Unstructured-grid Algorithms for a
Many-core Landscape

Aaron Walden and Eric Nielsen
NASA Langley Research Center

Mohammad Zubair and Jason Orender Justin Luitjens
Old Dominion University NVIDIA Corporation

John Wohlbier John Linford, Izaak Beekman, Sam

DoD HPCMP PETTT Khuvis, and Sameer S. Shende
Engility Corporation ParaTools, Inc.

Hee O =newmy oo © Parglools ¥%QAKRIDGE

AVIDIA. National Laboratory
The author: ors woul Idlk to the i and PETTT software support from the DoD High P C office under Contract No. GS04T09DBC0017. Support from the NASA Langley Center C ive Digital Tr ion initiative and
the i ject within the NASA Aeronautics Resear h Mission Directol rate is also a knowledged The authors also W|sh to a kn wledge Dr. Larry Daws of the DoD HPCMP Office for hardware resources used in thls study Some resources suppomng thls work
were pro\ ddbyth NASAthE dC omputing gtHEC]P ogram through the NASA Advanced Supercomputing (NAS) Divis at Ames Research Center. This also used resoul of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported

Contract DE-AC02-06CH11357.

Langley Research Center

Motivation: Future HPC Landscape

« Exascale power requirements constrain processor operating voltage and
frequency, favoring performance increases through concurrency

« DoE Exascale Workshop predicts 1024 cores/node, already at 260 (TaihuLight)
« Upcoming ORNL Summit: 6 NVIDIA Volta V100/node (6 x 5,120 “CUDA cores”)
« Current multi-core compute nodes ~50-way concurrency

 Increasing core counts and proliferation of high bandwidth/low capacity
memory as well as exponential increase in flops vs bandwidth emphasize the
need to minimize memory footprint and communication (data movement)

« Simulation of time-dependent problems calls for strong scaling

* Dense domain-decomposed MPI may be rendered inadequate by the coming
paradigm shift

Langley Research Center

Conventional FUN3D

 FUNS3D is a NASA Langley unstructured-grid CFD solver: uses implicit time
integration on mixed-element unstructured grids

« Elements (tet/prism/pyramid/hex) have different compute costs

 FUN3D employs a coarse-grained domain-decomposed dense MPI model (1
rank per processing element) in which each rank independently processes a
grid partition

« Experience shows partition quality shrinks with nlgrid points /niranks ratio,
causing load imbalance by element type for heterogeneous workloads

* As nipartitions increases, so does the surrace/voliume ratio of each partition and
thus the number of halo exchanges, which we suspect as the prime limiter of
scalability

« Thus there is a clear motivation to reduce the number of MPI ranks over which
a grid is decomposed, especially for many-core systems

Langley Research Center

Compute "Node” Architectures

HWL BWL SKY KNL P100 V100
Architecture Haswell Broadwell Skylake Knights Landing Pascal Volta
Model E5-2699v3 E5-2680v4 Gold 6148 KNL 7230 P100 PCle V100 SXM
NUMA x Cores x Threads 4x9x2 2x14x2 2x20x2 1x64x4 1 x 56 x 32 1x80x32
Clock Speed, GHz 2.3 24 2.4 1.3 1.303 1.53
Vector Length, DP 4 4 8 8 - -
Memory, GB 116 128 192 16/90 16 16
Memory Bandwidth, GB/s 106 117 163 450/80 720 900
Peak GFLOPS, DP 530 431 1229 2662 4670 7834
MSRP, US$ 4115 3490 6156 1992 5500 8000
TDP, Watts 290 240 300 215 250 300

« Many-core (KNL, GPUs) will always run in shared memory

« Xeon (BWL, SKY) will not (for node-level studies), serving as a benchmark of current practice

Outline

1. Shared-memory Node-level Programming Models
LHS Matrix Assembly

 Linear Solver
2. Node-level Performance
3. Fortran Considerations
4. Strong Scaling Performance
* Hybrid Shared-mem MPI+OpenMP vs. Pure MPI

« Multi-GPU Systems

Node-level Kernel Studies

LHS Matrix Assembly:

Compressible Viscous Flux
Jacobians

Langley Research Center

LHS: Algorithm

Initialize 4,5 <— 0 and A pp < 0

for each cell € Grid do
for each node € cell do // loop 1
/I compute cell avgs, set local arrays
end for
for each face € cell do // loop 2
// linearize cell gradients
end for
for each edge € cell do // loop 3
// compute edge contribution to Jacobian
for each node € cell do
// compute gradients at dual face
end for
end for
for each node € cell do // loop 4
// ‘assemble 17 contributions to Jacobian
end for
end for

Ap - Diagonal block matrix
Appr + Off-diagonal block-sparse matrix

The computation can be parallelized over the number of
cells, however, atomic updates are required to avoid
race conditions when writing to 4,,,; and 4.

Challenges:

©)

©)

Irregular memory access pattern

Algebraic complexities (dependency chains) related
to the underlying physics limit vectorization

A large number of temporary variables results in
cache and register pressure

Langley Research Center

Race Condition Avoidance

To avoid race conditions during matrix updates, we must serialize the processing
of elements that share nodes. For GPUs, we use the hardware-supported
atomicAdd () with virtually no loss of performance. For Xeon/Xeon Phi, we
attempted the following strategies:

* Atomics: We use OpenMP atomics to protect all
matrix updates. This may be optimized so that only
nodes shared by threads are protected. 200+%
performance penalty.

« Coloring: Using a greedy algorithm, we organize
cells into groups which do not share nodes. This
generally requires 12-15 color groups. The more
scattered memory access pattern incurs a 30-60%
performance penalty.

Example greedily colored grid.

Langley Research Center

LHS: General Optimizations

Using conventional FUN3D Fortran (or direct 4.0

CUDA C++ port) as baseline: 28

« Factor algebra to avoid recomputation B = -
« Store computed addresses in lookup table

« Hard-code loop extents 00

BWL SKY KNL P100
* Prefetch data to reduce memory latency

Speedup over baseline.

Langley Research Center

LHS: Further GPU Optimizations

Parallelize across
for each cell € Grid do gridDim.x * blockDim.y threads

for each node € cell do
// compute cell averages, set local arrays

end for . . .
for each face € cell do /[Parallelize using blockDim.x threads]

// linearize cell gradients

Initialize 4,5 <— 0 and A pp < 0]

e
end for Flatten nested loops and
for each edge € cell do = blpaf:g?hzett;’sm%

// compute edge contributionstojacobial_ ockbim.x threaas

for each node € cell do
// compute gradients at dual face

end for
end for Parallelize using
for each node € cell do blockDim.x threads

// assemble 17 contributions to Jacobian —
end for
end for

Increases number of active threads and
improves thread utilization

Coalesce memory access pattern

Reduces register and shared memory
pressure, increasing occupancy

Enable reduction in inner loops using
shared memory

Auto-tuning used to choose blockDim.x
and blockDim.y

Further 2x speedup

Node-level Kernel Studies

Multicolor Point-Implicit Linear
Solver

Langley Research Center

Solver: Algorithm

x : Solution vector (initialize to zero) FUN3D uses a series of multicolor point-implicit
LyF : Lower triangular of 4,/ sweeps to form an approximate solution to Ax =b
ke ' lar of A, : :
Up": Upper triangular of Apy,q « Color by rows which share no adjacent unknowns
for i = 1 to number_of sweeps do * Re-order matrix rows by color contiguously in
for k=1 to number_of _colors do memory in block CSR format

// Compute halo values
Compute g* «— b* - A, x
Solve for y* in L5k = g*

Solve for x* in Upfxk =k « Halo rows ordered and processed first, then call

// Non-blocking MPI send/rec halo non-blocking MPI send/receive for halos
// Compute interior values

« The algorithm requires a block-sparse matrix-
vector product and forward-backward substitutions

Compute gk «— b* - 4, « Computation of interior values proceeds as halos
Solve for y* in Lk = g are exchanged
Solve for x* in Upfxk = yk _ _ - - .
// MP1_Waitall * Blocking MPI_Waitall follows interior computation
end for : : : .
end for Strong scaling heavily dependent upon interior

computation effectively hiding comm. latency y

Langley Research Center

Solver: CUDA Implementation

))))) Y rows processed
» CUDA sparse libraries exist, but determined to be inadequate, by a thread block

developed and optimized a custom solver X X X X
X X X
* Process rows of one color with nZows/ncColor/V thread blocks X X X X X
X X X X
* Process a 5x5 block with the first 25 threads of warp (X threads) X X XX
X X X X X
* Aggregate partial sums of matrix-vector product using shuffles . § + X §
« Store all intermediate results and diagonal block in shared memory ' \ 5X'5
« Auto-tune block sizes (X,Y) and launch bounds block
* The columns of the lower triangular factor of 4, ,; are processed from i i
left to right using a single warp X
* The amount of parallelism available to the warp decreases as we move X
from left to right xS >
_ _ _ X X x X
« Shuffle instruction broadcasts values from the previous column IEEEER]

» Upper triangular portion processed in a similar fashion

Solver: AVX-512 Implementation

* For KNL (and now SKY), solver is amenable to writing in
AV X-512 vector intrinsics

* Vector intrinsics are essentially assembly that controls
AVX-512 vector unit (SIMD operations)

* Bypass compiler vectorization

 Instead of thread blocks, work directly with 512-bit registers

Langley Research Center

Solver: AVX-512 Implementation

— 1

I

_mm512 maskz loadu ps()

next block

- - X: mem
X4
x|
M
x4 | X1
X4 X5

— _mm512 mask extload ps()

X5

X
Xs \ 3
X5 X4

SUM

X1
etc]

X1

X1

X1

X1

X2

X2

X2
— L) — —
+= ¥ +=

X2

X2

0

x
ks

_mm512 fmadd ps()

Langley Research Center

Solver: AVX-512 Implementation

Add partial sum columns together using permutes to obtain final matvec result
(colors now only indicate a separation between 3 partial sums)

_mm512 mask add ps()

_mm512 permutevar epi32()

-] | _mm512_permutevar_epi32 () |
[also involves a cast

to epi32 and back]

Langley Research Center

Relative (to BWL MPI) Performance Results

6.8

6.0 54

Meanflow Relative Performance '

® Meanflow Relative Performance/$

Meanflow Relative Performance/\Watt

4.0
3.0
2.3 22

2.0 14 15

BWL —— === - ———————- .—' ————————————— - - -BWL
o

SKY KNL P100 V100

Langley Research Center

Fortran Concerns

Results indicate that optimal many-core performance requires low-level
programming in C/C++ (CUDA, AVX-512), this brings Fortran/C
interoperability concerns:

« Passing derived types with allocatables (and arrays of such types)
» Fortran compiler inconsistencies (C_SIZEOF)
» Device pointer arithmetic (IBM XL Fortran compiler only?)
« SummitDev Spectrum MPI issues:
o Support for accepting device ptr arguments from Fortran
o Array of statuses

o Request size in bytes (differs F2C in Spectrum MPI)

Langley Research Center

Fortran Concerns: Derived Types

Mirror original derived type with C-bound derived type

type C bound type - type F derived type ! original
type(c _type) :: var f type :: var
type(c_ptr) :: alloc var d \ f type, allocatable :: alloc var
N /
end type C bound type ‘\\ end type F derived type /
/
\\\ /
I : N\ //
I Copy to device \\ CPU Memory y;
o S 7
Interpret as struct | mirroring derived type AN GPU Memory 7
v AN /R
\ //@@@
N\
typedef struct C bound type { N / Sp
\ e
c type var; AN /7
- N R4

c_type* alloc var;

> alloc _var[SIZE] // device array
} C_bound type;

We can use this method to access arrays of derived types with allocatables on the device

Strong Scaling Studies

Hybrid MPI1+OpenMP
VS

Pure MPI
(Xeon/Xeon Phi)

Langley Research Center

Input Grids

A B Cc D
Points 60,701,918 208,849,719 1,651,089,924 13,157,364,372
Tetrahedra 222,081,338 737,451,314 5,902,801,476 47,241,557,592
Pyramids 249,807 797,741 4,786,446 28,718,676
Prisms 44 585,182 163,786,283 1,310,290,264 10,482,322,112
File Size, GB 6.1 20.9 292.4 2,334.8

« 60M to 13.2B grid points, up to 57B elements

* Grids C and D derived from uniform grid refinement
of Grid B

» All cases RANS with 1-equation turbulence model

—

Wing-body grids developed at NASA
Langley for the Sixth AIAA Drag
Prediction Workshop

Langley Research Center

HPC Systems

Electra Onyx Topaz
System Type SGI ICE X Cray XC40/50 SGIICE X
Processor SKY KNL HWL
Nodes (of Processor) 1,152 544 3,456
NUMA x Cores x Threads 2x20%2 1x64x4 4x9x2
Cores (of Processor) 46,080 34,816 124,416
High-bandwidth Memory 0 16 GB 0
Interconnect 4x InfiniBand EDR Cray Aries 4x InfiniBand FDR
Topology Hypercube Dragonfly Hypercube
MPI mpt.2.17r4 cray-mpich/7.6.2 mpt/2.13-1128
Compiler Intel 18 Intel 17 Intel 16
Grids B,C,.D AB ACD

* Hybrid uses 1 MPI rank per NUMA domain and one thread per physical processing element,
pure MPI uses one rank per physical processing element

« Efficiency is calculated relative to an arbitrary core count’s timing: scal/inglactual /
scalinglperfect

Langley Research Center

Grid A (60M) Results on Topaz (HWL)

1.6 1
—— i
10 ; Hybrid . N .
] —=—MPI ., 08 ﬁ\\
2 g
& 5 047
() =
£ L
E 1 .02’ 0.2
)] ©
Q_ —
o & 0.1
E —+—Hybrid
0.05 1
==—NP]|
0.1 0.025
[CELLRPENEEERPONREERFONRE ER FONEE ER PONKE ER FONRE ER FONEE FRRINGBNGE [CELLRACEE] RACEE] RACEE] RACEE] RA[GEE] RA[CEE] RA [CHEFEANRANGE]
]]]]]]] 1 1]
Number of Haswell Cores Number of Haswell Cores

* MPIlinitially 1.6x faster than hybrid
« Crossover point at 6,912 cores (~8,700 grid points/core) where Hybrid faster

« Hybrid solver starts slower but faster by 6,912: need for threaded comm?

Langley Research Center

Grid A (60M) Results on Onyx (KNL)

Hybrid 1 1TPC ®2TPC ®4TPC

_ '3 Hybrid 4 a
LI)’ i =
a MPI ®
& 2
(7] %) 1
) -~
E '
= s
3 3
£ =
= g

0.7 - - - - 0 -

[CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE]JELLRANGE] 1 2 4 8 16 32

Number of KNL Cores MPI Ranks Per Node (64 nodes)

» Hybrid faster than MPI even with coloring to avoid data races
* Hybrid 20-30% benefit using 4 ranks/node over 1, why?
» Hyperthreading causes slowdown in solver only with off-node comm

* Hypothesis: MPIl implementation is oversubscribing calling core during overlapped comm

Langley Research Center

Grid B (208M) Results on Electra

—=—MPI

Hybrid

Time per Time Step (s)
Relative Efficiency

0.1 0.5
E
[CELLRANGE]CELLRANGE][CELLRACEHERANCREEGERANCEARARGRE] [CELLRANGE[CELLRANGE[CELLRNEEHBENGEEGJRANG& T GE

]]]]
Number of Skylake Cores Number of Skylake Cores

» Convergence at 40k, can hybrid ever run faster on Electra?
» Run Hybrid without coloring to test (incorrect physics)

Langley Research Center

Grid B (208M) Results on Electra

—=—MPI
—*—Hybrid_uc
1 Hybrid

Time per Time Step (s)
Relative Efficiency

E
[CELLRANGEICELLRANGEICELLRA@EEMNGE@EGE?AM@EPE{AR@E§E] [CELLRANGE[CELLRANGE[CELLRNEEHBENGEEGJRANG& T GE

]]]]
Number of Skylake Cores Number of Skylake Cores

» Convergence at 40k, can hybrid ever run faster on Electra?
» Run Hybrid without coloring to test (incorrect physics), Hybrid_uc

« Answer: Yes, Hybrid _uc and Hybrid solvers 20% faster at 40k, coloring is
the difference

Langley Research Center

Grid C (1.65B) Results Topaz/Electra

2
—*~Hybrid Top: Topaz
0 >
o 107 A 2 Bottom: Electra
Q 2 . .
e & * Up to 19k grid points/
E el node, too many for
5 £ Hybrid to pass MPI,
o 2 except for what looks
i§ like a degenerate
1 L 05 case of MPI| on Topaz
NGHAIRSRMENSIS] [CELLRANGE CELLRANGEJELLRANGE] [CELIRE E .. .
[CELLRANGE] [CELLRANGEELLRANGE] [CELLBA 11] [GH] [CELURENGHREERIBYOLGE| Efficiency of scaling
Number of Haswell Cores Number of Haswell Cores .
much improved at

10 1 2 _
] this level of work

* Topazresults more

erratic

Hybrid outscales MPI
but does not yet
catch up in absolute
speed

Time per Time Step (s)
Relative Efficiency
[]
}
3

o
o
[

1 dwr - - - - - - - - - -

9280 13920 16960 25440 32200 44000 9280 13920 16960 25440 32200 44000
Number of Skylake Cores Number of Skylake Cores

Langley Research Center

Grid D (13.2B) Results Electra/Topaz

100 2
1 —+—Electra
Topaz
0
~ >
o 1)
& 5
[77) —
® 2
£ w1 = "
= o
5 2
o 8
g &
10 - - - - 0.5 - - - =
[CELLRMN.LRAN [CELLRAN [CELLRAN[CELIGANRAN 32kCELLRAN [CELLRAN [CELLRAN[CELLRAN 85k
GE] GE] GE] GE] GE] GE] GE] GE] GE] GE]
Number of Xeon Cores Number of Xeon Cores

* Relative scaling of 100% or better continues as expected

» At this level of work (200x 60M), communication latency is easily hidden behind
computation

» Topaz and Electra show the same linear (or better) trends in timing

Langley Research Center

60M Meanflow Strong Scaling Comparison

- HWL (Topaz)
10 1
. KNL (Onyx)

\ == P100 (SummitDev)

Time per Time Step (s)

0.1
[CELLRANGEFLLRANQEE LLRANGEFLLRANGEE LLRANGEEL L RANGEL RANEE] RANGEELLRANGELLRANGE]

Number of Devices or Nodes

Langley Research Center

Conclusions and Future Work

Conclusions:

* KNL performance roughly equal to a 2-socket BWL, but more efficient

* GPUs’ hardware atomic support and flexible parallelism are extremely powerful
+ GPUs’ fast solver outscaled by CPU/KNL, but same perf with many fewer nodes

« Many-core may require low-level programming (AVX-512, CUDA) for peak performance of
complex code

« Translating a large code to CUDA requires a sizeable investment: what if equal effort were put
into KNL-specific optimizations?

* Hybrid MPI+OpenMP has faster solver (ultimate scaling bottleneck) at scale despite slowdown
caused by low ranks per node

Future Work:

+ Solve the MPI + hyperthreads issue (aka low ranks per node issue)

« Explore alternatives to race condition avoidance (mimic MPI)

« Optimize vectorization/prefetching of key routines for AVX-512 devices

+ CUDA turbulence models (coming soon to NVIDIA GTC ‘18 and ParCFD ‘18)

Langley Research Center

Appendix

