

Unstructured CFD for Wind Turbine Analysis

C. Eric Lynch and Marilyn Smith Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta, USA

Georgia Wind availability: Egypt

 Extremely high wind availability on Red Sea coast

 Good to moderate wind availability in other portions

Georgia Tech Wind Turbine Aeromechanics

Georgia Tech Numerical Advances

Georgia Tech Euler/Navier-Stokes Formulations

- Major goal of Euler/Navier-Stokes methods was ability to capture nonlinear effects without resorting to lower-fidelity methods that need empirical models
- Formulations include structured and unstructured, overset, chimera, etc., most typically finite-volume or finite-difference
- Dissipation of the wake vorticity remains biggest issue in long-age wake problems
 - Grids too large for engineering applications
 - Restrictive computational requirements
- Other research areas:
 - Turbulence modeling
 - Transition from laminar to turbulent flows

Georgia Tech Emerging Technologies

- Reduced Unsteady Blade Models
- "Intelligent" Algorithms for CFD Spatial and Temporal Multi-scales
- Improved Hybrid Methods to Resolve the Far Wake:
 - Cartesian CFD with Grid Adaptation/Refinement
 - Vorticity Transport Methods
 - Vorticity Confinement Methods
 - Vortex Element Methods

Georgia Tech CFD Methods

- National Research Codes
 - e.g., OVERFLOW, FUN3D
 - Pro: CS supported, many features, source code, no cost
 - Con: Access by US citizens only
- Commercial Codes
 - e.g., FLUENT, CFD++
 - Pro: Access by everyone, CS supported, many features
 - Con: Executables only, pay to use, highly dissipative to improve code robustness
- International Research Code
 - OpenFOAM
 - Pro: Access by everyone, many developers support, no cost
 - Con: Not as many features as other two categories

Georgia Tech Prior CFD Efforts

- Hybrid RANS-VE method for single blade (Sankar *et al.*)
- Incompressible, non-inertial (Sorensen et al. 2002)
- Pinpointing of separation as source of unsteadiness (Le Pape and Lecanu 2004)
- Structured overset (Duque 1999)
- Comparison of structured overset with comprehensive analysis (Duque 2003)
- Time-accurate overset incompressible with tower (Zahle 2004, 2007)
- Unstructured non-inertial with grid adaptation (Potsdam, 2009)

Georgia Tech Hybrid RANS/LES

- Use RANS near the wall where finest grids are required
- Use LES away from wall to model largest turbulent eddies
- Detached Eddy Simulation (DES) is a common form of hybrid model
- Georgia Tech HRLES-sgs model:
 - RANS based on Menter's k- ω SST, solving for turbulent kinetic energy and dissipation
 - LES based on Menon and Kim constant coefficient k- Δ model
 - Two sets of equations are linearly blended using a blending function

 HRLES-sgs shown to capture more physics and provide better performance predictions even on RANS mesh sizes

SST

Georgia Tech Flatback airfoil test case

- Attempt to emulate wind tunnel tests of Berg and Zayas (2008)
- DU97 flatback airfoil with 10% thick trailing edge
- Wind tunnel wall porous effects not known
- Compressible, M = 0.2
- Re = 3×10^6
- α = 10°
- $\Delta t = 0.005$,
- ~ 500 steps/cycle

Georgia Computational Grids

Results vary significantly with grid topology/resolution:

1. Prismatic with tunnel walls, 5h/33, 108k nodes per plane, periodic BC

2. Hex overset with farfield boundaries, 5h/33, 7.2M nodes

Georgia Mean forces and Strouhal number

Grid	Model	Code	Mean CL	Mean CD	Strouhal
-	Experiment	-	1.57 ± 0.13	0.055 ± 0.005	0.24 ± 0.01
Prismatic with walls	SST	FUN	1.87	0.0493	0.088
<i>u</i>	HRLES	FUN	1.88	0.0740	0.088, 0.15
Hex overset, farfield	SST	FUN	1.615	0.039	0.177
"	HRLES	FUN	1.647	0.061	0.182

Georgia Tech NREL Phase VI cases

- 7, 13, and 15 m/s upwind baseline cases at zero yaw
- Compared against Sequence S (no probes, free transition) and Sequence M (no probes, tripped)
- Found very few transitional effects, so only untripped results shown here

Georgia Tech Full Wind Turbine Grids

•2.6M nodes per blade volume grid
•129k surface triangles per blade
•7.2M total

Georgia Tech Integrated loads

Wind speed (m/s)	Code	Turb. model	Root flap bending moment (N-m)	Torque (N-m)
15	Exp. S		2750 ± 260	1172 ± 95
	FUN3D	SST	3067	922
	FUN3D	HRLES	2898	646
	OF	SST	2789	988

- Unstructured method captures root bending moment within experimental limits
- Low torque predictions common to structured mesh as well
- Blade tip modeling inconsistencies were observed.

OVERFLOW results courtesy of Dr. Chris Stone, Computational Science, LLC

Instantaneous streamlines at 0 degrees azimuth

$Q = 1 \times 10^{-4}$ iso-surfaces, colored by vorticity magnitude, after 5 revs

Georgia Tech Blade Pressure Distributions

Cp at 30% span

Cp at 95% span

- Well within experimental error bars near root.
- Less so at tip where grid problems are most pronounced

Georgia Tech Actuator Methods

- A compromise between full rotor CFD and lower fidelity methods
- Based on momentum theory
- Remove the rotor and model its influence on the flow field
- Can be implemented as a pressure discontinuity BC or as body forces (source terms) in interior
- Efficient because need not model blade geometry or boundary layers

Actuator blades/lines

- Locate sources along lines or • moving surfaces
- Source strength comes from BEM ulletor comprehensive methods

lec

Actuator disc

Georgia

Tech

US-Egypt Workshop on Wind Energy Development Cairo, Egypt, March 22-24, 2010

Actuator blades

Georgia Tech Actuator blade improvements

- Sources must be associated with a grid node, entailing a search at each time step – recent work increases search speed by 20%
- Coupling with DYMORE to use its finite-state aerodynamics model to determine source strengths with azimuth

T. Renaud, M. Potsdam, D. M. O'Brien, Jr., and M. J. Smith, "Evaluation of Isolated Fuselage and Rotor-Fuselage Interaction Using CFD," 60th AHS Annual Forum, Baltimore, MD, June 2004.

Georgia Tech Current & Future work

- Improve quality of surface definition
- Evaluate sensitivity to grid quality and spacing
- Transition model for critical speed (10m/s)
- Yawed cases to better demonstrate advantages of full configuration CFD
- Use incompressible method to avoid low Mach converge and accuracy problems
- CFD-CSD coupling to capture blade flexibility
- Addition of atmospheric boundary layer model

Georgia Tech Conclusions

- Hybrid turbulence models improve sectional loads and surface pressures in separated regions
- With HRLES, more of the unsteady wake physics is observed in the rotor wake
- Grids cannot be readily used from their structured counterparts as they can result in poor unstructured meshes
- Actuator blades hold promise to model wind farms by capturing individual rotor wakes

Georgia Tech Acknowledgments

- Work supported by NSF Project 0731034, "Advancing Wind Turbine Analysis and Design for Sustainable Energy"
- Teragrid computing resources hosted at NCSA, Purdue, and LONI were used
- Thanks to Scott Schreck for the NREL Phase VI datasets

