
6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 1/14

Current Release: 12.4-70371
Site Last Updated: Wed Jun 04 16:41:00 -0400 2014

SITE CONTENTS

CHAPTERS

I. Introduction
1. Background
2. Capabilities
3. Requirements
4. Release History
5. Request FUN3D

II. Installation
1. Third-Party Libraries
2. Compiling

III. Grid Generation
1. 2D Grid Generation
2. 3D Grid Generation

IV. Boundary Conditions
1. Boundary Condition List
2. Value Input Format (Version

11.0)
V. Pre/Post Processing ←

1. Grid/Solution Processing with
v11.0 and Higher

2. Sequential Grid Processing
3. Parallel Grid Processing

VI. Analysis
1. Flow Solver Namelist Input
2. Running The Flow Solver
3. Rotorcraft
4. Hypersonics
5. Time Accurate – Basics/Fixed

Geometry
6. Time Accurate – Moving

Geometry
7. Overset Grids
8. Static Aeroelastic Coupling
9. Ginput.faces Type Input

10. Flow Visualization Output
Directly From Flow Solver

11. Individual Component Force
Tracking

12. Static Grid Transforms
13. Noninertial Reference Frame

VII. Adaptation and Error Estimation
1. Capabilities
2. Mesh Movement via Spring

Analogy
3. Requirements and Configuring

to use refine
4. Adjoint-Based Adaptation
5. Gradient/Feature-Based

Adaptation
6. Error Estimation

VIII. Design
1. Getting Started
2. Setting Up rubber.data
3. Geometry Parameterizations
4. The Adjoint Solver
5. Running the Optimization
6. Customization
7. Forward-Mode Differentiation

IX. Appendix
1. Publications
2. Presentations and Other

Materials
3. Development Team
4. F95 Coding Standard
5. Hypersonic Benchmarks

TRAINING WORKSHOPS

I. March 2010 Workshop
1. Overview
2. Agenda
3. Images

II. April 2010 Workshop

Previous (C4: Boundary Conditions) | Up | Next (C6: Analysis)

5. PRE/POST PROCESSING

5.1. GRID/SOLUTION PROCESSING WITH V11.0 AND HIGHER

As of FUN3D v11.0 and higher, there is generally not a need to use the traditional party/pparty tools
associated with FUN3D (the pparty executable has actually been discontinued). The solvers for v11.0
and higher now load raw grid files (VGRID, FAST, etc.) directly and partition/pre-process them
internally prior to the solution phase. This new paradigm is much more scalable, eliminates the need
to run a separate pre-processing step, and also eliminates the need for a set of grid partition files.
When running on hundreds or thousands of processors, these sets of files became very burdensome to
deal with. Moreover, existing runs/solutions may now be seamlessly restarted on any number of
processors, independent of the number used in the previous run – the solvers will now load the
existing restart data and redistribute it internally as necessary amongst the specified resources.

Users should find the new internal preprocessing paradigm extremely efficient as well; great care has
been taken to optimize its performance and memory footprint. As a point of reference, a grid from the
recent AIAA Drag Prediction Workshop with 105 million gridpoints and 600 million elements
formerly required 2 weeks of wallclock time and 800 GB of shared memory (on a large shared
memory machine) to preprocess for 1,024 partitions with the traditional party preprocessor. The new
paradigm partitions this same test case using 1,024 cores in 5 minutes wallclock time (on an SGI ICE
distributed memory machine running the Lustre file system) without the need for a large segment of
shared memory.

In addition to the changes to the “front end” of the solvers, the “back end” has also been revamped.
Restart information is now contained in a single file, rather than a file for each partition. Generation of
visualization files for post-processing purposes should now be done with the co-processing options
available in the solver. These currently include options for Tecplot; future implementations will also
include Fieldview options. Party is unable to post-process the new single-file restarts.

Although party must still be used for some less common features, all of its functionality will
eventually be migrated to the new paradigm, eliminating the party application entirely. Existing
partition files generated by party can still be run in v11.0, and existing 10.8 restart files can also be
used with v11.0, but these options will soon be phased out. For these reasons, users should begin
migrating to use the new paradigm for both grid processing and restart files.

Please report any issues to the support team.

LOADING RAW GRIDS DIRECTLY INTO THE SOLVERS

The solvers in FUN3D v11.x now load raw grid formats such as VGRID, FAST, etc. directly. To do
this, the user simply adds a namelist called &raw_grid to their fun3d.nml input deck, where the
variables and default values are as shown below.

LOADING RAW GRIDS DIRECTLY INTO THE V11.0 SOLVERS

The basic form of the &raw_grid namelist for v11.0 is as follows:

http://fun3d.larc.nasa.gov/index.html
http://fun3d.larc.nasa.gov/chapter-1.html
http://fun3d.larc.nasa.gov/chapter-1.html#background
http://fun3d.larc.nasa.gov/chapter-1.html#capabilities
http://fun3d.larc.nasa.gov/chapter-1.html#requirements
http://fun3d.larc.nasa.gov/chapter-1.html#release_history
http://fun3d.larc.nasa.gov/chapter-1.html#request_fun3d
http://fun3d.larc.nasa.gov/chapter-2.html
http://fun3d.larc.nasa.gov/chapter-2.html#third-party_libraries
http://fun3d.larc.nasa.gov/chapter-2.html#compiling
http://fun3d.larc.nasa.gov/chapter-3.html
http://fun3d.larc.nasa.gov/chapter-3.html#2d_grid_generation
http://fun3d.larc.nasa.gov/chapter-3.html#3d_grid_generation
http://fun3d.larc.nasa.gov/chapter-4.html
http://fun3d.larc.nasa.gov/chapter-4.html#boundary_condition_list
http://fun3d.larc.nasa.gov/chapter-4.html#value_input_format_(version_11.0)
http://fun3d.larc.nasa.gov/chapter-5.html
http://fun3d.larc.nasa.gov/chapter-6.html
http://fun3d.larc.nasa.gov/chapter-6.html#flow_solver_namelist_input
http://fun3d.larc.nasa.gov/chapter-6.html#running_the_flow_solver
http://fun3d.larc.nasa.gov/chapter-6.html#rotorcraft
http://fun3d.larc.nasa.gov/chapter-6.html#hypersonics
http://fun3d.larc.nasa.gov/chapter-6.html#time_accurate_-_basics/fixed_geometry
http://fun3d.larc.nasa.gov/chapter-6.html#time_accurate_-_moving_geometry
http://fun3d.larc.nasa.gov/chapter-6.html#overset_grids
http://fun3d.larc.nasa.gov/chapter-6.html#static_aeroelastic_coupling
http://fun3d.larc.nasa.gov/chapter-6.html#ginput.faces_type_input
http://fun3d.larc.nasa.gov/chapter-6.html#flow_visualization_output_directly_from_flow_solver
http://fun3d.larc.nasa.gov/chapter-6.html#individual_component_force_tracking
http://fun3d.larc.nasa.gov/chapter-6.html#static_grid_transforms
http://fun3d.larc.nasa.gov/chapter-6.html#noninertial_reference_frame
http://fun3d.larc.nasa.gov/chapter-7.html
http://fun3d.larc.nasa.gov/chapter-7.html#capabilities
http://fun3d.larc.nasa.gov/chapter-7.html#mesh_movement_via_spring_analogy
http://fun3d.larc.nasa.gov/chapter-7.html#requirements_and_configuring_to_use_refine
http://fun3d.larc.nasa.gov/chapter-7.html#adjoint-based_adaptation
http://fun3d.larc.nasa.gov/chapter-7.html#gradient/feature-based_adaptation
http://fun3d.larc.nasa.gov/chapter-7.html#error_estimation
http://fun3d.larc.nasa.gov/chapter-8.html
http://fun3d.larc.nasa.gov/chapter-8.html#getting_started
http://fun3d.larc.nasa.gov/chapter-8.html#setting_up_rubber.data
http://fun3d.larc.nasa.gov/chapter-8.html#geometry_parameterizations
http://fun3d.larc.nasa.gov/chapter-8.html#the_adjoint_solver
http://fun3d.larc.nasa.gov/chapter-8.html#running_the_optimization
http://fun3d.larc.nasa.gov/chapter-8.html#customization
http://fun3d.larc.nasa.gov/chapter-8.html#forward-mode_differentiation
http://fun3d.larc.nasa.gov/chapter-9.html
http://fun3d.larc.nasa.gov/chapter-9.html#publications
http://fun3d.larc.nasa.gov/chapter-9.html#presentations_and_other_materials
http://fun3d.larc.nasa.gov/chapter-9.html#development_team
http://fun3d.larc.nasa.gov/chapter-9.html#f95_coding_standard
http://fun3d.larc.nasa.gov/chapter-9.html#hypersonic_benchmarks
http://fun3d.larc.nasa.gov/training-1.html
http://fun3d.larc.nasa.gov/training-1.html#overview
http://fun3d.larc.nasa.gov/training-1.html#agenda
http://fun3d.larc.nasa.gov/training-1.html#images
http://fun3d.larc.nasa.gov/training-2.html
http://fun3d.larc.nasa.gov/chapter-4.html
http://fun3d.larc.nasa.gov/index.html
http://fun3d.larc.nasa.gov/chapter-6.html

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 2/14

1. Overview
2. Agenda and Training Materials
3. Images

III. July 2010 Workshop
1. Overview
2. Agenda and Training Materials

IV. March 2014 Workshop
1. Overview
2. Agenda and Training Materials

V. Future Workshops
1. Overview

TUTORIALS

I. Introduction
1. See also

II. Flow Solver
1. Inviscid flow solve
2. Turbulent flow solve
3. Merge VGRID mesh into mixed

elements and run solution
III. Grid Motion

1. Overset Moving Grids
IV. Design Optimization

1. Max L/D for steady flow
2. Max L/D for steady flow at two

different Mach numbers
3. Lift-constrained drag

minimization for DPW wing
4. Max L/D over a pitching cycle for

a wing
5. Max L/D for steady flow over a

wing-body-tail using Sculptor
V. Geometry Parameterization

1. MASSOUD
2. Bandaids

APPLICATIONS

1. Updated scaling study on ORNL Cray
XK7 system

2. Forward and adjoint solutions for wind
turbine

3. Forward and adjoint solutions for
aeroelastic F-15

4. Simulation of biologically-inspired
flapping wing

5. Notional unducted engine with
counter-rotating blades

6. More applications posters
7. Animation of Landing Gear

Simulations
8. Computational Schlierens for

Supersonic Retro-Propulsion
9. Time-dependent discrete adjoint

solution for UH60 helicopter in forward
flight

10. Fuselage effects for UH60 helicopter
11. Mesh adaptation for RANS simulation

of supersonic business jet
12. More applications posters
13. Horizontal axis wind turbine
14. BMI's Mike Henderson describes the

role of CFD and HPC in tractor-trailer
analysis and design

15. Computational Schlieren for Unsteady
Simulation of Launch Abort System

16. Computational vs Experimental
Schlieren for Supersonic Retro-
Propulsion

17. More Smart Truck Simulations at BMI
Corporation

18. More recent applications at AMRDEC
19. Hypersonic Winnebago Simulation
20. Flight Trajectories for Various Rocket

Geometries
21. Supersonic Retro-Propulsion
22. Smart Truck Simulations at BMI

Corporation
23. Ongoing Improvements in

Computational Performance
24. Long-duration Landing Gear

Simulations
25. Design of Tiltrotor Configuration
26. Design of F-15 with Simulated

Aeroelastic Effects
27. FUN3D and LAURA v5 STS-2 heating

comparisons
28. Recent applications at AMRDEC
29. DES ground wind simulation on ARES

configuration
30. Modified F-15 with Propulsion Effects
31. Mars Science Laboratory
32. Propulsion-Related Test Cases

 &raw_grid
 grid_format = "vgrid"
 formatted = .false.
 lump = 0
 swap_yz_axes = .false.
 twod_mode = .false.
 /

The actual project name is still specified as before, in the &project namelist.

The currently supported values of grid_format are “vgrid” (traditional VGRID .cogsg/.bc/.mapbc
files, both single- and multi-segmented), “vgrid4” (mixed element VGRID .gridu/.mapbc files), “fast”
(FAST .fgrid/.mapbc files), “fun2d” (FUN2D .faces files), and “aflr3” (formatted or unformatted
.ugrid/.mapbc files).

Other formats traditionally supported by party, such as Fieldview and Plot3D, have not been
implemented yet. Users must use the old party paradigm for such grids, or translate them to a
supported format. These other formats will be supported in this namelist in future releases of FUN3D.

(Note: The FUN3D team has found that the use of stream IO formats is considerably more efficient in
terms of time and memory, particularly for larger grids. We have internal options to convert grids to
such formats; however, since none of the common grid generation tools have an established standard
format, we do not discuss these options in detail here. If you are having trouble loading large grids
using the standard file formats listed above, contact us for recommendations on converting them to a
more amenable format for FUN3D.)

The currently supported values of formatted are .true. or .false. FUN3D will stop with an error
message if this value is inconsistent with the value of grid_format. For example, if VGRID files are
specified, formatted must be .false.

The currently supported values of lump match those used by the traditional party preprocessor: 0 for
no boundary group lumping, 1 for lumping by physical boundary condition type, or 2 for lumping by
family name (if the grid format allows the specification of family names – if it does not, FUN3D will
stop with an error message).

The swap_yz_axes allows the user to swap the y- and z-axes if desired.

The twod_mode input tells FUN3D to process and solve on the input grid in 2D mode. This option is
really only relevant for AFLR input grids, since this is the only currently-supported mixed-element
format (grids must be a single layer of prisms or hexes in the spanwise direction in order to run them
as 2D cases). If grid_format is “fun2d”, twod_mode need not be set; the solver will automatically
switch to 2D mode.

LOADING RAW GRIDS DIRECTLY INTO THE V11.1 (AND HIGHER) SOLVERS

The basic form of the &raw_grid namelist for v11.1 and higher is as follows:

The actual project name is still specified as before, in the &project namelist.

The currently supported values of grid_format are “vgrid” (traditional VGRID .cogsg/.bc/.mapbc
files, both single- and multi-segmented), “vgrid4” (mixed element VGRID .gridu/.mapbc files), “fast”
(FAST .fgrid/.mapbc files), “fun2d” (FUN2D .faces files), “aflr3” (formatted, unformatted, or C-
binary/Fortran-stream .ugrid/.r8.ugrid/.b8.ugrid/.mapbc files), and “fieldview” (formatted or
unformatted .fvgrid_fmt/.fvgrid_unf/.mapbc files). Version 11.2 and higher can also read NSU3D
grids (.mcell.unf and VGRID-style .mapbc files) by setting grid_format to “nsu3d”.

 &raw_grid
 grid_format = "vgrid"
 data_format = "none" ! must be specified
 patch_lumping = "none"
 swap_yz_axes = .false.
 twod_mode = .false.
 fieldview_coordinate_precision = "dummy" ! must be specified for FV grids
 /

http://fun3d.larc.nasa.gov/training-2.html#overview
http://fun3d.larc.nasa.gov/training-2.html#agenda_and_training_materials
http://fun3d.larc.nasa.gov/training-2.html#images
http://fun3d.larc.nasa.gov/training-3.html
http://fun3d.larc.nasa.gov/training-3.html#overview
http://fun3d.larc.nasa.gov/training-3.html#agenda_and_training_materials
http://fun3d.larc.nasa.gov/training-4.html
http://fun3d.larc.nasa.gov/training-4.html#overview
http://fun3d.larc.nasa.gov/training-4.html#agenda_and_training_materials
http://fun3d.larc.nasa.gov/training-5.html
http://fun3d.larc.nasa.gov/training-5.html#overview
http://fun3d.larc.nasa.gov/tutorial-1.html
http://fun3d.larc.nasa.gov/tutorial-1.html#see_also
http://fun3d.larc.nasa.gov/tutorial-2.html
http://fun3d.larc.nasa.gov/tutorial-2.html#inviscid_flow_solve
http://fun3d.larc.nasa.gov/tutorial-2.html#turbulent_flow_solve
http://fun3d.larc.nasa.gov/tutorial-2.html#merge_vgrid_mesh_into_mixed_elements_and_run_solution
http://fun3d.larc.nasa.gov/tutorial-3.html
http://fun3d.larc.nasa.gov/tutorial-3.html#overset_moving_grids
http://fun3d.larc.nasa.gov/tutorial-4.html
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_for_steady_flow
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_for_steady_flow_at_two_different_mach_numbers
http://fun3d.larc.nasa.gov/tutorial-4.html#lift-constrained_drag_minimization_for_dpw_wing
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_over_a_pitching_cycle_for_a_wing
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_for_steady_flow_over_a_wing-body-tail_using_sculptor
http://fun3d.larc.nasa.gov/tutorial-5.html
http://fun3d.larc.nasa.gov/tutorial-5.html#massoud
http://fun3d.larc.nasa.gov/tutorial-5.html#bandaids
http://fun3d.larc.nasa.gov/example-1.html
http://fun3d.larc.nasa.gov/example-2.html
http://fun3d.larc.nasa.gov/example-3.html
http://fun3d.larc.nasa.gov/example-4.html
http://fun3d.larc.nasa.gov/example-5.html
http://fun3d.larc.nasa.gov/example-6.html
http://fun3d.larc.nasa.gov/example-7.html
http://fun3d.larc.nasa.gov/example-8.html
http://fun3d.larc.nasa.gov/example-9.html
http://fun3d.larc.nasa.gov/example-10.html
http://fun3d.larc.nasa.gov/example-11.html
http://fun3d.larc.nasa.gov/example-12.html
http://fun3d.larc.nasa.gov/example-13.html
http://fun3d.larc.nasa.gov/example-14.html
http://fun3d.larc.nasa.gov/example-15.html
http://fun3d.larc.nasa.gov/example-16.html
http://fun3d.larc.nasa.gov/example-17.html
http://fun3d.larc.nasa.gov/example-18.html
http://fun3d.larc.nasa.gov/example-19.html
http://fun3d.larc.nasa.gov/example-20.html
http://fun3d.larc.nasa.gov/example-21.html
http://fun3d.larc.nasa.gov/example-22.html
http://fun3d.larc.nasa.gov/example-23.html
http://fun3d.larc.nasa.gov/example-24.html
http://fun3d.larc.nasa.gov/example-25.html
http://fun3d.larc.nasa.gov/example-26.html
http://fun3d.larc.nasa.gov/example-27.html
http://fun3d.larc.nasa.gov/example-28.html
http://fun3d.larc.nasa.gov/example-29.html
http://fun3d.larc.nasa.gov/example-30.html
http://fun3d.larc.nasa.gov/example-31.html
http://fun3d.larc.nasa.gov/example-32.html

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 3/14

33. Recent Applications at BMI
Corporation

34. Applications Posters
35. Mars Phoenix Lander
36. CLV Analysis
37. Robin Helicopter
38. Dynamic Overset Grid Demonstration

Using A Simple Rotor/Fuselage Model
39. Hypersonic Tethered Ballute

Simulation
40. Time-Dependent Oscillating Flap

Demonstration
41. Adjoint-Based Adaptation Applied to

AIAA DPW II Wing-Body
42. Adjoint-Based Adaptation Applied to

High-Lift Airfoil
43. Trapezoidal High-Lift Wing
44. Adjoint-Based Adaptation Applied to

Supersonic Double-Airfoil
45. Partial-Span Flap
46. Mach 24 Temperature-Based

Adaptation of Space Shuttle
Configuration in Chemical
Nonequilibrium

47. Line Construction for Line-Implicit
Relaxation

48. Biologically-Inspired Morphing Aircraft
49. Mars Flyer
50. Support for QFF Tunnel Experiment
51. Combined FUN3D/CFL3D F-18
52. Adjoint-Based Adaptation for 3D Sonic

Boom
53. Unsteady Space Shuttle Cable Tray

Analysis
54. Adjoint-Based Design of Indy Car Wing
55. 3D Domain Decomposition
56. Mesh Movement Strategies
57. High-Lift Computations vs Experiment
58. Various 2D Adjoint-Based Airfoil

Designs

SOURCE CODE ACTIVITY

Subversion Commits

Other formats traditionally supported by party, such as Plot3D and CGNS have not been
implemented yet. Users must use the old party paradigm for such grids, or translate them to a
supported format. These other formats will be supported in this namelist in future releases of FUN3D.

(Note: The FUN3D team has found that the use of stream IO formats is considerably more efficient in
terms of time and memory, particularly for larger grids. AFLR3 is the only tool we are aware of that
can provide grids in this format (AFLR3’s C-binary .b8.ugrid files). We have internal options to
convert other grids to such formats; however, we do not discuss these options in detail here. If you
are having trouble loading large grids using the standard file formats listed above, contact us for
recommendations on converting them to a more amenable format for FUN3D.)

The currently supported values of data_format are “ascii”, “unformatted”, or “stream” and
correspond to formatted, Fortran unformatted, and C-binary/Fortran-stream, respectively. FUN3D
will stop with an error message if this value is inconsistent with the value of grid_format. For
example, if VGRID files are specified, data_format must be “unformatted”.

The currently supported values of patch_lumping are as follows: “none”, “BC”, and “family”. This
will group the patches in your raw surface grid in the specified manner (no lumping, lump by
physical boundary condition, or lump by family name). Note that as of v11.1, .mapbc files for any of
the supported grid formats may contain an optional third column of data, which specifies a family
name. (The exception is the VGRID .mapbc file, where the family name is mandatory and appears in
the 6th column.) If family names are not present in the .mapbc file, patch_lumping must either be
“none” or “BC”.

The swap_yz_axes allows the user to swap the y- and z-axes if desired.

The twod_mode input tells FUN3D to process and solve on the input grid in 2D mode. This option is
really only relevant for AFLR input grids, since this is the only currently-supported mixed-element
format (grids must be a single layer of prisms or hexes in the spanwise direction in order to run them
as 2D cases). If grid_format is “fun2d”, twod_mode need not be set; the solver will automatically
switch to 2D mode.

The fieldview_coordinate_precision input is required for Fieldview meshes and is used to
specify the precision of floating-point variables in the grid file. The available values are “single” or
“double”.

UNSUPPORTED OPTIONS

In addition to file formats such as NSU3D, Plot3D, and CGNS, there are several options that party
must continue to be used for at this time. For example, merging tetrahedral VGRID meshes into
prismatic meshes must still be performed using party. The resulting prismatic AFLR3 files can be
processed with the new paradigm, but the actual merging must still be performed using party.
Mirroring of an input grid is available directly in the solver as of v11.1, but must be performed with
party for earlier releases. Please contact the support team with questions about unsupported options.

RESTART INFORMATION AND PARALLEL IO

The restart information generated at the end of a solution process is now stored in a single file,
[project].flow. The default is to read and write this data in a stream format. However, if the user is
running on hardware with a parallel file system (e.g., a Lustre file system), more efficient IO may be
achieved for large-scale cases (thousands of cores) by taking advantage of new parallel IO options in
FUN3D. These rely on the MPI-IO layer included in the MPI-2 standard. Users may engage this IO
mode in FUN3D by running the solver with the command line option --lmpi_io 1. Restart files
generated using FUN3D v10.8 may still be used with the command line option --lmpi_io 0, but
again, the user is encouraged to move to the new paradigm.

5.2. SEQUENTIAL GRID PROCESSING

Prior to running the FUN3D solver, you will need to process your grid to get it in the FUN3D native
format. This also includes domain decomposition for parallel processing if you have a multiprocessor
system available. If you will not be running on more than one processor, you will (must) simply
partition your grid into a single partition. A wide range of input grid formats are currently available—

http://fun3d.larc.nasa.gov/example-33.html
http://fun3d.larc.nasa.gov/example-34.html
http://fun3d.larc.nasa.gov/example-35.html
http://fun3d.larc.nasa.gov/example-36.html
http://fun3d.larc.nasa.gov/example-37.html
http://fun3d.larc.nasa.gov/example-38.html
http://fun3d.larc.nasa.gov/example-39.html
http://fun3d.larc.nasa.gov/example-40.html
http://fun3d.larc.nasa.gov/example-41.html
http://fun3d.larc.nasa.gov/example-42.html
http://fun3d.larc.nasa.gov/example-43.html
http://fun3d.larc.nasa.gov/example-44.html
http://fun3d.larc.nasa.gov/example-45.html
http://fun3d.larc.nasa.gov/example-46.html
http://fun3d.larc.nasa.gov/example-47.html
http://fun3d.larc.nasa.gov/example-48.html
http://fun3d.larc.nasa.gov/example-49.html
http://fun3d.larc.nasa.gov/example-50.html
http://fun3d.larc.nasa.gov/example-51.html
http://fun3d.larc.nasa.gov/example-52.html
http://fun3d.larc.nasa.gov/example-53.html
http://fun3d.larc.nasa.gov/example-54.html
http://fun3d.larc.nasa.gov/example-55.html
http://fun3d.larc.nasa.gov/example-56.html
http://fun3d.larc.nasa.gov/example-57.html
http://fun3d.larc.nasa.gov/example-58.html
http://fun3d.larc.nasa.gov/commits.html

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 4/14

see the party main menu for guidance. Contact FUN3D Support for assistance in converting other
formats.

The tool that handles this grid conversion process is called Party. This utility also allows the user to
reconstruct global solution files from a partitioned domain. A rule-of-thumb for party is 1M nodes
take about 1.5GB memory. If you have that much memory on your machine and encounter a
problem, then check the limit command for Csh (or ulimit for Bourne shell) and ensure that
datasize, stacksize, and memoryuse are unlimited (or the largest your system will permit).

csh: limit stacksize unlimited
bsh: ulimit -s unlimited -d unlimited -m unlimited

PROCESSING A GRID

To process your grid, simply run party and follow the menu prompts. You will need to have your
grid in one of the supported grid formats indicated in the first block of the party main menu. (The grid
formats are described in the Input Files section below.) The first set of options on the main menu is
geared towards preprocessing a grid. The second set is for repartitioning an existing solution/grid.
The final set is for postprocessing a solution generated by FUN3D.

FUN3D now supports 2D computations. If the grid is a FUN2D grid (see Input Files below), 2D is
automatically enabled, without any additional user input. Depending on cell type (e.g. tetrahedra
cannot be run as 2D), other grid formats must be forced into 2D mode by running Party with the --
twod command line option. Note that except for FUN2D grids, the input grid must be a 3D grid, one
cell wide. FUN2D grids are true 2D grids. When party processes a grid as 2D (either automatically
for FUN2D meshes or with the --twod option for other grid types), it creates additional data in the
part files that will cause the flow solver, when run, to automatically go into “2D mode”, resulting in
considerably faster execution than the standard 3D mode. FUN3D operating in 2D mode is roughly
1.5 to 2 times slower than FUN2D (which is no longer supported). Flow solver output for FUN2D
meshes, when post-processed with the Party utility, will reside on the extruded prismatic grid, rather
than the 2D triangular grid in the [project].faces file.

You will probably want the table of boundary conditions below available. When processing your
grid, use either the indices in the first column or the second column. When you get your results back,
the forces that are summarized in the [project].forces file will be labeled using the notation in the
second column. This is done so that existing boundary condition flags may be used, while still
allowing for 4-digit boundary conditions in the solver, which enable room for future growth. Note
that if you want to change a boundary condition, you must pre-process the grid over again. The BC
indices are hardwired into the partition files. This is on our to-do list to change.

IMPLICIT LINES

The implicit lines are processed in Party with the command line —partition_lines. A formatted file
with the name [project].lines_fmt is read; this file contains the definitions of lines emanating
from viscous boundary nodes as a list of node numbers. Currently, every viscous boundary node
must have an associated implicit line. A typical file, from
GnuTestCase/Grids/cylinder.lines_fmt, is shown below. Anything beyond column 24 is
strictly for information only.

 289 4913 Total lines and points
 17 17 Min and max points in line
 17 Points in line for line= 1
 1 Node of 1st pt in 1st line x/y/z= 0.0 0.0 -0.5
 18
 35
 52
 69
 86
 103
 120
 137
 154
 171
 188
 205

mailto:FUN3D-support@lists.nasa.gov

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 5/14

 222
 239
 256
 273 Node of last pt in 1st line x/y/z= 0.0 0.0 0.5
...
...(remaining 288 sets of node numbers defining each line)
...

Three files are generated by Party:

1. [project]_line_surface_tec.dat
2. [project]_lines_tecplotlines.dat
3. [project].lines_fmt

The first two are Tecplot visualization files. The first file is the surface formed by the top of the
implicit lines, with zones corresponding to the viscous boundary subset of the file
[project]_geom.tec. The second file is a Tecplot line file containing the individual lines (not
organized by boundaries). The third file is an unformatted file used by the flow solver.

BOUNDARY CONDITIONS

Boundary condition listing and input formatting is described in the previous section.

INPUT FILES

FAST FORMATTED GRIDS

[project].fgrid

This file contains the complete grid stored in ASCII FAST format.

[project].mapbc

The first line in this file is the number of boundary groups contained in your [project].fgrid file.
Each subsequent line in this file contains the boundary number and the type for each.

VGRID FORMATTED GRIDS

[project].cogsg

This file contains the complete grid stored in unformatted VGRID format. Please note that VGRID
cogsg files are always big endian no matter what type of machine is used in grid generation. If you
are running FUN3D on a native little endian machine you will have to use a compiler option or a
runtime environment flag to set the default file type to big endian.

[project].bc

This file contains the boundary information for the grid, as well as a flag for each boundary face.

[project].mapbc

For each boundary flag used in [project].bc, this file contains the boundary type information. The
boundary types are as shown in the preceding table.

FELISA FORMATTED GRIDS

[project].gri

This file contains the complete grid stored in formatted FELISA format.

http://fun3d.larc.nasa.gov/chapter-4.html

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 6/14

[project].bco

This file contains a flag for each boundary face. If original FELISA bc flags (1, 2, or 3) are used, they
are translated to the corresponding FUN3D 4-digit bc flag. Alternatively, FUN3D 4-digit bcs can be
assigned directly in this file.

[project].fro

This file contains the surface mesh nodes and connectivities and associated boundary face tags for
each surface triangle. This file can contain additional surface normal or tangent information (as output
from GridEx or SURFACE mesh generation tools), but the additional data is not read or utilized by
FUN3D.

FUN2D FORMATTED GRIDS

[project].faces

This file contains the complete grid stored in formatted FUN2D format (triangles). These meshes
automatically direct FUN3D to operate in 2D mode, with no other user flags. Party will extrude the
triangles into prisms in the y-direction. Output from the flow solver will be on a one-cell wide
prismatic mesh. Boundary conditions are contained in the FUN2D grid file. The first time party is
run, it will output a [project].mapbc file that contains these original boundary conditions. If you
wish to change the boundary conditions from those in the [project].faces file, simply change
them in [project].mapbc and rerun Party. Party will use the boundary conditions in the
[project].mapbc file rather than the [project].faces file. If you wish to revert to the boundary
conditions in the [project].faces file, you can remove the [project].mapbc and rerun Party.

FIELDVIEW FORMATTED (ASCII) GRIDS

[project].fvgrid_fmt

This file contains the complete grid stored in ASCII FieldView FV-UNS format.

Supported FV-UNS file versions: 2.4, 2.5 and 3.0 (3.0 only in FUN3D v10.7 and higher). With FV-
UNS 3.0, the support is for the grid file in split format; the combined grid/results format is not
supported. FUN3D does not support the Arbitrary Polyhedron elements of the FV-UNS 3.0 standard.
For ASCII FV-UNS 3.0, the standard allows comment lines (line starting with !) anywhere in the file.
FUN3D only allows comments immediately after line 1. Only one Grids section is allowed.

[project].mapbc

This file contains the boundary information for the grid. The first line is an integer corresponding to
the number of boundaries. Subsequent lines, one for each boundary, contain two integers. The first is
the boundary number and the second if the boundary type. The boundary types are as shown in the
preceding table. If the [project].mapbc does not exist the first time party is run, it will create one
with some dummy data based on the boundary data in the grid file. This template file can be edited to
set the desired boundary conditions, and Party must be rerun to set these boundary conditions in the
part files.

FIELDVIEW UNFORMATTED GRIDS

[project].fvgrid_unf

This file contains the complete grid stored in unformatted FieldView FV-UNS format.

Supported FV-UNS file versions: 2.4, 2.5 and 3.0 (3.0 only in FUN3D v10.7 and higher). With FV-
UNS 3.0, the support is for the grid file in split format; the combined grid/results format is not
supported. FUN3D does not support the Arbitrary Polyhedron elements of the FV-UNS 3.0 standard.
Only one Grids section is allowed.

Versions of FUN3D prior to v10.7 allowed only double-precision unformatted files; v10.7 and higher

http://geolab.larc.nasa.gov/GridEx/

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 7/14

queries the user as to whether the file is single or double precision.

[project].mapbc

Same as above for FieldView formatted grids.

AFLR3 FORMATTED GRIDS

[project].ugrid

This file contains the complete grid stored in formatted AFLR3 ugrid format.

[project].mapbc

Same as above for FieldView formatted grids.

NSU3D UNFORMATTED GRIDS

[project].mcell.unf

This file contains the complete grid stored in unformatted NSU3D mcell format.

[project].mapbc

Same as above for FieldView formatted grids.

PRE-EXISTING GRIDS/SOLUTIONS

[project].msh

This file contains the entire grid.

[project]_part.n (Optional)

These files (n=1, # of partitions) contain the grid information for each of the partitions in the domain.
Sequential flow solves require one part file.

[project]_flow.n (Optional)

These files (n=1, # of partitions) contain the binary restart information for each grid partition. They
are read by the solver for restart computations, as well as by party for solution reconstruction and
plotting purposes. If you are going to read these in, the [project]_part.n files are required.

PLOT3D GRIDS

Party can read PLOT3D structured grids, and use (as hexahedral unstructured grids). The grid must
be multiblock and 3-D (no iblanking) in the form:

[project].p3d

This file can be either formatted or unformatted. Only one-to-one connectivity is allowed with this
option (no patching or overset). The grid should contain no singular (degenerate) lines or points. An
additional “neutral map file” is also required:

[project].nmf

This file gives boundary conditions and connectivity information. The make-up of the .nmf file is
described at geolab.larc.nasa.gov/Volume/Doc/nmf.htm

http://geolab.larc.nasa.gov/Volume/Doc/nmf.htm

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 8/14

Note that for usage with FUN3D’s Party software, the “Type” name in the .nmf file must correspond
with one of FUN3D’s BC types, plus it allows the Type one-to-one. If party does not recognize the
Type, you will get errors like:

This may be an invalid BC index.
At a minimum, it is unknown within the module bcs_deprc.
Your data has a BC index unknown to function bc_name.

An example .nmf file is shown here for a simple 1-zone airfoil C-grid (5×257x129), with 6 exterior
boundary conditions and 1 one-to-one patch (in the wake where the C-grid attaches to itself):

CGNS GRIDS

Party has the capability to read CGNS grid files as well as write CGNS grid/solution files. The user
must download the CGNS library from www.cgns.org , install it, and compile the code linked
appropriately to it (i.e., --with-CGNS=location-of-cgnslib). You must link to CGNS Version
2.5.3 or later. If the code is not linked to the CGNS library, then Party will not allow the option of
reading/writing a CGNS file. For grid input, any CGNS file to be read must be Unstructured type.
The CGNS file should be named:

[project].cgns

The following CGNS mixed element types are supported: PENTA_6 (prisms), HEX_8 (hexes),
TETRA_4 (tets), and PYRA_5 (pyramids). The CGNS BCs currently allowable are:

‘BCWall’, ‘BCWallViscousHeatFlux’, ‘BCWallViscous’, ‘BCWallViscousIsothermal’—
currently mapped to viscous_solid

‘BCOutflow’, ‘BCOutflowSupersonic’, ‘BCExtrapolate’—currently mapped to
farfield_extr

‘BCOutflowSubsonic’, ‘BCTunnelOutflow’0—currently mapped to farfield_pbck

‘BCInflow’, ‘BCInflowSubsonic’, ‘BCInflowSupersonic’, ‘BCFarfield’—currently mapped to
farfield_riem

‘BCTunnelInflow’—currently mapped to subsonic_inflow_pt

‘BCSymmetryPlane’—currently mapped to symmetry_x, symmetry_y, or symmetry_z

‘BCWallInviscid’—currently mapped to tangency

There are some additional limitations currently:

Under BC_t, Party reads the BC names, but nothing else that might be stored in the CGNS file like
BCDataSet or BCData. I.e., we are only using the top-level CGNS naming convention as a “guide”

===== Neutral Map File generated by the V2k software of NASA Langley's GEOLAB =====
===
Block# IDIM JDIM KDIM

 1

 1 5 257 129

===
Type B1 F1 S1 E1 S2 E2 B2 F2 S1 E1 S2 E2 Swap

'tangency' 1 3 1 257 1 129
'tangency' 1 4 1 257 1 129
'farfield_extr' 1 5 1 129 1 5
'farfield_extr' 1 6 1 129 1 5
'one-to-one' 1 1 1 5 1 41 1 1 1 5 257 217 false
'viscous_solid' 1 1 1 5 41 217
'farfield_riem' 1 2 1 5 1 257

http://www.cgns.org/

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 9/14

to establishing the appropriate corresponding BCs in FUN3D. For the most part, this should be OK.

Currently it is required that the CGNS file include Elements_t nodes for all boundary faces (using
type QUAD_4 or TRI_3), otherwise the code cannot recognize where boundaries are present
(because it currently identifies boundaries via 2-D element types).

The best approach for the CGNS file (which is also common practice among most unstructured-type
CGNS users) is not only to include all volume elements, but also to include all surface elements under
separate nodes (of type TRI_3 or QUAD_4). It is also helpful to have SEPARATE ELEMENT
NODES for each boundary element of a given BC type. This way, it is very easy to read and use the
file. For example, using Tecplot, which can read CGNS files, one can easily distinguish the various
parts (body vs. symmetry vs. farfield, if they all happen to be TRI_3’s for example, as long as each
part has its own node).

Under BC_t, Party requires that either ElementList / ElementRange be used, or else PointList /
PointRange with GridLocation=CellCenter, to refer to the appropriate corresponding boundary
elements.

Note that if the CGNS file is missing BCs (no BC_t node), Party still tries to construct the BCs based
on the boundary face Elements_t information. If these boundary element nodes have been named
using a recognizable BC name, then Party will try to set each BC accordingly. If the name is not
recognized, you will see messages like “This may be an invalid BC index”. Always check the
.mapbc file after Party has run, to make sure that the BCs have all been interpreted and set correctly.
(If not, you should edit the .mapbc file then re-run Party, and it will use the new corrected values in
the .mapbc file. Party always overrides the BC info with whatever is in the .mapbc file when it is
present!)

OUTPUT FILES

PREPROCESSING MODE

[project]_part.[n]

These files (where n goes from 1 to the number of partitions) contain the partitioned grid in FUN3D
v3 format. They also include the boundary condition information, used by the flow solver by default.
If you want to override these BCs, however, it can be done through the use of a
[project].mapbc.override file. The format of this file is the same as the [project].mapbc file.

[project].msh

This file contains the entire grid.

[project].pr

This file is generated when processing a FAST- or VGRID-formatted grid file. It contains some basic
geometric statistics on the mesh.

[project]_geom.tec

This file contains the surface grid information as processed from a FAST- or VGRID-formatted input
grid. This file is in ASCII Tecplot format.

[project]_angles.dat

This file contains some checks for big angles in the grid.

[project]_mesh_info

This file contains most of the grid-related screen output generated during the party run, e.g., number
of cells, nodes, element types, cell volumes, and so forth.

[project]_part_info

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 10/14

This file contains detailed information about the mesh partitions, e.g., number of cells, nodes,
boundary faces, boundary conditions, and so on.

POSTPROCESSING MODE

For FUN3D Version 10.7 and higher, see Flow Visualization Output Directly From Flow Solver for
an alternate to the postprocessing mode of Party for generating solution data for visualization.

When postprocessing using Party, the user has many choices for output, some of which are listed
here.

[project]_soln.tec

This file contains the reconstructed surface mesh, along with flow variable information for plotting.
This file is in ASCII Tecplot format.

[project].fvuns

This file contains the entire reconstructed mesh, along with flow variable information for plotting.
This file is in ASCII FieldView format.

[project]_grid.fgrid

This file contains the entire reconstructed mesh for plotting. This file is in ASCII FAST format. (Note
that the node ordering in this file will be different from the original FAST file you may have
provided, since the grid is renumbered for bandwidth minimization.)

[project]_soln.fgrid

This file contains flow variable information for the entire reconstructed mesh for plotting. This file is
in ASCII FAST format.

[project]_vol.cgns

This file contains the entire reconstructed mesh, including boundary elements and most typical
boundary conditions (It uses UserDefined if the BC cannot be figured out.), along with flow variable
information for plotting. This file is CGNS format and must be read with CGNS-compatible
software. Note that if the code is not linked to the CGNS software library during compilation, then
Party will not give the option to output a CGNS file.

Post-Processing/Repartitioning Moving Grid Cases

To post-process (or repartition) moving grid cases using party, you must use the command line option
--moving_grid.

5.3. PARALLEL GRID PROCESSING

Note: The traditional pParty preprocessor is obsolete as of FUN3D v11.0, as all of its functionality is
now contained in the front end of the solvers. The instructions that follow are only relevant to earlier
versions of FUN3D.

Note: The standard sequential implementation of party is generally sufficient for most users.
However, for extremely large grids and/or hardware with very limited memory, a distributed version
of party is now available. Not all of the features of party are available yet, but the basic capabilities
are all there.

The processing of parallel party (pParty), from a user’s perspective, works essentially the same as
Party. The following section describes the high-level differences between using Party and pParty.
Please read the section on Party before reading this section. Note, the use of pParty assumes the user
knows how to execute an MPI application in the user’s environment.

http://fun3d.larc.nasa.gov/chapter-6.html#flow_visualization_output_directly_from_flow_solver

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 11/14

The parallel version of Party (pParty) initially reads and distributes the grid in parallel, thereby
reducing the initial and overall memory and computational requirements. Then pParty internally calls
a parallel partitioning tool (ParMETIS) to compute an efficient partition vector used to distribute the
memory and computational requirements over a set of processors for the remaining steps (and bulk)
of the preprocessing.

pParty can be executed using interactive prompts, input either interactively or redirected from an input
file. Additionally, a series of command line options are available, type pparty --help for a list.

For pParty, all the inputs can be provided by command line options and is often the recommended
approach for pParty as various MPI environments often handle standard input differently. For
example, to pre-process a FAST mesh with a project name of om6viscous and not group common
boundary condition types:

 mpirun -np 4 -machinefile machines pparty \
 --pparty_iwhere 1 \
 --pparty_project om6viscous \
 --pparty_ilump 0 \
 --partition_lines \
 --no_renum

where -np 4 informs MPI of the number of processors while -machinefile specifies that the file
machines should be used to determine on which machines the job is run. Information required by
pParty consists of --pparty_iwhere, which is the grid partitioning option, --pparty_project,
which is the project name, and --pparty_ilump, which is the boundary grouping option. Optional
information passed to pParty in this case consists of --partition_lines, which keeps implicit lines
intact during partitioning, and --no_renum, which turns off Cuthill-Mckee renumbering.

PREPROCESSING

For parallel party, the number of partitions created is the same as the number of processors that
the user specified in the parallel job. Thus, pParty does not prompt the user, nor accepts input for the
number of partitions through standard input. See the Concluding Remarks section below on how to
create more partitions than actual (underlying) processors.

Currently, the following are the major preprocessing constructs not supported by pParty:

2D computations
mixed elements
multigrid
Cuthill-Mckee renumbering (currently, an identity vector)
FIELDVIEW, AFLR3, NSU3D meshes
Boundary grouping is not supported with partition_lines
does not create (nor subsequently need) a mesh file

REPARTITIONING

Preprocessing in Party typically creates a mesh file, which can be used in repartitioning. The mesh
file is typically large and has been eliminated in pParty. The pParty preprocessor does not write mesh
files.

To repartition in pParty, the user starts with an existing set of partition files (either created by Party or
pParty) and a set of solution files ([project].flow). The user renames the original partition files to
[project]_orig_part.n. Then reruns the preprocessor using the desired number of partitions on
which to map the solution. The new files will be [project]_part.n.

Finally, pParty is called for repartitioning. pParty reads the original partition files and solution files,
extracts the grid information, reads the new partition files, and creates the repartitioned solution files.
As a result, the new solution files ([project]_flow.n) and new partition files ([project]_part.n)
will be available.

Example: Repartitioning from 2 to 4 processors

Input:

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 12/14

[project]_orig_part.(1,2) (renamed by user with old partition files)
[project]_flow.(1,2)
[project]_part.(1-4) (created by second call to preprocessor)
../Adjoint/[project]_adj.(1,2) (if adjoint is to be repartitioned)

Output:

[project]_flow.(1-4) (overwrites old solution files)
../Adjoint/[project]_adj.(1-4) (overwrites old adjoint files in ../Adjoint if adjoint is
requested to be partitioned)

 mpirun -np 4 -machinefile machines pparty < inp_init_24

where inp_init_24 is

 11
 om6viscous
 1
 2
 4

Note: a user can repartition the solution from a larger number of partitions to a smaller number; or
from a smaller number to a larger number. But, the number of processors specified to MPI for
repartitioning must be the larger of the two numbers (i.e., the larger of the original partitions or
number of new partitions). Both restart and adjoint files can be repartitioned. A command line option,
--pparty_repart_adjoint, is used to turn on repartitioning of adjoint files. The command line
option, --pparty_repart_restart, is used to turn on repartitioning of restart files.

An example session of repartitioning.

Repartitioning assumes that the user has existing partition and solution files; additionally, restart
and/or adjoint files may also be available.

Create the original (2) partition file

 mpirun -np 2 ./pparty
 1
 om6viscous
 0

 ==> creates om6viscous_part.1 and om6viscous_part.2

Create the flow files

Step 1. Rename the original partitions files

 mv om6viscous_part.1 om6viscous_orig_part.1
 mv om6viscous_part.2 om6viscous_orig_part.2

Step 2. Create the new partition files

 mpirun -np 4 ./pparty
 1
 om6viscous
 0

 mpirun -np 2 ./nodet_mpi

 <== uses @fun3d.nml@ (or @ginput.faces@ prior to release 10.5.0), om6viscous_part.(1,2)
 ==> creates om6viscous_flow.1 and om6viscous_flow.2

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 13/14

 ==> creates om6viscous_part.(1-4)

Step 3. Create the new flow files from the previous flow files.

Based on the previous steps, the following files should be available in the current directory. (If adjoint
is to be repartitioned, then the om6viscous_adj.(1-2) should already exist in the ../Adjoint directory.)

 om6viscous_part.(1-4), om6viscous_orig_part.(1-2), and
 om6viscous_flow.(1-2)

 mpirun -np 4 ./pparty

 Enter your selection:
 11

 Enter project name for input file
 om6viscous

 Do you have restart files that you would like to repartition? (yes=1 no=0)
 1

 Do you also have some adjoint files that you want converted? (yes=1 no=0)
 0

 How many partitions does your mesh have?
 (For mesh movement cases only: use a negative number
 to read new x, y, z coordinates from partition files.)
 2

 --- user input requested ---
 How many partitions do you want?
 4

 Reading om6viscous_flow.* (version 3)
 Writing om6viscous_flow.* (version 3)

 ==> om6viscous_flow.(1-4)

Repartitioning Adjoint files

The partitioning of adjoint works in the same manner. Starting from step 3 in the previous example,
enter a “1” (yes) to have some adjoint files to be converted. The input for the Adjoint will be read
from ../Adjoint and overwritten in the same directory (../Adjoint).

Note, if the user enters a “0” (no) for restart files to not be repartitioned, the question for the adjoint
files will not be presented. If one wishes to repartition adjoint files only, then use the “—
pparty_repart_adjoint 1” command line option, which will force the adjoint to be repartitioned even if
the restart files are not.

POSTPROCESSING

All of the non-experimental options (except global residual files) are available and work identically to
Party.

For FUN3D Version 10.7 and higher, see Flow Visualization Output Directly From Flow Solver for
an alternate to the postprocessing mode of pParty for generating solution data for visualization.

SUMMARY OF PPARTY COMMAND LINE OPTIONS

Option Description Argument Party pParty
--party_nomsh Turn off writing .msh; use partition files

instead – Yes Yes

--party_partonly Stop after writing the partition file – Yes Yes
--pparty_iwhere Grid Partitioning integer No Yes

http://fun3d.larc.nasa.gov/chapter-6.html#flow_visualization_output_directly_from_flow_solver

6/5/2014 FUN3D Manual :: Chapter 5: Pre/Post Processing

http://fun3d.larc.nasa.gov/chapter-5.html 14/14

--pparty_project Project Name string No Yes
--pparty_ilump Boundary Grouping integer No Yes
--pparty_outformat Turn on ASCII output of partition files – No Yes
--pparty_metisin Turn on the reading of metis partition file – No Yes
--pparty_metisout Turn on the writing of metis partition file – No Yes
--
pparty_repart_resize_from

Number of partitions to repartition from integer No Yes

--pparty_repart_resize_toNumber of partitions to repartition to integer No Yes
--interleaf Write parallel partitioned file in groups of

interleaf factor integer No Yes

CONCLUDING REMARKS

Currently, the preprocessing of pParty creates the same number of partitions as the user specified
processors. If a user wants to create more partitions than processors, then the user should run multiple
instances of pParty on the same processor. Thus, the number passed to -np will be the same as the
number of partitions, but the actual number of underlying processors will be smaller. For more details,
please refer to the MPI documentation for the target machine.

The --interleaf command line option controls the number of files being written out at once. The
default is to write all files out at once. This may swamp a file system, thus a user can control the
number of files written out concurrently. For instance, --interleaf 2 will write only 2 files at the
same time.

Previous (C4: Boundary Conditions) | Up | Next (C6: Analysis)

Today's NASA Official: Jan-Renee Carlson, a member of The FUN3D Development Team
Contact: FUN3D-support@lists.nasa.gov
NASA Privacy Statement

This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.

http://fun3d.larc.nasa.gov/chapter-4.html
http://fun3d.larc.nasa.gov/index.html
http://fun3d.larc.nasa.gov/chapter-6.html
http://fun3d.larc.nasa.gov/chapter-9.html#team_members
mailto:FUN3D-support@lists.nasa.gov
http://www.nasa.gov/about/highlights/HP_Privacy.html

