
Experiences in Moving
CUDA-Optimized Kernels to
Intel GPUs using oneAPI

Mohammad Zubair Old Dominion University

Chris Stone National Institute of Aerospace

Aaron Walden NASA Langley Research Center

Eric Nielsen NASA Langley Research Center

Outline

• Motivation

• Multicolor Point-Implicit Solver

• CUDA Approach for Optimization of Solver on GPU

• Porting CUDA Optimized Code on Pre-Production Intel GPU

Hardware Using Intel oneAPI

• Challenges and different approaches explored

• Conclusion

3

CFD Vision 2030 Study

NASA/CR-2014-218178

See http://www.cfd2030.com

http://www.cfd2030.com/

4

Examples of Engineering Use

• NVIDIA V100 GPU improves over Intel Xeon Skylake CPU by 4-5x

• NVIDIA A100 GPU improves to 7-8x

• GPUs typically bundled in nodes with 4, 6, or 8 GPUs

• GPU nodes are more expensive, but still a win on performance / $

25x

Space Launch System

11 GPU nodes of 6xV100: 17 mins

11 CPU nodes of 440 cores: 7 hrs

OR

66 GPUs do the work of 350 CPUs (14,000 cores)

Supersonic Flows

3 GPU nodes of 6xV100: 37 mins

3 CPU nodes of 120 cores: 16 hrs

OR

18 GPUs do the work of 103 CPUs (4,120 cores)

26x

Rotorcraft

2 GPU nodes of 6xV100: 28 mins

2 CPU nodes of 80 cores: 11 hrs

OR

12 GPUs do the work of 60 CPUs (2,400 cores)

23x

5

Recent Summit Campaigns

• Summit Early Science, INCITE campaigns for simulations of 16-meter diameter

human-scale Mars lander with O2/CH4 combustion in Martian CO2 atmosphere

• DES of 10 species/19 reactions, 7B elements, seconds of real time

• Runs on 15,912 V100s with approximate throughput of several million CPU cores

• Big data: 90 GB of asynchronous I/O every 30 seconds for 2 days yields ~1 PB

per run; 60 TB/day migrated from ORNL to NASA Ames

• Stepping stone to CFD 2030 exascale milestones

Temperature CO2 H2O

This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC05-00OR22725.

FUN3D Test Problem

Transonic turbulent flow over a semi-span wingbody

consisting of 1,123,718 grid vertices, 1,172,171

prisms, 3,039,656 tetrahedra, and 7,337 pyramids.

The off-diagonal matrix consists of 19,106,474

blocks.

15 iterations of the linear solver are timed.

• FUN3D solves the Navier-Stokes equations

of fluid dynamics using implicit time integration

on general unstructured grids

• This approach gives rise to a large block-sparse

system of linear equations that must be solved at

each time step

• Multicolor point-implicit linear solver used to solve 𝐴 Δ𝑄 = 𝑅

for i = 1 to n_time_steps

do

Form Right Hand Side

Form Left Hand Side

Solve 𝐴 Δ𝑄 = 𝑅
Update Solution

end for

7

Multicolor Point-Implicit Solver

8

• Implicit scheme results in linear systems of equations:

o 𝐴 Δ𝑄 = 𝑅, 𝐴 is a sparse 𝑛×𝑛 block matrix

o Typically 14-19 blocks per row

o block is of size 𝑛𝑏×𝑛𝑏 (typically, 𝑛𝑏 = 5)

• Matrix 𝐴 is segregated into two separate matrices:

o 𝐴 ≡ 𝑂 + 𝐷, where 𝑂 and 𝐷 represent the off-diagonal and diagonal blocks of 𝐴

o 𝐷 is always stored in double precision (FP64)

o 𝑂 is typically stored in single precision (FP32), option for half-precision (FP16)

• Prior to performing each linear solve, each diagonal block 𝐷 is decomposed
in-place into lower and upper triangular matrices

Multicolor Point-Implicit Solver: Basics

9

Uses a series of multicolor point-implicit sweeps to form an approximate solution to 𝐴 Δ𝑄 = 𝑅

• Color by rows which share no adjacent unknowns; re-order rows by color contiguously

• Unknowns of the same color carry no data dependency and may be updated in parallel

• Updates of unknowns for each color use the latest updated values for other colors

• The overall process may be repeated using several outer sweeps over the entire system

12

2

25
1

13

36

14
29

6

27

3

37

26
28

15

32

9
18

40

17

16
31

43

39

22

7

5

4

10

30

4138

19
24

8
20

34

21

23
11

33

42

35

44

Multicolor Point-Implicit Solver

o The dominant computation in the block-sparse linear solver is a block-sparse

matrix-vector operation with a typical block size of 5 x 5

o Memory bound computation so it is critical to utilize the memory bandwidth

effectively

o The matrix is stored in a block CSR format, where the non-zero blocks in a row are

stored contiguously in the memory

o A block is stored in a column-major order

Matrix view

Layout in memory

Matrix Storage and Performance Issues

Naive Implementation on NVIDIA V100

Block Sparse Matrix Vector Operation

=

𝑂𝑐 Δ𝑄

Thread #0

Thread #1

Memory access pattern for the

naive implementation results in

very poor utilization of memory

bandwidth.

Consecutive threads are

accessing memory locations that

not consecutive.

V100: ~500 ms ~ 70 GB/s

%Peak: 7.7% TP: 900 GB/s

Optimization Issues for Multicolor Linear Solver

Ensure requests are for data that is stored in consecutive locations

The size of request (# of data elements) depends on the hardware

Matrix view

Layout in memory

Memory Subsystem

(CPU/GPU)

Motivation

o GPU supports Single Instruction Multiple Thread (SIMT) model with a

group of threads referred to as warp (or wavefront)

o The dimension of this thread group can vary from one GPU to another,

and the group must process consecutive memory locations to achieve

coalesced memory accesses

o This requires mapping the warp (or wavefront) to one or more blocks

of a sparse matrix and restructuring the computation accordingly

Optimization Issues on GPU

Thread #24 of warp

Thread #0 of warp

Output is a 5x5 block of

partial terms

use one thread to

aggregate

5 subcolumns in

shared memory into a

single column

alternate: avoid shared memory,

use shuffle to aggregate

Block Sparse Matrix Vector-FUN3D (CUDA)

Map a warp to a 5x5 block

Note: only 25 threads are active, 7 threads are

inactive

V100: ~48 ms ~ 716 GB/s

Performance improvement: 10x

%Peak: 79% TP: 900 GB/s

Challenges in Porting CUDA-Optimized Code

on Pre-Production Intel GPU Hardware

using Intel oneAPI

Terminology/Concepts Mapping

CUDA

CUDA programming model hides SIMD operations by exposing a physical thread as a number

of logical threads.

Warp: is a physical thread consisting of 32 consecutive logical threads

Thread Block Size = number of physical threads * 32 (warp size)

CUDA kernel is written to operate on scalars. In other words, kernel can be viewed as a code

that is executed by every logical thread.

Logical threads in a warp can take different paths in the program – SIMT model.

For effective utilization of device memory consecutive threads in a warp should access

consecutive memory locations.

Terminology/Concepts Mapping

oneAPI

• Work Item is equivalent to CUDA threads

• Work Group is equivalent to CUDA thread block

• Work Group Size = # of thread (physical) * SIMD sub-group size (< Max Work Group Size)

• NOTE: Unlike CUDA block size where warp size for current models is 32, the SIMD sub-group

size can be specified by the user as 8, 16, 32

• Nd range specifies work-items hierarchy

• Global range (64, 8)

• Local range for each work group (16, 8)

• NOTE: Intel oneAPI work group size is 16 x 8 and equivalent CUDA work group size is 32 x 4 . The

second dimension of oneAPI work group range is the SIMD sub-group size, whereas in CUDA the

first dimension of CUDA thread block is the SIMD sub-group size. This is important to know as

coalesced memory load or vectorization is happening along different dimensions.

Terminology/Concepts Mapping

Intel oneAPI

• Subgroup Block Access: Enable a work-item to access a block of memory.

• How should data be laid out to get the maximum benefit ?

intel::reqd_sub_group_size(16)

x = sg.load<8>(global_ptr(&(data2[base + 0])));

data2

X[0] X[1] X[2]

0 16 32

Where can block access be useful? Memory bound problems?

Optimized Intel oneAPI Implementation for
Pre-Production Intel GPU Based on CUDA Optimized Code

CUDA Optimized Code Intel oneAPI code

[intel::reqd_sub_group_size(32)]

Other Approaches Explored using Features
Supported on the Intel Hardware

• Subgroup of various sizes from 8 to 32 with different mapping on

row blocks of the sparse matrix

• Jason Sewall (Intel) also implemented a version that uses

subgroup block access

• Explored SIMD SYCL Extensions

Resources

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html

https://www.apress.com/gp/book/9781484255735

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-

reference/top/optimization-and-programming-guide/vectorization/explicit-vector-programming/explicit-simd-sycl-extension.html

Thanks to the Intel team who are very supportive in enabling and understanding optimization issues

for programming Intel GPUs using oneAPI:

Kevin O’Leary, Zhiqi Tao, Jason Sewall, Scott Huck, Jeff Hammond, Alexander Tolikin, Mark Valcich,

Jeff Rodgers, Tom Zahniser, and many others.

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.apress.com/gp/book/9781484255735
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/vectorization/explicit-vector-programming/explicit-simd-sycl-extension.html

Conclusions

• Scientific kernels can greatly benefit from emerging high-performance architectures such as GPUs.

• For achieving performance on these architectures it is necessary to put effort in careful planning and

optimization of computationally intensive kernels.

• For optimizing code on a given architecture, it is necessary to understand the underlying architecture.

• The compiler hides the architecture from the application developer and tries to generate optimized code for a

given architecture. However, a number of applications require a restructuring of code to match the

architecture, which is difficult to do in an automated way by the compiler or by a run-time environment.

• For these applications, it is much easier to restructure the code at the application level to match the underlying

architecture.

