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Motivation

2

Current HPC Landscape
2. ORNL Summit (149 PF)

46. NASA Pleiades (6 PF)
53. NASA Electra (5 PF)
71. NASA Aitken 2 (4 PF)

168. NASA Aitken (2 PF)

New US Systems
in 2021-2023

ANL Aurora (1000 PF)
ORNL Frontier (1500 PF)
LLNL El Capitan (2000 PF)

Architecture: CPU / GPU

PF: PetaFLOPS, or 1015 Floating-Point 
Operations Per Second

• Current plans for U.S. exascale systems rely on GPU acceleration

• 130 out of 500 fastest supercomputers (6 out of top 10) utilize GPU hardware

• Port to GPU architectures positions FUN3D, an unstructured-grid CFD solver, for 

this emerging landscape

• Dramatically reduced run times enable early penetration of high-fidelity 

modeling

• Ability to elucidate unprecedented physics – temporal, spatial, physical models

• The perfect gas path of FUN3D has been previously ported to NVIDIA Tesla GPUs

• Here we port the generic gas path of FUN3D, which models thermochemical 

nonequilibrium flows including atmospheric entry, hypersonics, and combustion

• Initial Mars atmospheric entry retropropulsion simulations will also be presented

16.4 m



Governing Equations and Numerical Implementation
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• Conservation of species, momentum, energies, and 
turbulence variables

• Two-temperature model available for thermal 
nonequilibrium

• Spalart-Allmaras turbulence model with Catris-Aupoix
compressibility correction; DES option

• Variable species, energies, and turbulence equations

• Node-based finite-volume approach on general 
unstructured grids

• Fully implicit formulations are used to integrate the 
equations in time

• Sparse block linear system: 𝐴𝒙 = 𝒃
• Matrix 𝐴 composed of diagonal and off-diagonal 
𝑁𝑒𝑞 𝑥 𝑁𝑒𝑞 blocks

• Memory and solution time increases as 𝑂 𝑁𝑒𝑞
2

• System solved with multicolor point-implicit approach
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GPU Design Approach

4

• Nomenclature: Host = CPU, Device = GPU

• FLUDA Library

• CUDA C++ port of compute kernels in FUN3D

• No external libraries are required

• Use of library in FUN3D is controlled by a run-time parameter

• Pre-processing routines remain on the host

• All PDE kernels (~100) performed on the device

• Minimal data transfer between host/device (mainly scalars)

• Large data motion only at user-specified frequencies (e.g., restarts, visualization support)

• Data structures are identical between CUDA and Fortran contexts

• Column-major order array layouts

• GPU “mirror” data structures that match CPU data structures

• Variable precision is identical to CPU approach

• FP64 for most variables, with mixed FP32/FP64 for linear algebra

Hypersonic Cylinder

𝑀∞ = 8.7, 5-species air

Pressure

Mach 

Number



GPU Implementation
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• Mini-app utilizes an entire state of FUN3D to 
perform a full iteration of the solve

• CPU and GPU kernels can be run at the same 
time and have outputs compared

• Once RMS norm of outputs is within specified 
tolerance (10−14 for FP64, 10−7 for FP32), 
kernels are integrated into FUN3D

• Most kernels match to machine precision

• Individual FP values generally do not 
match to machine precision due to order-
of-operations; further complicated by 
asynchronous execution

• Behavior not unique to GPUs; also 
observed on CPUs with random loop 
permutations

FUN3D mini-app structure and porting workflow



GPU Optimizations
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• Reduction of kernel state

• Fortran implementation utilizes variable-length arrays (VLAs) for 
workspace

• Since VLAs do not exist for CUDA, templating is extensively 
used

• Initial naive CUDA port resulted in stack frames so large that the 
GPU ran out of memory immediately

• To remedy this, multiple threads are assigned to a work item 
(such as a Jacobian) which reduces 2D arrays to scalars in many 
cases

• Registers and shared memory are heavily used

• Reduce thread divergence

• Coalesced memory accesses

• Kernel launch parameter optimization

• See paper for more details:

Gabriel Nastac, Aaron Walden, Eric J. Nielsen, and Kader Frendi. "Implicit

Thermochemical Nonequilibrium Flow Simulations on Unstructured Grids using

GPUs," AIAA 2021-0159. AIAA Scitech 2021 Forum. January 2021.

Transverse Hydrogen Jet in 

Supersonic Cross Flow:

𝑀∞ = 2.4, 9 species, DES

𝑦𝐻2 = 0.4

Isosurface

Mach Number

48 V100s ~ 20,000 Skylake Cores

1 V100 ≈ 417 Skylake cores 



Device Level Performance
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Lower is 
better
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• Memory-bound applications should exhibit speedups 

commensurate with hardware memory bandwidth ratio

• E.g., perfect gas FUN3D shows 4.5x speedup for 

NVIDIA Tesla V100 over dual-socket Intel Xeon

• Generic gas CPU implementation is not optimal

• Templates are not natively available in Fortran

• Optimizations (e.g., reduction of workspace, 

transpose) have not been performed on CPU



Human-scale Mars landers require new approaches to all phases of Entry, Descent, and Landing

• Cannot use heritage, low-L/D rigid capsules  deployable hypersonic decelerators or mid-L/D rigid aeroshells

• Cannot use parachutes  retropropulsion, from supersonic conditions to touchdown

• No viable alternative to an extended, retropropulsive phase of flight

Retropropulsion for Human Mars Exploration
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Viking Pathfinder MERs Phoenix MSL InSight M2020 Human-Scale 

Lander

(Projected)

Diameter (m) 3.505 2.65 2.65 2.65 4.52 2.65 4.5 16 - 19

Entry Mass (t) 0.930 0.584 0.832 0.573 3.153 0.608 3.440 40 - 65

Parachute Diameter (m) 16.0 12.5 14.0 11.8 19.7 11.8 21.5 N/A

Parachute Deploy (Mach) 1.1 1.57 1.77 1.65 2.2 1.66 1.75 N/A

Landed Mass (t) 0.603 0.360 0.539 0.364 0.899 0.375 1.050 26 - 36

Landing Altitude (km) -3.5 -2.5 -1.4 -4.1 -4.4 -2.6 -2.5 +/- 2.0

Landing Technology
Retro-

propulsion
Airbags Airbags

Retro-

propulsion Skycrane

Retro-

propulsion Skycrane

Retro-

propulsion

Steady progression of “in family” EDL

Entry Capsule

(to scale)

Low-L/D

New EDL Paradigm

2 weeks ago!



Early Science 2018, INCITE 2019/2021 Efforts
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Our previous Summit campaigns focused on perfect gas retropropulsion 
simulations

• Limited experiments on Earth are perfect gas

Our current efforts are exploring effects of reacting gas chemistry on 
these retropropulsion flows across the flight trajectory

• Methane combustion in Martian CO2 atmosphere

• ~10x more expensive computationally

Entry 
AOA= -10 deg

Velocity = 4.7 km/s

FPA = 10.6 deg

Powered Descent Initiation
Mach =  3.0, 

Alt = 8.3 km

Pitch to 0 deg AOA

Approach
8x100kN engines

80% throttle

Deorbit & Deploy

Touchdown

Campaign Goals

• Science:  Advance the understanding of retropropulsion flow 
physics during Mars EDL of a human-scale lander

• Computational:  Demonstrate production readiness and efficiency 
advantages of GPU implementation of the FUN3D
CFD code at scale

“Aero-Propulsive Real Gas Effects for Human-Scale Mars Entry”



Performance at Scale
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• Weak scaling evaluated on Oak Ridge Summit system

• Node consists of 2 22-core IBM POWER9 CPUs, 6 NVIDIA Tesla V100 GPUs

• Each run places 1.2M grid points/node, or 200K grid points/GPU

• CPU- and GPU-only executions scale linearly

• GPUs retain ~75x node-level speedup at scale

• 1.2 billion points on 1,018 nodes

• One physical time step with BDF2

takes about one second

• Performance equivalent to several

million CPU cores

16.4 m

Summit Node

5M points on

24 GPUs

1.2B points on

6,108 GPUs



Summit Simulation Overview
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• 𝑀∞ = 2.4, Martian atmosphere freestream

• Eight Engine Plena:

• Products of methane combustion

• 𝑇0 ~ 3600 𝐾, 𝑝0 ~ 80 𝑏𝑎𝑟
• 10-species SA-Catris DES

• 6B cells, 1.1B nodes (~94% tetrahedra)

• 300k timesteps (5 subiterations per timestep)

• Total integration time of ~2.5 seconds real-time

• 922 Nodes of Summit (5532 NVIDIA V100 GPUs)

• 1.2~ seconds per timestep nominally

• Estimated about 2.3 million Xeon Skylake cores to match performance

• Data Output

• Saving 20 variables every 50 timesteps, 90+ GB per minute for the entire simulation of 100~ hours

• Asynchronous I/O, less than 1% overhead (effectively free)

• About 600 TB of data generated, data migration is non-trivial at this scale (50 TB/day to NASA from DOE)

• Another goal of the campaign is to demonstrate in-situ visualization with NVIDIA at this scale for 

unstructured grids

T [K]

𝑌𝑂𝐻 log10 𝑝

𝑀𝑎𝑐ℎ



Effect of Generic Gas on Retropropulsion
Preliminary: Plume Asymmetry Investigation
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Mach 2.4, Perfect Gas
Mach 2.4, Generic Gas, Z-Plane

Mach 2.4, Generic Gas, Y-Plane

T [K]log10 𝑝 𝑀𝑎𝑐ℎ

Parameter Generic Gas / Perfect Gas1

Axial Force Mean 1.7

Axial Force Fluctuation 1.5

Asymmetric Moment Mean 0.7

Asymmetric Moment Fluctuation 1.6

1Ashley M. Korzun, Eric Nielsen, Aaron Walden, William Jones, Jan-Reneé Carlson, Patrick Moran, Christopher 

Henze and Timothy Sandstrom. "Computational Investigation of Retropropulsion Operating Environments with a 

Massively Parallel Detached Eddy Simulation Approach," AIAA 2020-4228. ASCEND 2020. November 2020. 

Preliminary
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• Generic gas path of FUN3D has been successfully ported, optimized, and verified for NVIDIA Tesla GPUs

• One NVIDIA Tesla V100 equivalent to ~400 Intel Xeon Skylake cores

• Benchmarks have been performed using over 6,000 GPUs with grids containing several billion elements

• Performance equivalent to several million CPU cores

• Retropropulsion reacting flow simulations on grids of several billion elements are being performed at scale on 

Summit

• Performance is maintained at scale with asynchronous I/O of full volume every minute

• 90+ GB/min for 100 hours

• Other Summit campaign simulations at other points in descent trajectory

• Algorithmic improvements to solver to increase performance and lower memory requirements

• Adaptation of code base to other architectures used in future exascale machines

Summary and Future Work


