Experiences in Moving
CUDA-Optimized Kernels to
Intel GPUs using oneAPI

Mohammad Zubair Old Dominion University
Chris Stone National Institute of Aerospace
Aaron Walden NASA Langley Research Center

Eric Nielsen NASA Langley Research Center

Outline

Motivation

« Multicolor Point-Implicit Solver

« CUDA Approach for Optimization of Solver on GPU

* Porting CUDA Optimized Code on Pre-Production Intel GPU
Hardware Using Intel oneAPI

« Challenges and different approaches explored

 Conclusion

CFD Vision 2030 Study

TRL . LOW 0 Technology Milestone * Technology Demonstration 55 Decision Gate
MEDIUM
B HicH 2015 2020 2025 2030
Demaonstrate implementation of CFD Demaonstrate efficiently scaled 30 exaFLOPS, unsteady,
H PC algorithms for extrama paralleismin CFD simulation capabilty onan manauvering flight, full engine
HASACFD codes (e.9., FUNID) exascale system simulation [with combustion)

CFD on Massively Parallel Systems

PETASCALE TP " W EXASCALE 4

CFD on Revolutionary Systems IBEAEEEs e m”‘““':,;s L e L1

(Quantum, Bio, etc.) e e e e —| Y
ettt s st s et s et s e |

Improved RST models
inCFD codes

RANS

Hybrid RANSILES

Physical Modeling - Integrateatransiton
LES rediction

*ND *IliuhtReynoldsnumbctl_e.g..high lift) I

WMLES/AWRLES for complex 30 flows at appropiate Re

Chemicalkinstics Unsteady, 3D geometry, separated flow

Aerosciences IKinet
ity ifLES (&.q., rotating turbomachinery with reactions)

Combustion calculation speedup

Multi-regime

Grid convergence fora turbulence-chemistry Productionscaiable

Convergence/Robustness |, Automated robust solvers l:omgieconfinmlion intaraction model entropy-stabie sohers
Algﬂnthms Scalable optimal solvers
Uncertainty Quantification (UQ) Large scale stocha stic capabilties in CFD
Characterization of UQ inasrospacs Reliable error estimates inCFD codes Unnrmri.:yp:mga:m
Large scale parallel capabiltiesinCFD)
L Automated in-stumesh
. i rid Tight
Geometry and Grid P O i Eh edacion with adsptive contro
Gene rﬂ.t“)n Adaptive Grid Production AMR in CFD codes I|
Simplified data Creation of real-time multi-Gdelity database: 1000 unstesdy CFD
P simulations plus test data with complete UG of all data sources
Integrated Databases 'tPresenistion
3 o
Knowledge Extraction
Visualization On demand analysis/visualization of a On demand analysisivisualization of a
108 point unsteady CFD simulation 1008 point unsteady CFD simulation
NASA/CR'2014'218178 Defing standard for couping I , I
. to other disd plnes ncorporation ol r il
See http://www.cfd2030.com MDAOQO — e — — + *
High fidelity couping Rebust CFD for MDAQ simulation of an entire UG-Enabled MOAD

techniguesiameworks comphex MDAs aircraft {e.g., aero-acoustics)

http://www.cfd2030.com/

Examples of Engineering Use

* NVIDIA V100 GPU improves over Intel Xeon Skylake CPU by 4-5x
* NVIDIA A100 GPU improves to 7-8x

* GPUs typically bundled in nodes with 4, 6, or 8 GPUs
* GPU nodes are more expensive, but still a win on performance / $

Supersonic Flows Rotorcraft Space Launch System
0° T T] 10? T T T T] 3r T T T T T 3 — — T T T T T T ™ T T T T T
3 G moden 15 ouey) Bkt Yk 25t Rt e 25l 955U nodes 2400 coree 1o 11 GPU nodes (56 Grug i 11000 nodes (e Rt
107 10 —
Ewo” Tgm" b E E] .;. 7=,|0'-
g % s 1 G ; g 1 3
g i H H 2 % |
107 € 26X > g 0" 4 e 4 v < 25x > _ 10°F
; 5 15 —% o R T g 3 : 5 R a—T" 0 v ra 06 S B I Sy e T a0z 025 03
Wall Time, hours Wall Time, hours Wall Time, hours Wall Time, hours Wall Time, hours Wall Time, hours
3 GPU nodes of 6xV100: 37 mins 2 GPU nodes of 6xV100: 28 mins 11 GPU nodes of 6xV100: 17 mins
3 CPU nodes of 120 cores: 16 hrs 2 CPU nodes of 80 cores: 11 hrs 11 CPU nodes of 440 cores: 7 hrs
OR OR OR
18 GPUs do the work of 103 CPUs (4,120 cores) 12 GPUs do the work of 60 CPUs (2,400 cores) 66 GPUs do the work of 350 CPUs (14,000 cores)

Recent Summit Campaigns

Summit Early Science, INCITE campaigns for simulations of 16-meter diameter
human-scale Mars lander with O,/CH, combustion in Martian CO, atmosphere

DES of 10 species/19 reactions, 7B elements, seconds of real time
Runs on 15,912 V100s with approximate throughput of several million CPU cores

Big data: 90 GB of asynchronous I/O every 30 seconds for 2 days yields ~1 PB
per run; 60 TB/day migrated from ORNL to NASA Ames

Stepping stone to CFD 2030 exascale milestones

Temperature

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

FUN3D Test Problem

Transonic turbulent flow over a semi-span wingbody
consisting of 1,123,718 grid vertices, 1,172,171
prisms, 3,039,656 tetrahedra, and 7,337 pyramids.
The off-diagonal matrix consists of 19,106,474
blocks.

15 iterations of the linear solver are timed.

Multicolor Point-Implicit Solver

fori=1to n_time_steps

. . do
FUNC_%D solve§ the I_Iaw_er-S_to_ke_s eq_uatlons_ Form Right Hand Side
of fluid dynamics using implicit time integration)
on general unstructured grids S G REITE Sl
J J Solve A AQ = R
« This approach gives rise to a large block-sparse Update Solution
system of linear equations that must be solved at end for

each time step

» Multicolor point-implicit linear solver used to solve A AQ = R

Multicolor Point-Implicit Solver: Basics

« Implicit scheme results in linear systems of equations:

o AAQ =R, Alis asparse nxn block matrix
o Typically 14-19 blocks per row
o block is of size nbxnb (typically, nb = 5)

« Matrix A is segregated into two separate matrices:
o A=0 + D, where 0 and D represent the off-diagonal and diagonal blocks of A
o D iIs always stored in double precision (FP64)
o O is typically stored in single precision (FP32), option for half-precision (FP16)

 Prior to performing each linear solve, each diagonal block D is decomposed
In-place into lower and upper triangular matrices

Multicolor Point-Implicit Solver

Uses a series of multicolor point-implicit sweeps to form an approximate solution to A AQ = R

« Color by rows which share no adjacent unknowns; re-order rows by color contiguously

« Unknowns of the same color carry no data dependency and may be updated in parallel
« Updates of unknowns for each color use the latest updated values for other colors

« The overall process may be repeated using several outer sweeps over the entire system

Algorithm 1 MULTICOLOR LINEAR SOLVER
I: AQ =0
2: for i <~ 1 to n4ter do

3 for c < 1 to n. do

4: Ar +— R. — O.AQ

5: AQ. + DZ1Ar

6

7

end for
- end for

Matrix Storage and Performance Issues

o The dominant computation in the block-sparse linear solver is a block-sparse
matrix-vector operation with a typical block size of 5 x 5

o Memory bound computation so it is critical to utilize the memory bandwidth
effectively

o The matrix is stored in a block CSR format, where the non-zero blocks in a row are
stored contiguously in the memory

o ADblock is stored in a column-major order

/!:Z:Z

Matrix view

XN))o o0 e oo0o ° Layout in memory

Naive Implementation on NVIDIA V100

Memory access pattern for the Block Sparse Matrix Vector Operation

naive implementation results in
very poor utilization of memory

Th read #O > T seses eeses esese :

bandwidth. ceces eeees cesee
Consecutive threads are (LT L L H T
accessing memory locations that Thread £l ——— se 41 _

not consecutive.

V100: ~500 ms ~ 70 GB/s

%Peak: 7.7% TP: 900 GB/s

Optimization Issues for Multicolor Linear Solver

S E Matrix view
""‘\ 0000 ©00o0o0
ooe eee o o0 o Layout in memory
\ J
|

Ensure requests are for data that is stored in consecutive locations
The size of request (# of data elements) depends on the hardware

Memory Subsystem
(CPU/GPU)

Optimization Issues on GPU

o GPU supports Single Instruction Multiple Thread (SIMT) model with a
group of threads referred to as warp (or wavefront)

o The dimension of this thread group can vary from one GPU to another,
and the group must process consecutive memory locations to achieve
coalesced memory accesses

o This requires mapping the warp (or wavefront) to one or more blocks
of a sparse matrix and restructuring the computation accordingly

Block Sparse Matrix Vector-FUN3D (CUDA)

Thread #0 of warp 4—.

Map a warp to a 5xb block

000 o0 00O o0 000
o0 00O o o0 000 . 1
cocee Tl eeeee Note: only 25 threads are active, 7 threads are
[2 BN BN I J o 0 000 I I
A 4 ::o:: e0ooo0 Inactive
Thread #24 of warp
k = threadIdx.x % 5;
1 = threadIdx.x / 5;
Output is a 5x5 block of
for (j=istart-1; j < iend; j++) { partial terms
colid = jam[j]; :::::
fk += A OFF(k,1,3j)*DQ(1,colid-1); |:'> 00 00e
} 0 000
0 000

//save partial aggregation in shared memory
sm_f[k][1][threadIdx.y] = fk;

alternate: avoid shared memory, use one thread to
aggregate
use shuffle to aggregate 5 subcolumns. in

shared memory into a

// Reduction along the subcolumns ;
V100: ~48 ms ~ 716 GB/s fl = fk; : single column
. fl = f1 + _ shfl_sync(, Tk, k + 1 * 5); °
Performance improvement: 10x fLo iy s BB
1 =f1+ __shfl_sync » Tk, k + 3 % 5);
%Peak: 79% TP: 900 GB/s f1 = f1 + _shfl_sync(B Y

Challenges in Porting CUDA-Optimized Code
on Pre-Production Intel GPU Hardware
using Intel oneAPI

Terminology/Concepts Mapping

CUDA

CUDA programming model hides SIMD operations by exposing a physical thread as a number
of logical threads.

Warp: is a physical thread consisting of 32 consecutive logical threads
Thread Block Size = number of physical threads * 32 (warp size)

CUDA kernel is written to operate on scalars. In other words, kernel can be viewed as a code
that is executed by every logical thread.

Logical threads in a warp can take different paths in the program — SIMT model.

For effective utilization of device memory consecutive threads in a warp should access
consecutive memory locations.

Terminology/Concepts Mapping

oneAP|

« Work Item is equivalent to CUDA threads

« Work Group is equivalent to CUDA thread block
« Work Group Size = # of thread (physical) * SIMD sub-group size (< Max Work Group Size)
 NOTE: Unlike CUDA block size where warp size for current models is 32, the SIMD sub-group
size can be specified by the user as 8, 16, 32

» Nd range specifies work-items hierarchy
« Global range (64, 8)
» Local range for each work group (16, 8)

« NOTE: Intel oneAPI work group size is 16 x 8 and equivalent CUDA work group sizeis 32 x4 . The
second dimension of oneAPI work group range is the SIMD sub-group size, whereas in CUDA the
first dimension of CUDA thread block is the SIMD sub-group size. This is important to know as
coalesced memory load or vectorization is happening along different dimensions.

Terminology/Concepts Mapping

Intel oneAPI

« Subgroup Block Access: Enable a work-item to access a block of memory.
* How should data be laid out to get the maximum benefit ?

Intel” graphics have instructions optimized for memory block loads/stores. So if work-items in a sub-group ac-
cess a contiguous block of memory, we can use the sub-group block access functions to take advantage of

these block load/store instructions.

Inte|I’EC]d_SUb_QYOUp_SIZG(].G) x = sg.load<®>(global ptr(&(dataZlbase + 01)));
_ . sg.store<t>(global ptr(&(datal[base + 0]1)), x);
X = sg.Ioad<8>(gIobal_ptr(&(dataZ[base + O]))), x0 = sg.load<>(global ptr(&(data?[base + 1)) ;
sg.store<t>(global ptr(&(datal[base + 1)), x0);
0 16 32 data2 out << " groupld = " << groupld
<< " 1 =" << 1 << " base = " << base
<< " x0 = " << x[0] << " xl = " << x[1]
<< " x6 = " << x[06] << " x/] = " << x[/]

<< sycl::endl;

X[0] X[1] X[2]

Where can block access be useful? Memory bound problems?

Optimized Intel oneAPI Implementation for
Pre-Production Intel GPU Based on CUDA Optimized Code

CUDA Optimized Code Intel oneAPI code

cgh.parallel for<class solver point5>(
sycl::nd range<’> {sycl::range<’>(BLOCK DIM Y, gdimx),
sycl::range<”>(BLOCK DIM Y, BLOCK DIM X)

__shared__ float sm_f[5][5][BLOCK_DIM Y]; }, kern);

int const k = threadIdx.x % 5;))
int const 1 = threadIdx.x / 5; [intel::reqd_sub_group_size(32)]

dim3 const nThreads (BLOCK DIM X, BLOCK DIM Y,) ;

int n = start + blockIdx.x * blockDim.y + threadIdx.y - 1;
if ((n < end) & (1 < 5)) { if ((n < end) && (1 < 9)) {
int istart = iam[n]; fk = 0;
int iend = iam[n + 1]; jaml = djam[istart-1]1 - 1;
for (j = istart; j < iend; j++) {
jame = jam[j] - H ' for (7 = istart - 1; j < iend - 1; j++) {
fk += A_OFF(k, 1, j) * DQ(1l, jam@); fk += A OFF(k, 1, j) * DO(1, jaml);
} jaml = djaml[j + 11 - 1;
sm_f[k][1][threadIdx.y] = fk; }
} fk += A OFF(k, 1, iend - 1) * DOQO(l, jaml);
__syncthreads(); //fk += A OFF(k, 1, iend - 1) * 0.00001;

sm_ f[k]l[1]l[tidy]l = fk;
}

item.barrier(sycl::access::fenceispace::localispace);

Other Approaches Explored using Features
Supported on the Intel Hardware

« Subgroup of various sizes from 8 to 32 with different mapping on
row blocks of the sparse matrix

« Jason Sewall (Intel) also implemented a version that uses
subgroup block access

« Explored SIMD SYCL Extensions

Resources

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-quide/top.html

https://www.apress.com/qp/book/9781484255735

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-quide-and-
reference/top/optimization-and-programming-quide/vectorization/explicit-vector-programming/explicit-simd-sycl-extension.html

Thanks to the Intel team who are very supportive in enabling and understanding optimization issues
for programming Intel GPUs using oneAPI:

Kevin O’Leary, Zhiqi Tao, Jason Sewall, Scott Huck, Jeff Hammond, Alexander Tolikin, Mark Valcich,
Jeff Rodgers, Tom Zahniser, and many others.

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.apress.com/gp/book/9781484255735
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/vectorization/explicit-vector-programming/explicit-simd-sycl-extension.html

Conclusions

« Scientific kernels can greatly benefit from emerging high-performance architectures such as GPUSs.

« For achieving performance on these architectures it is necessary to put effort in careful planning and
optimization of computationally intensive kernels.

« For optimizing code on a given architecture, it is necessary to understand the underlying architecture.

« The compiler hides the architecture from the application developer and tries to generate optimized code for a
given architecture. However, a number of applications require a restructuring of code to match the
architecture, which is difficult to do in an automated way by the compiler or by a run-time environment.

» For these applications, it is much easier to restructure the code at the application level to match the underlying
architecture.

