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Motivation
• Current plans for U.S. exascale systems rely on GPU acceleration

• 130 out of 500 fastest supercomputers (6 out of top 10) utilize GPU hardware
• Port to GPU architectures positions FUN3D, an unstructured-grid CFD solver, for this emerging landscape

• Dramatically reduced run times enable early penetration of high-fidelity modeling
• Ability to elucidate unprecedented physics – temporal, spatial, physical models

• The perfect gas path of FUN3D has been previously ported to NVIDIA Tesla GPUs
• Ensembles of retropropulsion simulations using several billion elements have been performed

on Summit, which debuted as the world’s top system in 2018
• Ensemble run-times reduced from years on a capacity-governed CPU system to a workweek

on a leadership-class GPU architecture managed with a capability policy
• Here we port the generic gas path of FUN3D, which models thermochemical

nonequilibrium flows including atmospheric entry, hypersonics, and combustion
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Current HPC Landscape
2. ORNL Summit (149 PF)

46. NASA Pleiades (6 PF)
53. NASA Electra (5 PF)
71. NASA Aitken 2 (4 PF)

168. NASA Aitken (2 PF)

New US Systems
in 2021-2023

ANL Aurora (1000 PF)
ORNL Frontier (1500 PF)
LLNL El Capitan (2000 PF)

Architecture: CPU / GPU

PF: PetaFLOPS, or 1015 Floating-Point 
Operations Per Second
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Governing Equations and Numerical Implementation
• Conservation of species, momentum, energies, and 

turbulence variables
• Two-temperature model available for thermal 

nonequilibrium
• Spalart-Allmaras turbulence model with Catris-Aupoix

compressibility correction; DES option
• Variable species, energies, and turbulence equations
• Node-based finite-volume approach on general 

unstructured grids
• Fully implicit formulations are used to integrate the 

equations in time
• Sparse block linear system: 𝐴𝒙 = 𝒃
• Matrix 𝐴 composed of diagonal and off-diagonal 
𝑁𝑒𝑞 𝑥 𝑁!" blocks

• Memory and solution time increases as 𝑂 𝑁!"#

• System solved with multicolor point-implicit approach
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GPU Design Approach
• Nomenclature: Host = CPU, Device = GPU
• FLUDA Library

• CUDA C++ port of compute kernels in FUN3D
• No external libraries are required
• Effectively C++
• Use of library in FUN3D is controlled by a run-time parameter

• Pre-processing routines remain on the host
• All PDE kernels performed on device
• Minimal data transfer between host/device (mainly scalars)

• Large data motion at user-specified frequencies (e.g., restarts, visualization support)
• Data structures are identical between CUDA and Fortran contexts

• Column-major order array layouts
• GPU “mirror” data structures that match CPU data structures
• Variable precision is identical to CPU approach

• FP64 for most variables, with mixed FP32/FP64 for linear algebra
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GPU Implementation

• Mini-app utilizes an entire state of FUN3D to 
perform a full iteration of the solve

• CPU and GPU kernels can be run at the same 
time and have outputs compared

• Once RMS norm of outputs is within specified 
tolerance (10$%& for FP64, 10$' for FP32), 
kernels are integrated into FUN3D

• Most kernels match to machine precision
• Individual FP values generally do not 

match to machine precision due to order-
of-operations; further complicated by 
asynchronous execution

• Behavior not unique to GPUs; also 
observed on CPUs with random loop 
permutations
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FUN3D mini-app structure and porting workflow
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• Reduction of kernel state
• Fortran implementation utilizes variable-length arrays (VLAs) for 

workspace
• Since VLAs do not exist for C++, templating is extensively used

• Initial naive CUDA port resulted in stack frames so large that the GPU ran 
out of memory immediately

• To remedy this, multiple threads are assigned to a work item (such as a 
Jacobian) which reduces 2D arrays to scalars in many cases

• Registers and shared memory are heavily used
• Reduce thread divergence
• Coalesced memory accesses
• Kernel launch parameter optimization
• See the paper for more details
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GPU Optimizations
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• Small verification case used during mini-app development
• Structured hexahedral grid: 65k~ nodes
• Five-species air with two-temperature model
• All equations converged to machine precision
• See the paper for details
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Mach 8.7 High Enthalpy Cylinder Flow
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Mach 9.8 Hemisphere Cylinder Flow
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• Representative blunt body
• Unstructured mixed-element grid

• 2.4M nodes
• 6.5M tetrahedra, 2.6M prisms

• Five-species air with two-temperature model
• See the paper for details
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• Memory-bound applications should exhibit speedups 
commensurate with hardware memory bandwidth ratio

• E.g., perfect gas FUN3D shows 4.5x speedup for 
NVIDIA Tesla V100 over dual-socket Intel Xeon

• Generic gas CPU implementation is not optimal
• Templates are not natively available in Fortran
• Optimizations (e.g., reduction of workspace, 

transpose) have not been performed on CPU
• Relative timings shown for nominal nonlinear step on

a single device
• Speedup reduced by 25% for steps with frozen 

Jacobian
• Some minor model variations
• Some variations due to grid topology
• See paper for more details
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Mach 9.8 Hemisphere Cylinder Flow
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Transverse Hydrogen Jet in Supersonic Cross Flow
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• Mach 2.4 cross flow and J=5 jet with pure hydrogen plenum
• 9-species hydrogen combustion mechanism, one-temperature model
• SA-Catris model with DES option: 𝑁#$ = 14
• 57M nodes, 278M tetrahedra, 22M prisms
• BDF2 time integration with 5 subiterations
• Flow Through Time (FTT):

• 48 NVIDIA Tesla V100s: 9.3 hours
• 4000 Intel Xeon Skylake cores: 43.0 hours
• Est. 20,000 Intel Xeon Skylake cores required to keep pace

Ø 1 V100 ≈ 417 Skylake cores at this scale
• See paper for more details

𝑦(! 𝑦(!) 𝑦)( Mach Number

Jet height versus axial distance

𝑦(! = 0.4 Isosurface
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Performance at Scale
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• Weak scaling evaluated on Oak Ridge Summit system
• Node consists of 2 22-core IBM POWER9 CPUs, 6 NVIDIA Tesla V100 GPUs
• Mars retropropulsion unstructured grids used

• 10 species, one-temperature model, SA-DES (𝑁!" = 15)
• Mars atmospheric composition
• 8 Plena compositions are products of methane-oxygen combustion

• Each run places 1.2M grid points/node, or 200K grid points/GPU
• CPU- and GPU-only executions scale linearly
• GPUs retain ~75x node-level speedup at scale
• 1.2 billion points on 1,018 nodes

• One physical time step with BDF2
takes about one second

• Performance equivalent to several
million CPU cores
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5M points on
24 GPUs

16.4 m

Summit Node

1.2B points on
6,108 GPUs
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• Generic gas path of FUN3D has been successfully ported, optimized, and verified for NVIDIA Tesla GPUs
• One NVIDIA Tesla V100 equivalent to ~400 Intel Xeon Skylake cores at scale
• Benchmarks have been performed using over 6,000 GPUs with grids containing several billion elements

• Performance equivalent to several million CPU cores

Summary
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Future Work
• Decoupled approaches to reduce memory requirement and increase performance
• Lower dissipation numerics
• Mixed-precision arithmetic
• Nonlinear solver improvements


