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Abstract. An exploratory study is performed to investigate the use of a time-dependent discrete
adjoint methodology for design optimization of a high-lift wing configuration augmented with an
active flow control system. The location and blowing parameters associated with a series of jet
actuation orifices are used as design variables. In addition, a geometric parameterization scheme is
developed to provide a compact set of design variables describing the wing shape. The scaling of
the implementation is studied using several thousand processors and it is found that asynchronous
file operations can greatly improve the overall performance of the approach in such massively
parallel environments. Three design examples are presented which seek to maximize the mean
value of the lift coefficient for the coupled system, and results demonstrate improvements as high
as 27% relative to the lift obtained with non-optimized actuation. This lift gain is more than three
times the incremental lift provided by the non-optimized actuation.
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1. Introduction

The last two decades have seen tremendous growth in the use of adjoint-based algorithms for
design optimization of aerodynamic concepts. The primary benefit of this approach is the ability
to perform rigorous sensitivity analyses for complex flowfields at the nominal cost of a single
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flowfield solution, regardless of the number of design variables. Numerous research groups have
applied these methods to a wide range of aerospace applications. For extensive surveys of recent
work in this area, the reader is referred to the excellent overviews given in Refs. [27] and [37].

However, to date, the use of adjoint techniques has been largely confined to the control of steady
flows. The primary impediment associated with the unsteady form of the equations lies in the
practical requirements of such an approach. Strictly speaking, adjoint methods require access to the
entire time-dependent flow solution in order to perform sensitivity analyses for general unsteady
phenomena. This is in stark contrast to the use of adjoint methods for steady problems, which
merely linearize about the final steady-state solution. Furthermore, the cost associated with a single
unsteady solution for a complex aerospace application can often be considerable. In such cases, the
computational requirements necessary to perform a formal adjoint-based optimization for complex
applications can be tremendous despite the algorithmic efficiencies. Nevertheless, adjoint-based
methods are gradually making in-roads into the unsteady regime [8, 23, 25, 26, 28, 43].

Active flow control concepts would appear to be excellent candidates for the use of formal op-
timization methods. The use of synthetic jets and other actuation devices has become widespread
across a broad range of configurations [5, 9, 11, 18, 19, 20, 36, 42, 47, 50]. However, the
strategies used to establish the location and performance characteristics of such devices are of-
ten heuristically-based at best and the use of such devices is often an afterthought on an exist-
ing configuration. Instead, a simultaneous physics-based formal optimization of the combined
vehicle configuration and actuation system could potentially yield unforeseen performance ben-
efits for the coupled system. Examples of several previous efforts in this area are described in
[4, 10, 12, 15, 24, 41, 51].

In [28], a discrete adjoint implementation for three-dimensional turbulent flows on dynamic
unstructured grids was presented, and large-scale optimization examples were demonstrated for
a tilt-rotor configuration and a fighter jet undergoing a simulated aeroelastic motion. The use of
this design methodology is now examined in the context of a high-lift wing section augmented
with an active flow control system. First, the formulation of the flow and adjoint equations is
reviewed. The wing section and baseline flow conditions for the current study are introduced, as
well as a geometric parameterization scheme describing the configuration. The parallel scaling
of the implementation is evaluated using several thousand processors with special attention given
to file I/O performance, which is critical to the overall efficiency of the approach. Finally, three
optimization examples are presented for the test case considered.

2. Governing Equations

2.1. Flow Equations

The governing flowfield equations are the unsteady Reynolds-averaged Navier-Stokes equations,
which may be written in the following form:

9 [ qav +]§ (F, — F,) - adS = 0, @.1)
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where V' is the control volume bounded by the surface V. The vector q represents the conserved
variables for mass, momentum, and energy, the vectors F; and F, are the inviscid and viscous
fluxes, respectively, and 1 is an outward-pointing unit face normal.

By defining a volume-averaged quantity Q within each control volume,

J, adv
==Y - 2.2
Q v 2.2)
the conservation equations take the form
a(QV
(Qv) —|—f (F;, — F,)-0dS =0, (2.3)
ot v

where the conserved variables are defined as Q = [p, pu, pv, pw, E]T. Here, p is the density, u, v,
and w are the Cartesian components of velocity, and FE is the total energy per unit volume. The
inviscid and viscous flux vectors, F; and F,, are not explicitly shown here but can be found in
[1]. The equations are closed with the perfect gas equation of state and an appropriate turbulence
model for the eddy viscosity.

In the current study, a backward difference formula (BDF) known as BDF2opt resulting from
a linear combination of the standard BDF2 and BDF3 schemes [35, 52] is employed, so that the

equations can be evaluated at time level n as follows:

vn CLQ” + anfl + CQTHQ + dQn73
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v

For n > 3, the temporal coefficients a, b, ¢, and d are taken as 1.66, -2.48, 0.98, and -0.16,
respectively. Similar to the standard BDF2 scheme, BDF2opt is guaranteed to be stable and is
formally second-order accurate; however, the BDF2opt scheme has a smaller coefficient on the
leading term of the truncation error. For n = 2 and n = 1, the standard BDF2 (¢ = 1.5, b = —2.0,
c = 0.5, d = 0.0) and BDFI (¢ = 1.0, b = —1.0, ¢ = d = 0.0) schemes are used, respectively.
Initial solutions are specified at the initial time level n = 0.

References [1, 6, 13, 29] describe the flow solver used in the current work. The code can be
used to perform aerodynamic simulations across the speed range and an extensive list of options
and solution algorithms is available for spatial and temporal discretizations on general static or dy-
namic mixed-element unstructured meshes which may or may not contain overset grid topologies.

In the current study, the spatial discretization uses a finite-volume approach in which the de-
pendent variables are stored at the vertices of tetrahedral meshes. Inviscid fluxes at cell interfaces
are computed using the upwind scheme of Roe [40], and viscous fluxes are formed using an ap-
proach equivalent to a finite-element Galerkin procedure [1]. The eddy viscosity is modeled using
the one-equation approach of Spalart and Allmaras [49]. Parallel scalability to thousands of pro-
cessors is achieved through domain decomposition and message passing communication. Pre-
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and postprocessing operations are also performed in parallel using distributed memory, avoiding
the need for a single image of the mesh or solution at any time and ultimately yielding a highly
efficient end-to-end simulation paradigm.

An approximate solution of the linear system of equations formed within each time step is
obtained through several iterations of a multicolor Gauss-Seidel point-iterative scheme. The tur-
bulence model is integrated all the way to the wall without the use of wall functions and is solved
separately from the mean flow equations at each time step with a time integration and linear system
solution scheme identical to that employed for the mean flow equations.

2.2. Grid Equations

The grid equations are posed in the general form G(X,D) = 0, where X is the vector of mesh
coordinates and D is the vector of design variables. In the current study, the grid is held static
during the simulation and is subject to deformation only as a result of the shape optimization
procedure. The mesh is modeled as an elastic medium that obeys the elasticity relations of solid
mechanics, where an auxiliary system of linear partial differential equations (PDEs) is solved to
determine the mesh coordinates after each shape update. Discretization of these PDEs yields a
linear system of equations:

KX = X/, (2.6)

where K represents the elasticity coefficient matrix and X, s is the vector of updated surface co-
ordinates, complemented by zeros for all interior coordinates. Thus for the static grid formulation
used here, the grid operator takes the specific form:

G(X,D) = X,.,; — KX. 2.7)

The material properties of the system are chosen based on the local cell geometry and proxim-
ity to the surface, and the system is solved using a preconditioned generalized minimal residual
algorithm. For further details on the approach, see [6, 30, 44].

3. Cost Functions and Adjoint Equations

The steady-state adjoint implementation described in [29]-[34] permits multiple objective func-
tions and explicit constraints of the following form, each containing a summation of individual
components:

Ji
fi=> wi(Cy— . 3.1)
j=1

Here, w; represents a user-defined weighting factor; C} is an aerodynamic coefficient such as the
total drag or the pressure or viscous contributions to such quantities, the % superscript indicates
a user-defined target value of Cj, and p; is a user-defined exponent chosen so that f; is a convex
functional. The user may specify computational boundaries to which each component function ap-
plies. The index ¢ indicates a possibility to introduce several different cost functions or constraints,
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which may be useful if the user desires separate sensitivities, e.g., for lift, drag, pitching moment,
etc.

For the unsteady implementation described in [28], similar general cost functions f are de-
fined at each time level n. The integrated cost function f; is defined as a discrete time integral over

a certain time interval [t}, ?]:

Ni
= > A (3.2)

_n1
n=N;

where user-specified time levels N} and N? correspond to ! and ¢2, respectively.

The discrete adjoint-based optimization methodology is based on the method of Lagrange mul-
tipliers, which is used to enforce the governing equations as constraints. For the sake of simplicity,
a single cost function is assumed and therefore the index ¢ is omitted. For the time-dependent
equations, the Lagrangian functional is defined as follows:

L(D,Q,X, A, A wa

. i[ A (aQ” + Q!+ cQr 2+ dQ
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n=1
H(fO + [AD)"R™ AL + ATG AL
where f* = 0 forn < N'and n > N?; G = 0 are the grid equations; A}L and AZ are vectors
of Lagrange multipliers associated with the flow and grid equations, respectively; D is a vector of
design variables; and R™ = ( is the initial condition for the flow equations.
The Lagrangian is differentiated with respect to D, assuming that f depends on Q,,, X, and
D; R™ depends on Q°, X, and D; and R" depends on Q", X, and D. Regrouping terms to isolate
the coefficients of 9Q™ /0D and equating the coefficients to zero yields the final form of the adjoint
equations for the flowfield: for 3 < n < N:

(A} + bA”H + cA”+2 + dA"+3) 4 + BSZFA’} =— {gg;r, (3.4)
where ANTL = AN+2 = AN+3 — ),
forn = 2: VT ST
(gAfc + AT + cA7 +dAG) v -+ Bl&} A} =— B—C‘gz} ; (3.5)
forn = 1: T )
(Aj =207 + cAj + dAj) v Bgl} Aj=— [S—ép} ; (3.6)
and for the initial conditions:
(A} + %A +dA}) V [%r&} [ggo] : 3.7)
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Figure 1: Baseline airfoil geometry from [48].

Collecting the coefficients of 90X /0D and equating them to zero leads to similar adjoint equa-
tions for the grid. Assuming that the grid operator G depends on X and D, the grid adjoint
equations are defined as

oG N fn T aQn_{_an—l_‘_CQn72+dQn—3 oV IR T .
[ } Z{[ } [ At a_X+aX} As

=3

21T 2 1 0 21T
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With the adjoint coefficients satisfying the flowfield and grid adjoint equations, the sensitivity
derivatives are calculated as follows:

dL of" . 1 0R 9f° [ ATORT  L0G
i (aD (A7) 8D)At+<8D M) S5 +ATp) A 69

The implementation of the time-dependent adjoint and sensitivity equations has been previ-
ously described and verified in [28]. The general methodology for solving the adjoint equations is
similar in nature and reverse in order to that used for the primal equations. In practice, the primary
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Figure 2: Baseline wing geometry. Figure 3: Surface grid for baseline wing.

concern in solving the adjoint equations is the need to have Q™ available at all time levels during
the reverse time integration for A’. For three-dimensional flows with a one-equation turbulence
model, this requires 48 bytes of disk storage per grid point per physical time step. For realistic
problems, this can easily yield disk storage requirements on the order of many terabytes. In the
current implementation, the values of Q" are written to disk independently by each processor for
each local grid partition at the completion of each time step of the forward problem. During the
solution of the adjoint equations, Q" is loaded as needed from disk in the same fashion. The prac-
tical implications of this strategy will be discussed in a subsequent section. Finally, any third-party
geometric parameterization tool providing X, and 0Xy,, /0D may be used with the current
implementation.

4. Test Case

4.1. Geometry and Computational Grid

The geometry for the current study is based on a three-element airfoil section taken from [48]. The
airfoil consists of a main element with a leading edge slat and trailing edge flap as shown in Figure
1. A series of ten rectangular jet orifices are located along the chord c of the airfoil. Each orifice
has a 0.002c¢ cross-sectional width with its centerline oriented 20° to the local surface tangent. For
discussion purposes, the orifices are numbered as shown: two orifices are located on the slat, three
are located on the main element, and the remaining five orifices are located on the flap.

To create the three-dimensional wing section used in the current study, the two-dimensional
airfoil section has been extruded one chord length at a 0° sweep angle in the spanwise direc-
tion. Rectangular jet slots with cross sections and chordwise locations identical to the nominal
airfoil geometry are centered in the spanwise direction and measure 0.75¢ in length. The resulting
three-dimensional geometry is shown in Figure 2. The computational grid consists of 50,870,813
tetrahedral elements and 8,823,297 grid points and has been generated using the methodologies
described in [16, 39]. This grid resolution has been chosen as a compromise between adequately
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Figure 4: Specified normal velocity profile for each jet orifice; positive values indicate blowing.

resolving the pertinent flow physics and maintaining a reasonable overall computational cost. The
planar sidewalls are modeled using tangency boundary conditions and are deformed in-plane in
response to changes in the wing surface geometry described below. A view of the surface grid
for the wing section is shown in Figure 3. The farfield boundary conditions utilize a locally one-
dimensional system of Riemann invariants [1].

4.2. Baseline Conditions and Aerodynamic Performance

The external freestream conditions are a Mach number of 0.1, a 19° angle of attack, and a Reynolds
number of 3 million based on the chord of the wing. As reported in [48], these conditions corre-
spond to a near maximum lift condition for the baseline airfoil section with no actuation applied.
Although the implementation supports the use of dynamic grids which could be used to mimic ac-
tual piston diaphragm motion, a time-dependent blowing condition is instead imposed at the base
of each rectangular slot, resulting in periodic jet flow emanating from each orifice along the chord
of the wing section. The actuation is achieved through a prescribed sinusoidally-varying velocity
Vi, normal to the base of each slot, clipped at a minimum value of zero:

Vi = max|0, V sin(wt + ¢)] 4.1)

The clipping is applied to simplify the numerical boundary condition for the purposes of the current
investigation. Similar to the approach taken in [48], the value of V is 0.24, with the resulting
blowing profile shown in Figure 4 where 7" represents the period of the blowing cycle. The density
is also specified at the base of each slot and is taken as the freestream value, yielding a maximum
nominal local Mach number of 0.24. The reduced frequency F* = f - ¢/V,, for each jet is also
taken from [48] as 1.52, and the boundary conditions are applied such that each jet is 180° out
of phase ¢ with the immediately adjacent jets. The sidewalls of each slot are modeled as no-slip
surfaces.

All simulations are performed using the BDF2opt scheme with 10 subiterations. This value
has been chosen based on numerical experience and represents a compromise between temporal
accuracy and computational cost. Ideally, an error-based subiterative controller such as that de-
scribed in [6] would be used; such an approach is available for the solution of (2.4), but has not
been implemented for (3.4). The effect of time step size was investigated and it was found that
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Figure 5: Unsteady lift profile for the baseline geometry and blowing conditions.

the asymptotic mean value of the lift coefficient did not change significantly using more than 100
steps per blowing cycle. However, a time step corresponding to 200 steps per cycle was chosen in
order to resolve potentially higher blowing frequencies to be discussed in a subsequent section.

The baseline lift profile for the nominal flow conditions is shown in Figure 5. The lift coef-
ficient history shows the effects of initial flowfield transients, after which a periodic behavior is
established following 5,000 physical time steps or 25 jet blowing cycles. Averaging the lift coef-
ficient over the final 1,000 time steps yields a mean value of 4.33. For reference, the steady value
of the lift coefficient corresponding to no jet actuation is 3.79. This value has been determined by
performing a simulation with the blowing velocity set to zero at the base of each jet. A similar
value of the lift is obtained by using a grid with no jet orifices present.

5. Design Variables

5.1. Jet Parameters

For each of the ten jets located along the chord of the wing, the frequency, velocity magnitude,
and phase of the blowing actuation applied at the jet base may be used as design variables. The
reduced frequency of each jet is allowed to vary from 0.76 to 3.04, such that the minimum number
of time steps per cycle would be 100, corresponding to the highest allowable frequency. The
normal velocity at the base of each jet is allowed to range from zero to 0.48, while the phase is
allowed to vary between 0° and 180°.
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Figure 6: B-spline control point locations for shape parameterization.

5.2. Geometric Parameterization

In order to vary the wing shape and chordwise location and incidence angle of each jet orifice
during the course of an optimization, a specialized geometry tool has been developed to parame-
terize wing sections such as the model used in the current study. This tool assumes a nominally
two-dimensional geometry in the spanwise direction, with the exception of the finite span of the jet
actuation slots. The application is not intended to handle general three-dimensional configurations
but rather to facilitate the current exploratory study. General tools such as the free-form defor-
mation packages outlined in [45] and [46] could be modified to accommodate geometric features
arbitrarily translating along general morphing surfaces as required by the current investigation;
however, such development work is beyond the scope of this effort.

5.2.1. Geometry Preprocessing

A preprocessing step is first performed in which the surface grid is loaded for the body of interest,
along with topological information related to the boundary definition and any actuation slots that
may be present. Based on this information, a two-dimensional, cubic B-spline curve similar to that
used in [2, 3] is fit to the existing mesh coordinates, establishing an analytic representation of the
nominally two-dimensional external wing surface. The least squares global approximation tech-
nique described in [38] is used in the curve fitting process. The fit is constructed given the desired
polynomial degree of the curve, number of control points, and the type of curve parameterization;
an arc length parameterization is used here. In addition to the parametric location and incidence
angle of each jet, the displacements of each B-spline control point normal to the surface can also
be used as design variables. Finally, the horizontal, vertical, and rotational displacement of each
body may also be specified as design parameters.

Since the number of control points contributes to the total number of design variables, multiple
B-spline segments of common degree are defined to reduce the number of control points needed to
accurately fit the data. The segments and the corresponding number of control points for each are
manually defined as part of the preprocessing step. To facilitate the design process, the individual
B-spline segments are then concatenated together to form a single composite curve fit of the data.
By definition, the segments are compatible as they have a common degree. The concatenation
is straightforward, whereby the curves are linked sequentially and the parameterization of each
segment is adjusted such that the starting parameter of the segment is equal to the ending parameter
of the preceding segment. The knot vector of the composite curve has multiplicity equal to the
common degree at the junction points of the segments. Knot removal is then used to recover
continuity at the segment junctions. The control points for the final B-spline definition are shown
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Anchor Point

Figure 7: Jet notation.

in Figure 6.

The baseline locations and incidence angles ¢ of each jet orifice are also established, including
an anchor point for each jet as shown in Figure 7. The coordinates of the anchor point represent the
intersection of the jet centerline with the B-spline defining the wing surface. The corresponding B-
spline parameter value of the anchor point is determined by treating the jet centerline as an implicit
line and finding roots by evaluating the B-spline and its derivatives at a series of Newton steps. The
normal distance from the anchor point to the jet base is taken as the depth d of the jet. The baseline
surface grid and spline and jet information are then stored for use during the actual optimization.

5.2.2. Surface Grid Deformation

An additional tool has been developed to deform the surface mesh for each body during the course
of the design. This tool loads the baseline information established in the preprocessing step as
well as the values of the design variables for the current body. Each jet orifice is rotated about
its anchor point and translated along the spline curve as specified, maintaining the baseline 0.002¢
cross-sectional width. The resulting displacement of the anchor point is determined and the interior
of the jet is explicitly relocated since it is not contained within the analytic B-spline definition.
The parametric intersections of the sidewalls of each jet are determined and the length of each jet
sidewall is then extended or reduced to maintain the baseline jet depth. The net displacements are
distributed in a linearly decaying fashion for each grid point along the sidewall edges as shown
in the side views in Figure 8. The locations of the surface grid points interior to each sidewall
boundary are then smoothed based on the updated locations of the grid points along the sidewall
edges.

The parametric displacement of the intersections between the external wing surface and jet slots
are then determined. These parametric displacements are linearly decayed across the remaining
grid points on the external wing surface as a final step. Since in general the width of a slot opening
may change as the jet is altered, special care is taken to reposition the points on the wing surface at
chordwise locations between the upstream and downstream sides of each jet accordingly as shown
in the top views in Figure 8.

5.2.3. Surface Mesh Jacobians

Rather than develop an analytic form of the Jacobian matrix 0X,, /0D required by the discrete
adjoint formulation, a complex-variable approach as outlined in [22] is used to evaluate these lin-
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Figure 8: Illustration of jet rotation. Surface grid for interior of jet has been omitted from top views
for clarity.

earizations numerically. In this approach, an expression for the derivative of a real-valued function
f(x) may be found by expanding the function in a complex-valued Taylor series, using an imagi-
nary perturbation ie:
of  Im[f(x+ie)]
or €
The primary advantage of this method is that true second-order accuracy may be obtained by se-
lecting step sizes without concern for subtractive cancellation error typically present in real-valued
divided differences. Moreover, the implementation merely requires the real-valued variables in
the application to be declared of complex type with execution carried out as normal, once the
imaginary perturbation has been applied to the parameter of interest.

For the current application, an outer loop is placed around the series of function calls required to
generate the deformed surface grid. The loop is executed once for each design variable associated
with each jet. Within the loop, the imaginary part of the current design variable is perturbed by
e = 107°Y, the complex-valued surface grid is evaluated, and the elements of the Jacobian matrix
0Xurp /0D are extracted as the imaginary parts of the result. The cost of this procedure scales
linearly with the number of design variables; however, the expense associated with evaluating the
parameterized surface grid as outlined here is negligible, resulting in an acceptable overall cost
incurred by the complex-variable approach.

+ O(£?) (5.1
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Figure 9: Parallel scaling for flow solver.

6. Parallel Scaling and 1/0O Performance

In order for routine optimization of large-scale unsteady problems to become tractable, the im-
plementation must utilize massively parallel computing environments as efficiently as possible.
Ideally, the time required for the application to execute would scale inversely with the number of
processors used. For traditional solvers in which execution time is dominated by floating-point
operations, this is generally straightforward to achieve when sufficiently large grids are distributed
across dozens, hundreds, or even a few thousand processors. For unsteady flow simulations for
which a large number of time steps may be required, the use of many thousands of processors
becomes attractive in addressing potentially very long runtimes. However, partitioning the spatial
mesh for such environments can result in exceedingly small amounts of computational work per
time step on each processor. Furthermore, the overhead cost associated with inter-processor com-
munication generally grows with the number of partitions. The net result is that a typical solver
may experience linear (or perhaps even superlinear) speedup over an initial range of processors
for a given grid. However, as the computational work per processor is reduced and communica-
tion costs increase, solvers generally experience a point at which diminishing returns are observed,
and may even exhibit an inverse behavior where the use of more processors actually causes the
application to exhibit longer run times.

In the current study, the issue of parallel efficiency is further complicated by the need to per-
form frequent disk I/O involving large amounts of data. At each time step of the flow solution
procedure, the solution Q™ must be stored to disk; these back planes of data must then be loaded
successively in reverse order as the adjoint solution proceeds. Great care must be taken to perform
these operations in a scalable manner as will be discussed below. It should also be noted that any
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Figure 10: Parallel scaling for unsteady adjoint solver.

issues related to disk I/O revealed in the current study would likely be magnified in the dynamic
grid context, where the mesh coordinates and velocities are also stored at each time step [28].

Whether a single plane of steady data or several back planes of an unsteady solution are re-
quired for restart purposes, the solvers traditionally use a strategy in which every processor writes
to a single file. This is achieved through the use of the MPI-IO layer present in the MPI-2 specifi-
cation, or alternatively, through a native implementation based on the stream I/O capability intro-
duced in the Fortran 2003 standard. In general, both approaches perform well and a convenient file
containing all of the necessary restart information for a problem involving 20-30 million grid points
on O(500-1000) processors can be produced in approximately two to three minutes on commodity
hardware.

The traditional approach described above is acceptable when solution files are only periodically
required, as the cost associated with the I/O process is amortized over the entire solution procedure.
However, this approach becomes untenable for adjoint-based design, where solution data must be
stored or loaded at every time step. As described in [28], the baseline strategy for meeting this more
stringent requirement relies on each processor simultaneously accessing its own direct-access file,
where each record of the file contains all of the data relevant to that partition for time level n.
In this manner, the file pointer can be placed immediately at the location of interest and I/O can
proceed. This approach worked well for the cases shown in [28] using 1,024 processors. Those
simulations utilized a Lustre-based parallel file system [14]; all results described here rely on
identical hardware.

Recent experiments have indicated the existing strategy may not be sufficient as the number of
processors increases further. To illustrate this trend, 200 time steps of a flow solution are performed
on the current high-lift wing test case using a varying number of processors. Each computation is
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performed in a fully-dense fashion (all processing cores within a node are used) on a set of dual-
socket, quad-core nodes with 3.0 GHz Intel Xeon E5472 processors and is executed several times
to establish repeatability and the effects of varying file system load.

The timing results based solely on computational work are shown as the square symbols in
Figure 9; no disk I/0O is performed for this result. As expected, the time is reduced with increasing
processor count. However, the performance falls short of the ideal profile indicated by the dashed
line. This is not surprising, as the nominal number of local grid points drops to approximately
4,000 and 2,000 on 2,048 and 4,096 processors, respectively. Grid partitions of this size represent
very little computational work per processor. To demonstrate that the implementation scales well
when sufficient work is allocated to each processor, results are also shown from a recent study [21]
using grids containing approximately 52 and 105 million points (300 and 600 million elements),
respectively. These computations represent steady runs using a different number of time steps, so
that the absolute levels of the curves cannot be compared to one another nor to those of the current
data. It should also be noted that the 105 million grid point result was performed in a fully-dense
fashion on dual-socket, hex-core nodes with Xeon X5670 processors. Nonetheless, the slopes
are useful in confirming the desired scaling behavior provided there is sufficient computational
work. Finally, note that all results for which disk I/O is not required tend to be highly repeatable;
execution times are very consistent across multiple runs.

The previous test is now repeated with Q" written to disk at the completion of each time step n
using the existing direct-access I/O strategy as previously outlined in [28], with the result included
as the triangle symbols in Figure 9. The scaling is generally poor, especially at the higher processor
counts. Moreover, the repeatability of each result, denoted by the bars plotted at each data point,
is erratic and the potential for an inverse scaling behavior appears to exist.

A modified implementation using the asynchronous I/O feature introduced in Fortran 2003 has
been developed to address the poor scaling performance associated with frequent disk I/O. In this
approach, the data associated with a read or write statement is buffered, while execution continues
for subsequent lines of code. In this manner, floating-point operations may proceed while file
operations are performed simultaneously in the background. However, care must be taken not to
alter the relevant data before the desired I/O has occurred.

The results from the asynchronous approach are also included in Figure 9 as the inverted tri-
angle symbols. At the lower processor counts, the I/O appears to have been successfully masked
behind the floating-point operations as indicated by the close proximity to the results associated
with the computations involving no disk I/O. The behavior at these data points is also considerably
more repeatable, as shown by the very small vertical bars at these points. The asynchronous 1/0
also yields a benefit at the higher processor counts, although some overhead for file I/O still ap-
pears to exist for these data points. The scaling behavior also appears to be marginally improved
over the previous result.

Similar scaling tests are performed for the adjoint solver. In this case, data is read from disk
rather than written. Since the adjoint solution procedure requires the values of Q", plotting a result
based solely on computational work in the absence of any 1/O is not practical in this context. The
scaling behavior of the baseline implementation using synchronous I/O is shown as the triangle
symbols in Figure 10. In general, the wall-clock time is reduced with increasing processor counts,
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Figure 11: Convergence histories for objective function.

with very little spread in the timings at a given data point. The asynchronous result is also shown
as the inverted triangle symbols, with the largest improvements evident at the 4,096-processor
data point. The scaling for both strategies in the adjoint solver is better than the corresponding
approach for the flow solution. One possible reason for this behavior is the considerable amount
of additional computational work the adjoint solver must perform at each time step. The adjoint
solution procedure requires exact linearizations of the nonlinear residual, and the linear residual
computation performed during each relaxation sweep requires matrix-vector products over the full
spatial stencil, which is typically four to five times the size of the nearest-neighbor stencil used for
the relaxation operator. The exact linearizations with respect to the grid must also be evaluated at
each time step of the adjoint solution. Furthermore, the flow solver has been extensively optimized
for computational performance [21], while the adjoint implementation has not been optimized to
the same extent. Finally, file-locking necessary during write operations may also contribute to the
performance differences observed, as no such locking is required during read operations.

7. Design Results

Based on the results presented above, all subsequent simulations have been performed using 256
dual-socket, quad-core nodes with 3.0 GHz Intel Xeon E5472 processors in a fully dense fashion,
for a total of 2,048 processors. The nominal wall-clock time required to perform and store an un-
steady flow solution to disk for the current test case using this strategy is approximately 7.5 hours.
The corresponding adjoint solution and sensitivity analysis requires approximately 14 hours. Ap-
proximately 2.1 terabytes of total disk space are necessary to store a flowfield solution for all time
levels.

The objective function for all test cases is to maximize the lift coefficient C';, over the final
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Figure 12: Unsteady lift profiles for the baseline and design results.

1,000 time steps of the simulation:

5,000

f= > (Cr—10.0)At. (7.1)

n=4,001

Here, the target lift coefficient of 10.0 has been chosen to sufficiently exceed the baseline lift profile
shown in Figure 5. The optimizations are performed using a trust region method from the package
described in [17], and occasionally require restarting due to queuing limitations or sporadic system
failures.

Three test cases are used to evaluate the optimization methodology. The first example seeks
to minimize the objective function given in (7.1) by holding the external wing shape fixed while
altering the jet locations, incidence angles, and blowing parameters. The remaining two test cases
allow the wing shape to change in addition to the jet-related variables and also demonstrate the
impact of design variable scaling.

7.1. Case A: Variable Jet Parameters, Fixed Wing Geometry

For the first test case, the external shape of the wing is held fixed while the jet arrangement and
blowing parameters are used as the design variables. The parametric location, incidence angle, and
blowing frequency, velocity, and phase shift are allowed to change for each individual jet, yielding
a total of 50 active design variables.

The convergence history for the objective function is shown in Figure 11. After eight design
cycles, the value of the objective function has been reduced from its baseline value of 1058.4 to a
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Figure 13: Final frequency values for each jet.

final value of 736.7, although the majority of the improvements have been achieved within the first
3 design cycles. The resulting unsteady lift profile is shown in Figure 12, with the baseline profile
also included for reference. The mean value of the lift coefficient over the final 1,000 time steps
has been increased 22% from the baseline value of 4.33 to 5.27. The jet velocity amplitude has
been increased to its maximum value of 0.48 for all jets, and the final jet frequencies are plotted
in Figure 13. All of the frequencies are at or near the lower bound of 0.76, with the exception of
jets 3, 6, and 8, whose values have increased above the baseline value of 1.52. The final values of
the phase shift for each jet were within 0.1° of the initial values and are not given here. The final
jet arrangement is shown in Figure 14. The optimization has moved all of the jets located on the
slat and main elements downstream. The jets on the flap have all been moved upstream, with the
exception of jet 8 which has been shifted downstream. Minor changes in the jet incidence angles
are not visible; however, all jets have been rotated slightly closer to the surface tangent direction
with the largest deflection of 0.14° taking place at jet 6. During the course of the optimization, a
total of 14 flow solutions and 8 adjoint solutions have been performed. Approximately 444,000
CPU hours were required, or a total of 9 days of wall-clock time.

7.2. Case B: Variable Jet Parameters and Wing Geometry

The next test case is more general in that the external shape of the wing is allowed to vary in
addition to the jet parameters used in the previous test. The control points in the vicinity of the
trailing edge of each element are held fixed, while a total of 105 control point locations are allowed
to vary. In addition, the rotations and horizontal and vertical locations of the slat and flap relative
to the main element are also active design variables. Approximate quarter-chord locations are used
as the centers of rotation for the slat and flap elements. The combination of these shape-related
variables with the 50 jet parameters used in the previous example yields a total of 161 active design
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variables for the current test case.

The convergence history for the objective function is included in Figure 11. The optimization
progresses quite slowly and has difficulty reducing the objective function by a substantial amount.
The lift profile is shown in Figure 12 and reflects the modest reduction in the objective function.
The mean value of the lift has been increased to 4.42, a 2% improvement over the baseline value.
Changes in the jet parameters and airfoil shape are very minor and are not included here.

Closer inspection of this test case showed that the optimization procedure repeatedly attempted
to alter many of the shape-related variables during the first few design cycles, while ignoring the
parameters associated with the jet locations and actuation which yielded considerable improvement
in the previous example. This is likely explained by the fact that the sensitivity derivatives for the
shape variables are generally 1-3 orders of magnitude larger than those for the jet-related param-
eters. Given the large number of design variables in this example, it is possible the optimization
procedure may eventually explore changes in the jet-related parameters and achieve improvements
similar to the first test case. However, execution was terminated due to the slow convergence ob-
served over the first three design cycles, which consumed just over 4 days of wall-clock time or
approximately 209,000 hours of CPU time. A total of 8 flow solutions and 3 adjoint solutions were
performed.
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Figure 15: Final phase values for each jet.

7.3. Case C: Variable Jet Parameters and Wing Geometry, with Scaling

As in the previous example, the same general set of 161 design variables describing the wing shape
and jet actuation is used. However, the variables and their associated sensitivity derivatives are now
normalized using a simple diagonal scaling procedure to improve the numerical conditioning of the
optimization procedure.

After eight design cycles, the value of the objective function has been reduced to 667.6 as
shown in Figure 11. The time-averaged lift shown in Figure 12 is 5.50, which represents a 27%
net increase over the baseline actuated value of 4.33. The velocities imposed at the base of each
jet have increased to 0.48 with the exception of jet 1, which has been reduced to a zero velocity
condition. The final jet frequencies shown in Figure 13 are similar to those found in the first
example; however, the values for jets 4, 6, and 8 have been reached significantly higher values.
The geometry for the final wing is included in Figure 14. The jet incidence angles have changed
very little; all deflections are closer to the local surface tangent with a maximum deflection of 0.7°
for jet 2. The chordwise positions of the jet orifices have changed very little. The orifices located
on the slat and main elements have been moved slightly downstream, while all of the jet orifices
on the flap have been moved upstream, with the exception of jet 6. The slat has been translated
upwards and rotated 1.8° nose-down with slight modifications to its shape. The leading edge of
the main element has been blunted and slightly thickened. The flap has been deflected nose-up by
the maximum allowed value of five degrees and has also been translated slightly upwards. The
final values of the phase angles are shown in Figure 15. Jets 1 and 2 show the largest changes
over the baseline values. For this example, the optimizer requested 10 flow solutions and 8 adjoint
solutions, requiring approximately 8 days of wall-clock time or 383,000 CPU hours.
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8. Summary and Concluding Remarks

The use of a time-dependent discrete adjoint technique for optimization of a high-lift wing section
with an active flow control system has been evaluated. A three-dimensional wing section contain-
ing ten jet actuation slots has been created using a spanwise extrusion of an existing high-lift airfoil
section. In addition to the jet configuration and blowing parameters, a geometric parameterization
based on the use of B-spline curves has been used to provide a compact set of design variables
describing the external wing surface. The linearizations of the surface deformation scheme have
been evaluated numerically using a complex-variable formulation.

Since the unsteady adjoint formulation requires substantial file I/O, the parallel scaling of the
implementation has been studied extensively using several thousand processors. The introduction
of an asynchronous I/O paradigm at each time step was helpful in alleviating bottlenecks associated
with massively parallel file operations.

Three optimization examples have been performed. The mean value of the lift coefficient has
been dramatically increased through optimization of the jet locations and blowing parameters.
Simultaneous optimization of the external wing shape and jet parameters required a simple scaling
technique to improve the numerical conditioning of the optimization procedure and resulted in a
net gain of 27% relative to the lift obtained with non-optimized actuation. Optimization of the
wing shape subject to the baseline actuation would likely yield improved performance as well;
however, this has not been performed here.

The results shown demonstrate that time-dependent adjoint techniques can be successfully ap-
plied to the optimization of flow control applications. However, a number of related research efforts
hold considerable potential in making such methods more practical for routine use. Local-in-time
techniques [53] avoid the need to store the entire forward solution, thereby drastically reducing the
amount of disk space required. Higher-order temporal schemes provide an opportunity to use con-
siderably larger physical time steps, ultimately reducing the number of steps required to simulate
a given unsteady phenomenon.

A number of enabling strategies are also being pursued from a computer science perspective.
Tremendous potential exists for computational improvement within the adjoint implementation,
such as more efficient use of memory cache and register re-use. Judicious use of general purpose
graphics processing units is also being actively investigated for massive thread parallelism, and
ongoing efforts continue to explore the efficient use of massively parallel architectures consisting
of 10* — 10° processing cores. Finally, whether implemented at the application or system level,
fault-tolerant algorithms will become critical as the odds of experiencing a system failure grow
with increased levels of parallelism and longer execution times [7].
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