh containing 1,142,270,801
vertices, 263,608,400 prisms, 6,046,934,464 tetrahedra, and
283,836 pyramids. The freestream Mach number is 2.4, the
angle of attack is zero degrees, and the Reynolds number
based on the heat shield diameter is 5.89 million. Each of the
eight nozzles operates at a specified pressure ratio of 8,733.
An instantaneous snapshot of total temperature isosurfaces is
shown in Figure 8.

Convergence of the meanflow density residual is shown in
Figure 9 and performance breakdown is shown in Figure 10.
As in the steady-simulation case, there is no discernible
difference between the nonlinear residuals observed in the
unsteady simulations using the DSH and DS linear solvers
(figure 9). The overall speedup for the unsteady simulation

1.00E-04 | DSH
N\ ---Ds

1.00E-05 ~
1.00E-06 N

1.00E-07 ~

Density Residual RMS

1.00E-08 S

1.00E-09 S

1.00E-10
0 20 40 60 80

Iteration

Fig. 5: DS and DHS iterations for a representative matrix
consisting of 1,123,718 block rows.

1.0E+00

\ DSH

\ ---DS
10802 | %

1.0E-01

1.0E-03 \
1.0E-04
1.0E-05 W

1.0E-06 \

Density Residual RMS

1.0E-07 \
1.0E-08 N

1.0E-09 N

1.0E-10

0 500 1000 1500

Iteration

2000 2500

Fig. 6: Residual convergence history for steady RANS simu-
lations on a single NVIDIA® Tesla V100 device.

|
0.9
0.8
0.7

0.6
0.5

0.4

0.3

Normalized Wall Time

0.2
0.1

DS DSH

M Linear_solver & LHS W RHS M Turb = Misc 7/ PIPSR M Overhead

Fig. 7: Performance breakdown for steady RANS simulations
on a single NVIDIA® Tesla V100 device.

using the DSH linear solver is 1.11x. There are several
factors leading to the speedup that is lower than the speedup
observed in the steady-simulation case. The linear solver
constitutes a smaller portion of the unsteady computation. This
can be seen by comparing the normalized wall time plots
in Figures 7 and 10. A portion of the unsteady runtime is
spent in MPI calls, which is reflected in the larger Overhead
component. In addition, LHS is computed more frequently in
the unsteady case. Finally, the DSH linear solver speedup is
smaller in the unsteady simulation (1.45% instead of 1.55x%)
because of a lower average number of non-zero blocks per
row in matrix A.

VI. SUMMARY AND FUTURE WORK

A large-scale unstructured-grid computational fluid dynamics
code, FUN3D, uses a linear solver to compute corrections
to nonlinear solutions of the fluid dynamics equations.
A double-single (DS) mixed-precision implementation of

Fig. 8: Retropropulsion simulation performed on Summit.
Freestream flow direction is from left to right.

1.0E+00
1.0E-01
1.0E-02 { i ,'l ’. '
1.0E-03

1.0E-04

Density Residual RMS

1.0E-05 \

1.0E-06

95 96 97 98 99 100
Time Step

Fig. 9: Typical subiteration convergence for unsteady retro-
propulsion simulations.

the linear-solver kernel has been previously optimized for
performance on Graphics Processing Units (GPUs). In that
implementation, the IEEE 754 double-precision floating-point
(FP64) format is used to store the diagonal blocks of the
Jacobian matrix and vectors of the nonlinear residuals and
solutions; the single-precision (FP32) format is used to store
the off-diagonal blocks of the Jacobian and correction vector.

This paper has presented a new mixed-precision
implementation of the FUN3D linear-solver kernel to
further improve GPU performance. The new implementation,
referred to as the double-single-half (DSH) implementation,
reduces memory traffic by using the half-precision (FP16)
format while maintaining double-precision solution accuracy.
In the new implementation, the off-diagonal blocks of the
Jacobian are generated in the FP32 format, then scaled and
stored in-place in the FP16 format. As the FUN3D linear-
solver kernel is memory bound on GPUs, a reduction in
memory traffic directly translates to improved performance.
To maintain double-precision solution accuracy, lower-
precision correction iterations restart frequently to prevent

0.9
0.8
0.7
0.6
0.5

0.4
0.3

o
£
=
©
s
-]
7]
N
©
£
=
)
P4

0.2
0.1

DS DSH

M Linear_solver & LHS M RHS M Turb = Misc 7/ PIPSR M Overhead

Fig. 10: Performance breakdown for unsteady retropropulsion
simulations.

accumulation of round-off errors.

The performance of the new implementation has been
assessed for a benchmark problem and a practical large-
scale computation. The benchmark simulation computed a
steady state for a turbulent flow on an unstructured grid
with approximately one million grid vertices. The large-
scale study performed a high-resolution simulation of an
unsteady supersonic retropropulsion configuration on an
unstructured grid with about 1.14 billion grid vertices. Both
studies have been conducted using NVIDIA® Tesla V100
GPUs on the Summit system at the Oak Ridge Leadership
Computing Facility. The solutions computed with the DS and
DHS implementations are indistinguishable. The theoretical
speedup of the DSH linear solver over the DS linear solver
(1.55x) is closely matched by the speedup (1.53 <) observed
in the benchmark study. The total simulation time is reduced
by a factor of 1.20 for the benchmark steady computation
and 1.11 for the large-scale unsteady simulation.

In the future, we plan to study the benefits of lower-precision
computations for FUN3D performance on different architec-
tures, such as AMD GPUs and ARM processors. Mixed-
precision GPU implementations of other iterative solvers and
computational models implemented within FUN3D will also
be explored.

ACKNOWLEDGMENTS

We are grateful to the High Performance Computing Incubator
at the NASA Langley Research Center for providing support
for this work. The support of Dr. Mujeeb Malik, Technical
Lead for the Revolutionary Computational Aerosciences sub-
project within the NASA Aeronautics Research Mission Direc-
torate Transformational Tools and Technologies Project, is also
acknowledged. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-ACO05-
000R22725.

REFERENCES

[1] R.T. Biedron, J.-R. Carlson, J. M. Derlaga, P. A. Gnoffo, D. P. Hammond,

W. T. Jones, B. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park,

C. L. Rumsey, J. L. Thomas, and W. A. Wood, FUN3D Manual 13.5,

NASA/TM-2019-220271, 2019.

E. J. Nielsen and B. Diskin, “High-performance aerodynamic computa-

tions for aerospace applications,” Parallel Computing, vol. 64, pp. 20 —

32, 2017.

L. Wang, B. Diskin, R. T. Biedron, E. J. Nielsen, V. Sonneville, and O. A.

Bauchau, “High-fidelity multidisciplinary design optimization methodol-

ogy with application to rotor blades,” Journal of the American Helicopter

Society, vol. 64, no. 3, pp. 032002:1 — 11, July 2019.

[4] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.

[5S] M. Zubair, E. Nielsen, J. Luitjens, and D. Hammond, “An optimized
multicolor point-implicit solver for unstructured grid applications on
graphics processing units,” in Proceedings of the Sixth Workshop on
Irregular Applications: Architectures and Algorithms. Piscataway, NJ,
USA: IEEE Press, 2016, pp. 18-25.

[6] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing GPU

tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative

refinement solvers,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage, and Analysis, ser.

SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 47:1-47:11.

H. Anzt, P. Luszczek, J. Dongarra, and V. Heuveline, “GPU-accelerated

asynchronous error correction for mixed precision iterative refinement,”

in Euro-Par 2012 Parallel Processing, C. Kaklamanis, T. Papatheodorou,
and P. G. Spirakis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 908-919.

NVIDIA. (2015) cuBLAS user guide.

//docs.nvidia.com/cuda/cublas/

[9] K.R. Laflin, S. M. Klausmeyer, T. Zickuhr, J. C. Vassberg, R. A. Wahls,
J. H. Morrison, O. P. Brodersen, M. E. Rakowitz, E. N. Tinoco, and
J.-L. Godard, “Data summary from second AIAA computational fluid
dynamics drag prediction workshop,” AIAA Journal of Aircraft, vol. 42,
no. 5, pp. 1165 — 1178, 2005.

[2

—

3

—

[7

—

[8 Available:

—_

[Online]. http:

