Development of A High-Fidelity Multidisciplinary Design Optimization Framework for Rotorcraft Applications

Li Wang
Senior Research Engineer
National Institute of Aerospace
Hampton, VA, USA

Presentation for Laurence D. Leavitt Lecture
March 7, 2019
Acknowledgements

The Work is Supported by the NASA Revolutionary Vertical Lift Technology
Project Manager: Susan A. Gorton

National Institute of Aerospace Major Developer
Boris Diskin

NASA Computational AeroSciences Branch Collaborators
Robert T. Biedron
Eric J. Nielsen
Williams T. Jones
Elizabeth Lee-Rausch
Matthew O’Connell

University of Maryland Collaborators
Olivier A. Bauchau
Valentine Sonneville
Outline

• Background & Overview
• Coupled CFD/CA Solvers
• Multidisciplinary CFD/CA Sensitivity Analysis Framework
• System Verification and Validation
• Demonstration of Multidisciplinary, Multipoint Design Optimization
• Concluding Remarks
Background

• Computational fluid dynamics (CFD) tools
 o High-fidelity, first-principle approach
 o Major simulation tools for aerodynamics
 o Large-scale simulations performed in supercomputing environment
 o Widely applied to rotorcraft simulations
 o Understanding of complex rotor flows and interactions
 o Insights to optimize design

• Rotorcraft aeromechanics requires multiple disciplines
 o Aerodynamics – airloads, rotor performance
 o Structure/multibody dynamics – blade deflections, trim, stability
 o Aeroacoustics – rotor noise and propagation
 o Flight dynamics, etc.
Background

- Coupling of aerodynamics and structure dynamics accounts for complex fluid structure interactions
 - Helicopter blades highly flexible – rigid blades not representative
 - Blade elastic motions of torsion, flap, and lead-lag coupled with rigid motions (e.g., high harmonic pitch controls)
 - Blade loading and structure responses vary and interact dynamically

- Rotorcraft comprehensive analysis (CA) tools encompass various models
 - Varying levels of fidelity, low cost
 - Widely used in rotorcraft industry
 - Rely on low-fidelity aerodynamics model (e.g., lifting line theory) – insufficient for resolving three-dimensional flow/compressibility
Overview

• High-fidelity rotorcraft analysis – state of the art
 o Couple CA with CFD to replace low-fidelity aerodynamics model
 o Exchange CFD airloads and structural responses

• Required CFD capabilities
 ✓ Robust and efficient time-dependent flow solver, turbulent flow modeling
 ✓ Overset grids to allow large relative motion
 ✓ Surface deformation, mesh elasticity, dynamically deforming meshes
 ✓ Interfaces to CA code for coupling, fast data transfer
Coupled CFD/CA Solvers

FUN3D Model
- Unstructured-grid, node-centered, finite-volume, CFD solver developed by NASA Langley
- Dynamically deforming, overset grids
- Interfaces for CFD/CA simulations

DYMORE5 Model
- Established nonlinear flexible multibody dynamics CA code, open source
- Production-level, low cost
- Local-frame motion formulism and parallelization

\(O(10^3)\) degrees of freedom

FUN3D
solver used for rotorcraft applications

Multibody Representation of Rotor Systems
www.dymoresolutions.com
Sensitivity Analysis (SA)

- Determines how input variables impact output of interest
 - Also known as "what-if" analysis
 - What inputs causing most/least influence to output – prescreening process
 - Direction of input change to improve output
 - Guidance toward optimum
 - Uncertainty quantification
 - Model development – calibrating, simplifying systems

Impact of Parameter Change to Output

Example of Using Sensitivity to Seek Functional Minimum
Approaches to SA

• Finite difference method
 o Perturb input variables one at a time and analyze relative change in output
 o Simplest, minimum source code modifications
 o Computational cost depends on number of inputs
 o Suitable for “black-box” systems with “light” computations – SA can be conducted in parallel
 o Not affordable for high-fidelity CFD

• Adjoint method
 o Linearize system and transpose
 o Cost does not depend on number of inputs, similar to one analysis
 o Efficient for design with large number of input/design variables and few outputs
 o Widely used in aircraft shape optimization
SA for Multidisciplinary CFD/CA System

- Develop integrated SA for coupled CFD/CA system
 - Disparity in CFD and CA computational costs
 - Adjoint method for "heavy" system – CFD
 - Finite-difference method for "light" system – CA
 - Extended interface transfers perturbed airloads from CFD to CA and deflection sensitivities from CA to CFD
 - Complete discretely consistent adjoint system is ideal

![Diagram showing the flow of data between FUN3D, DYMORE, and CFD/CA Rotorcraft Sensitivity Analysis Toolset]
SA for Multidisciplinary CFD/CA System

• What kind of sensitivities does the coupled system account for?
 o **CFD flow** sensitivities from unsteady, turbulent flow
 o **CFD grid** sensitivities from overset and dynamically deforming meshes reflecting structural deflections
 o **Structure** sensitivities from various structural elements such as beams, mechanical joints, springs, dampers, etc.
 o **Integrated, mathematically rigorous system**

• What types of input variables can be enabled for design optimization?
 o **Geometry** *shape* design variables – blade planform, twist, thickness, camber, etc.
 o **Kinematics** design variables – pitch controls
 o **Global** design variables – AOA, shaft tilt, etc.
Multidisciplinary Design Optimization

- **Input variables** are parameters that can be changed by designer.
- **Outputs** are design objective and constraints such as rotorcraft-specific functional of interest, e.g., rotor power, figure of merit, thrust, moments, etc.
- This framework can be used to perform single- or multi-point design optimization.
System Verification and Validation

- Coupled system tested for various rotorcraft configurations and flight conditions

<table>
<thead>
<tr>
<th>HART-II</th>
<th>UH-60A Blackhawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descending Flight</td>
<td>Forward Flight</td>
</tr>
<tr>
<td>BVI</td>
<td>Hover Flight</td>
</tr>
<tr>
<td>HHC for Minimum Noise</td>
<td></td>
</tr>
<tr>
<td>HHC for Minimum Vibration</td>
<td></td>
</tr>
</tbody>
</table>

- **Normal Force**

- **Figure-of-Merit**

![Diagram showing coupled system tested for various flight conditions](image-url)
Multipoint Design Setup – UH60A Rotor

- Design points - hover flight (C9605) and forward flight (C8534)
- Design outputs - 2 objectives & 6 constraints
 - Objectives - maximize rotorcraft figure of merit \((FM = \frac{C_T^{3/2}}{2\sqrt{C_P}})\) in hover flight and minimize rotor power in forward flight
 - Constraints - meet specific targets of rotor thrust and rolling and pitching moments at both design points
 - Optimization time interval - 4th quarter of first rotor revolution
- Initial conditions - FUN3D/DYMORE5 trimmed (loosely coupled) solutions for baseline configuration

\[
\theta = \theta_0 + \theta_1 c \cos \psi + \theta_1 s \sin \psi
\]

Design variables:
81 shape variables (9 twist, 36 thickness, and 36 camber) shared by all design points
3 trim variables for each design point, total 6 trim variables

Grid: 7M nodes
Optimization Results – UH60A Rotor

- Convergence of objectives & constraints

Hover flight (C9605) 1.03% increase in FM

Forward flight (C8534) 3.91% reduction in rotor power
Optimization Results – UH60A Rotor

• Blade shape optimization
 o Combination of changes in many design variables
 o Pitch control angles excluded
 o Larger camber changes

• Trim variables

Blade cross-section geometry
Enlarged vertical scale (4:1)
Assessment of Optimization Results

- Long-term FUN3D/DYMORE5 tight-coupling simulations for baseline and optimized configurations (10 rev.)
 - Initial transients pass quickly
 - Periodic solutions established
 - Improved rotor performance preserved
 - Trim conditions maintained

Hover flight (C9605)

Forward flight (C8534)
Concluding Remarks

• High-fidelity FUN3D/DYMORE5 multidisciplinary analysis and design optimization framework developed and assessed for rotorcraft applications

• Verification and validation conducted for FUN3D/DYMORE5 analysis of HART-II and UH-60A Blackhawk rotor in various flight conditions

• Constrained, gradient-based, multipoint design optimization procedure formulated and applied to optimization of UH-60A Blackhawk rotor blades
 o Maximize rotorcraft figure of merit in hover flight
 o Minimize rotor power in forward flight
 o Constrained rotor thrust and rolling and pitching moments
 o Improved rotor performance preserved and trim conditions maintained

• Future work
 o Extend to coupled aero/structure/acoustics analysis and design optimization framework for low-noise rotorcraft optimization
 o Develop discretely-consistent, adjoint-based, FUN3D/DYMORE sensitivity analysis system and apply to maneuvering rotorcraft optimization
Thank you for your attention!