6/5/2014 FUN3D Manual :: Chapter 6: Analysis

N3D

Fully Unstructured Navier-Stokes

Current Release: 12.4-70371
Site Last Updated: Wed Jun 04 16:41:01 -0400 2014

Questions about any of the following can be emailed to FUN3D Support.

To run the FUN3D solver, you will need to pre-process your grid using the included Party utility.
Once you have successfully run your grid through Party, running the flow solver is simply a matter of
setting up the input namelist file, fun3d.nm1, which is described in detail below.

Note that as of release 10.5.0, this namelist file replaces the old input deck, ginput.faces. If you
have an old ginput. faces file, there is a translator called ginput_translator in the
utils/Namelist_new directory that reads ginput.faces and writes out a corresponding file
fun3d.nml (as well as a more descriptive file fun3d.long.nml if preferred, which must be renamed
to be fun3d.nml before using). If a ginput. faces file does not exist, then ginput_translator will
create a fun3d.nml file with default values in it. IMPORTANT NOTE: as new namelists and
parameters are added to the fun3d.nml file, these will generally not be output by the translator
program. In other words, ginput_translator gives only all defaults for namelist parameters
associated with the original ginput. faces deck, but it will not keep up with subsequently-added
parameters. As users get used to the new namelist method and ginput.faces fades into history, the
need for the translator program will go away.

In the new namelist input, the perfect gas and generic gas input parameters have been combined to a
greater degree than was done in the old ginput. faces input deck. However, it should be noted that
the earliest versions of this new namelist mostly do no more than mimic the ginput. faces file
capabilities. Thus, in many instances certain parameters work only for generic cases or only for ideal-
gas cases. As time passes, it is hoped to merge the capabilities better, and remove many of these
restrictions and special cases. Thus, it is likely that changes may occur in fun3d.nml as it is worked
and revised. The reason for having the input_version parameter in namelist sversion_number (in
the file) is to help keep track of any significant changes that take place. It is also possible that the
naming convention and/or usage of fun3d.nml may change at some point in the future. Any such
changes will be documented.

Please report any problems, inconsistencies, issues, etc. with the new fun3d.nml input to FUN3D
Support.

Documentation for the old ginput. faces can still be found in Ginput.faces Type Input Running
with the old ginput. faces can be recovered by hardwiring the parameter namelist ginput =
.false. in routine i0.f90. If you set this, then FUN3D will look for and read ginput. faces like it
used to, instead of using the new fun3d.nml file.

A typical namelist file (with lots of comments) is shown here:

This file contains namelists used for specifying inputs to
FUN3D. For this version, the following namelists apply (if a
namelist is not present, its variables take on their default
values):

version_number

project

governing equations

reference_physical_properties

force _moment integ properties

inviscid_flux_method

turbulent_diffusion_models

nonlinear_solver parameters

linear_solver_parameters

code_run_control

http://fun3d.larc .nasa.gov/chapter-6.html 1/77

http://fun3d.larc.nasa.gov/index.html
http://fun3d.larc.nasa.gov/chapter-1.html
http://fun3d.larc.nasa.gov/chapter-1.html#background
http://fun3d.larc.nasa.gov/chapter-1.html#capabilities
http://fun3d.larc.nasa.gov/chapter-1.html#requirements
http://fun3d.larc.nasa.gov/chapter-1.html#release_history
http://fun3d.larc.nasa.gov/chapter-1.html#request_fun3d
http://fun3d.larc.nasa.gov/chapter-2.html
http://fun3d.larc.nasa.gov/chapter-2.html#third-party_libraries
http://fun3d.larc.nasa.gov/chapter-2.html#compiling
http://fun3d.larc.nasa.gov/chapter-3.html
http://fun3d.larc.nasa.gov/chapter-3.html#2d_grid_generation
http://fun3d.larc.nasa.gov/chapter-3.html#3d_grid_generation
http://fun3d.larc.nasa.gov/chapter-4.html
http://fun3d.larc.nasa.gov/chapter-4.html#boundary_condition_list
http://fun3d.larc.nasa.gov/chapter-4.html#value_input_format_(version_11.0)
http://fun3d.larc.nasa.gov/chapter-5.html
http://fun3d.larc.nasa.gov/chapter-5.html#grid/solution_processing_with_v11.0_and_higher
http://fun3d.larc.nasa.gov/chapter-5.html#sequential_grid_processing
http://fun3d.larc.nasa.gov/chapter-5.html#parallel_grid_processing
http://fun3d.larc.nasa.gov/chapter-6.html
http://fun3d.larc.nasa.gov/chapter-7.html
http://fun3d.larc.nasa.gov/chapter-7.html#capabilities
http://fun3d.larc.nasa.gov/chapter-7.html#mesh_movement_via_spring_analogy
http://fun3d.larc.nasa.gov/chapter-7.html#requirements_and_configuring_to_use_refine
http://fun3d.larc.nasa.gov/chapter-7.html#adjoint-based_adaptation
http://fun3d.larc.nasa.gov/chapter-7.html#gradient/feature-based_adaptation
http://fun3d.larc.nasa.gov/chapter-7.html#error_estimation
http://fun3d.larc.nasa.gov/chapter-8.html
http://fun3d.larc.nasa.gov/chapter-8.html#getting_started
http://fun3d.larc.nasa.gov/chapter-8.html#setting_up_rubber.data
http://fun3d.larc.nasa.gov/chapter-8.html#geometry_parameterizations
http://fun3d.larc.nasa.gov/chapter-8.html#the_adjoint_solver
http://fun3d.larc.nasa.gov/chapter-8.html#running_the_optimization
http://fun3d.larc.nasa.gov/chapter-8.html#customization
http://fun3d.larc.nasa.gov/chapter-8.html#forward-mode_differentiation
http://fun3d.larc.nasa.gov/chapter-9.html
http://fun3d.larc.nasa.gov/chapter-9.html#publications
http://fun3d.larc.nasa.gov/chapter-9.html#presentations_and_other_materials
http://fun3d.larc.nasa.gov/chapter-9.html#development_team
http://fun3d.larc.nasa.gov/chapter-9.html#f95_coding_standard
http://fun3d.larc.nasa.gov/chapter-9.html#hypersonic_benchmarks
http://fun3d.larc.nasa.gov/training-1.html
http://fun3d.larc.nasa.gov/training-1.html#overview
http://fun3d.larc.nasa.gov/training-1.html#agenda
http://fun3d.larc.nasa.gov/training-1.html#images
http://fun3d.larc.nasa.gov/training-2.html
http://fun3d.larc.nasa.gov/training-2.html#overview
http://fun3d.larc.nasa.gov/training-2.html#agenda_and_training_materials
http://fun3d.larc.nasa.gov/training-2.html#images
http://fun3d.larc.nasa.gov/training-3.html
http://fun3d.larc.nasa.gov/training-3.html#overview
http://fun3d.larc.nasa.gov/training-3.html#agenda_and_training_materials
http://fun3d.larc.nasa.gov/training-4.html
http://fun3d.larc.nasa.gov/training-4.html#overview
http://fun3d.larc.nasa.gov/training-4.html#agenda_and_training_materials
http://fun3d.larc.nasa.gov/training-5.html
http://fun3d.larc.nasa.gov/chapter-5.html
http://fun3d.larc.nasa.gov/index.html
http://fun3d.larc.nasa.gov/chapter-7.html
mailto:FUN3D-support@lists.nasa.gov
mailto:FUN3D-support@lists.nasa.gov

6/5/2014

http://fun3d.larc .nasa.gov/chapter-6.html

FUN3D Manual :: Chapter 6: Analysis

special_parameters
component_parameters

&version_number

input_version = 2.2

! version number of namelist file

! (ginput.faces: N/A)

! DEFAULT varies

= "off"

! current options: on, off, suppress_all
! (ginput.faces: N/A)

! DEFAULT=off

namelist_verbosity

/
&project
project_rootname = "default project”
! DEFAULT=default project
! (ginput.faces: PROJECT_NAME)
case_title = "fun3d_case_name"
! DEFAULT=fun3d_case_name
! (ginput.faces: CASE TITLE)
part_pathname = " "
! (ginput.faces: N/A)
! DEFAULT=" " (blank)
/
&governing equations
eqn_type = "cal_perf compress"

! current options: cal perf compress,
! cal_perf incompress, generic
! (ginput.faces: INCOMP)
! DEFAULT=cal_perf compress
prandtlnumber_molecular = 0.72
! (ginput.faces: PRANDTL)
! currently does nothing for generic path
! DEFAULT=0.72
artificial compress = 15.0
! artificial compressibility factor, only
! used when solver = cal_perf incompress
! (ginput.faces: XMACH when INCOMP=1)
! DEFAULT=15.0
viscous_terms = "turbulent"
! current options: inviscid, laminar,
! turbulent (ginput.faces: IVISC)
! DEFAULT=turbulent
chemical_kinetics = "finite-rate"
! current options: frozen, finite-rate
! (ginput.faces: CHEM_FLAG)
! does nothing for cal perf paths
! DEFAULT=finite-rate
thermal energy _model = "non-equilib"
! current options: frozen, non-equilib
! (ginput.faces: THERM_FLAG)
! does nothing for cal_perf paths
! DEFAULT=non-equilib

&reference_physical properties

gridlength_conversion = 1.0
! sets L_REF for generic generic gas only
! DEFAULT=1.0

1
! User must choose either NONDIMENSIONAL or DIMENSIONAL input:
! (one set is read and one is ignored depending on
! dim_input_type), Note, however, that temperature is always
! input as a dimensional number
dim_input_type = "nondimensional"
! options: nondimensional, dimensional-SI
! (ginput.faces: N/A)
! DEFAULT=nondimensional
temperature_units = "Kelvin"
! options: Kelvin, Rankine
! (ginput.faces: N/A)
! DEFAULT=Kelvin
D e e e e o e e
! NONDIMENSIONAL INPUT:
! (generic do not use)
! specify mach_number,
! reynolds_number)
! (cal _perf incompress: specify reynolds number only)

(cal_perf compress

mach_number = 0.2

2/77

http://fun3d.larc.nasa.gov/training-5.html#overview
http://fun3d.larc.nasa.gov/tutorial-1.html
http://fun3d.larc.nasa.gov/tutorial-1.html#see_also
http://fun3d.larc.nasa.gov/tutorial-2.html
http://fun3d.larc.nasa.gov/tutorial-2.html#inviscid_flow_solve
http://fun3d.larc.nasa.gov/tutorial-2.html#turbulent_flow_solve
http://fun3d.larc.nasa.gov/tutorial-2.html#merge_vgrid_mesh_into_mixed_elements_and_run_solution
http://fun3d.larc.nasa.gov/tutorial-3.html
http://fun3d.larc.nasa.gov/tutorial-3.html#overset_moving_grids
http://fun3d.larc.nasa.gov/tutorial-4.html
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_for_steady_flow
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_for_steady_flow_at_two_different_mach_numbers
http://fun3d.larc.nasa.gov/tutorial-4.html#lift-constrained_drag_minimization_for_dpw_wing
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_over_a_pitching_cycle_for_a_wing
http://fun3d.larc.nasa.gov/tutorial-4.html#max_l/d_for_steady_flow_over_a_wing-body-tail_using_sculptor
http://fun3d.larc.nasa.gov/tutorial-5.html
http://fun3d.larc.nasa.gov/tutorial-5.html#massoud
http://fun3d.larc.nasa.gov/tutorial-5.html#bandaids
http://fun3d.larc.nasa.gov/example-1.html
http://fun3d.larc.nasa.gov/example-2.html
http://fun3d.larc.nasa.gov/example-3.html
http://fun3d.larc.nasa.gov/example-4.html
http://fun3d.larc.nasa.gov/example-5.html
http://fun3d.larc.nasa.gov/example-6.html
http://fun3d.larc.nasa.gov/example-7.html
http://fun3d.larc.nasa.gov/example-8.html
http://fun3d.larc.nasa.gov/example-9.html
http://fun3d.larc.nasa.gov/example-10.html
http://fun3d.larc.nasa.gov/example-11.html
http://fun3d.larc.nasa.gov/example-12.html
http://fun3d.larc.nasa.gov/example-13.html
http://fun3d.larc.nasa.gov/example-14.html
http://fun3d.larc.nasa.gov/example-15.html
http://fun3d.larc.nasa.gov/example-16.html
http://fun3d.larc.nasa.gov/example-17.html
http://fun3d.larc.nasa.gov/example-18.html
http://fun3d.larc.nasa.gov/example-19.html
http://fun3d.larc.nasa.gov/example-20.html
http://fun3d.larc.nasa.gov/example-21.html
http://fun3d.larc.nasa.gov/example-22.html
http://fun3d.larc.nasa.gov/example-23.html
http://fun3d.larc.nasa.gov/example-24.html
http://fun3d.larc.nasa.gov/example-25.html
http://fun3d.larc.nasa.gov/example-26.html
http://fun3d.larc.nasa.gov/example-27.html
http://fun3d.larc.nasa.gov/example-28.html
http://fun3d.larc.nasa.gov/example-29.html
http://fun3d.larc.nasa.gov/example-30.html
http://fun3d.larc.nasa.gov/example-31.html
http://fun3d.larc.nasa.gov/example-32.html
http://fun3d.larc.nasa.gov/example-33.html
http://fun3d.larc.nasa.gov/example-34.html
http://fun3d.larc.nasa.gov/example-35.html
http://fun3d.larc.nasa.gov/example-36.html
http://fun3d.larc.nasa.gov/example-37.html
http://fun3d.larc.nasa.gov/example-38.html
http://fun3d.larc.nasa.gov/example-39.html
http://fun3d.larc.nasa.gov/example-40.html
http://fun3d.larc.nasa.gov/example-41.html
http://fun3d.larc.nasa.gov/example-42.html
http://fun3d.larc.nasa.gov/example-43.html
http://fun3d.larc.nasa.gov/example-44.html
http://fun3d.larc.nasa.gov/example-45.html

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

(ginput.faces: XMACH)

only used if
dim_input_type=nondimensional

currently does nothing for generic path
DEFAULT=0.2

reynolds_number = 1000000.0

based on reference length of 1 grid_unit
(ginput.faces: RE)

only used if
dim_input_type=nondimensional

currently does nothing for generic path
DEFAULT=1.e6
e
! DIMENSIONAL INPUT:

! (generic specify velocity and density)
]

1

(cal_perf compress do not use)
(cal_perf incompress: do not use)

velocity = 30.0
! in m/s (ginput.faces: V_INF for generic)
! only used if
! dim_input_type=dimensional-SI
! currently does nothing for cal perf paths
! DEFAULT=30.0
density = 0.1
! in kg/m"3
! (ginput.faces: RHO_INF for generic)
! only used if
! dim_input_type=dimensional-SI
! currently does nothing for cal perf paths
! DEFAULT=0.1
e ——————
1
temperature = 273.0
! in temperature_units
! (ginput.faces: TREF in Rankine for
! cal_perf paths, T _INF in Kelvin for
! generic)
! DEFAULT=273.0
temperature_walldefault = 0.0

! in temperature_units;
! must be specified for generic
! (ginput.faces: T WALL for generic);
! currently does nothing for cal perf paths
! DEFAULT=0.0
angle_of_ attack = 0.0
in degrees (ginput.faces: ALPHA)
DEFAULT=0.0

]
!

angle_of_yaw = 0.0
! in degrees (ginput.faces: YAW)
! DEFAULT=0.0

/

&force_moment_integ_properties
area_reference = 1.0
! area used to nondimensionalize forces and
! moments, in scaled grid units”2
! (ginput.faces: SREF)
! DEFAULT=1.0
1.0
length (in x-direction) used to nondimensionalize mom
about y, in scaled_grid_units
(ginput.faces: CREF)
DEFAULT=1.0
1.0
length (in y-direction) used to nondimensionalize mom
about x and about z, in scaled_grid units
(ginput.faces: BREF)
! DEFAULT=1.0
0.0
in scaled grid units (ginput.faces: XMC)
DEFAULT=0.0
0.0
! in scaled_grid_units (ginput.faces: YMC)
! DEFAULT=0.0
z_moment_center = 0.0
! in scaled_grid_units (ginput.faces: ZMC)
! DEFAULT=0.0

X_moment_length

y_moment_length

X_moment_center

y_moment_center

/

&inviscid_ flux_method
flux_limiter = "none"
! current options: none, barth, venkat,
! minmod, vanleer, vanalbada, smooth,
]

hminmod, hvanleer, hvanalbada, hsmooth

http://fun3d.larc .nasa.gov/chapter-6.html 3/77

http://fun3d.larc.nasa.gov/example-46.html
http://fun3d.larc.nasa.gov/example-47.html
http://fun3d.larc.nasa.gov/example-48.html
http://fun3d.larc.nasa.gov/example-49.html
http://fun3d.larc.nasa.gov/example-50.html
http://fun3d.larc.nasa.gov/example-51.html
http://fun3d.larc.nasa.gov/example-52.html
http://fun3d.larc.nasa.gov/example-53.html
http://fun3d.larc.nasa.gov/example-54.html
http://fun3d.larc.nasa.gov/example-55.html
http://fun3d.larc.nasa.gov/example-56.html
http://fun3d.larc.nasa.gov/example-57.html
http://fun3d.larc.nasa.gov/example-58.html
http://fun3d.larc.nasa.gov/commits.html

6/5/2014

http://fun3d.larc .nasa.gov/chapter-6.html

/

FUN3D Manual :: Chapter 6: Analysis

! (ginput.faces: IFLIM)
! DEFAULT=none
first_order_iterations = 0
! number of iterations or sub-iterations
! run 1lst order (ginput.faces: NITFO)
! DEFAULT=0
flux construction = "roe"
! current options: vanleer, roe, hllc,
! aufs, central_diss, ldfss, dldfss, stvd,
! stvd_modified; only roe allowed for
! cal _perf incompress (ginput.faces: IHANE)
! DEFAULT=roe
rhs_u_eigenvalue_coef = 0.0
! (ginput.faces: EIGO0 for generic)
currently does nothing for cal_perf paths
DEFAULT=0.0
lhs u_eigenvalue_coef = 0.0
! (ginput.faces: EIGO_IMP for generic)
! currently does nothing for cal_perf paths
! DEFAULT=0.0

&turbulent diffusion models

turb_model = "sa"
current options: sa, des, sst,
sst-v, abid-ke, hrles, gamma-ret-sst
(ginput.faces: IVISC or TURB_MODEL_TYPE)
DEFAULT=sa

Tu = sqrt(2k/(3uinf”2)), k=turb K.E.
(ginput.faces: TURB_INT_INF for generic)
currently does nothing for cal_perf paths
DEFAULT=0.002
turb_viscosity ratio = 0.210438
! mu_t/mu_molecular
! (ginput.faces: TURB_VIS_RATIO_INF
! for generic)
! currently does nothing for cal perf paths
! DEFAULT=0.210438
re_stress_model = "linear"
! current options: linear or nonlinear
! (ginput.faces: REYNOLDS_STRESS_MODEL for
! generic)
1
1

1

1

!

1
turb_intensity = 2.0E-003

!

1

!

!

currently does nothing for cal_perf paths
DEFAULT=1linear
turb_compress_model = "off"
! current options: on, off
! (ginput.faces: TURB_COMP_MODEL for
! generic)
! currently does nothing for cal perf paths
! DEFAULT=off
turb_conductivity model = "off"
current options: on, off
(ginput.faces: TURB_COND_MODEL for
generic)
currently does nothing for cal perf paths
! DEFAULT=off
prandtlnumber_turbulent = 0.9
! (ginput.faces: PRANDTL_TURB for generic)
! currently does nothing for cal_perf paths
! DEFAULT=0.9
schmidtnumber_turbulent = 1.0
not used by cal_perf paths
(ginput.faces: SCHMIDT TURB for generic)
currently does nothing for cal_perf paths
DEFAULT=1.0

&spalart

turbinf = 3.0,

(DEFAULT changed from 1.341946 to 3.0 as of
version 12.3)

ddes = .true.,
! used for activating delayed DES (DDES) model
! (DEFAULT=.false.)
ddes_modl = .true.,
! used for modification of DDES model
! (Ref. AIAA Paper 2010-4001)
! (DEFAULT=.false.)
sarc = .true.,

used to invoke SARC model
(Ref. AIAA Journal Vol. 38, No. 5, 2000,

free stream value for spalart model variable

4/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

pp. 784-792.)

(DEFAULT=.false.)

sarc_cr3 = 1.0,

constant associated with SARC model
(DEFAULT=0.6)

/
b
! ADDITIONAL INPUT FOR GAMMA-RET-SST TURBULENCE MODEL
e e e e e e e e
&gammaretsst
set_k_inf w turb intsty percnt = 0.2
! if used, overrides the default k_inf by
! using input turb intensity (percent)
set_w_inf w_eddyviscosity = 1.0
! if used, overrides the default w_inf by
! using input eddy viscosity (nondim)
transition 4egn_on = .true.,
! if .false., turns off transition part of model
! (DEFAULT=.true.)
/

&nonlinear_solver_parameters

time_ accuracy = "steady"
! current options: steady, lstorder,
! 2ndorder, 2ndorderOPT, 3rdorder,
! 4thorderMEBDF4, 4thorderESDIRK4
! (ginput.faces: ITIME)
! DEFAULT=steady

time_step_nondim = 0.0
! only used if time_accuracy is NOT steady;
! for cal_perf compress path, dt is
! nondimensionalized via: dt*a_ref/L,
! where L = unit 1 of grid; for generic
! and cal_perf_ incompress, dt is
! nondimensionalized via: dt*u_ref/L
! (ginput.faces: DT)
! DEFAULT=0.0

pseudo_time_stepping = "on
! current options: on, off
! (ginput.faces: PSEUDO_DT)
! DEFAULT=o0n
subiterations = 0
! only used if time accuracy is NOT steady
! (ginput.faces: SUBITERS)
! DEFAULT=0
schedule_number = 2
number of CFL ramping schedules to input
(ginput.faces: N/A)

minimum value = 1, maximum value = 10
currently MUST = 2
DEFAULT=2

schedule_iteration 1 50

iteration numbers (input schedule number
of these) for CFL ramping schedule
(ginput.faces: IRAMP equivalent to use of
schedule_number=2, schedule_iteration=

1, IRAMP)

schedule_iteration(1l) MUST = 1
DEFAULT=1,50

O 4= 1= = = am am am [= = em em e

schedule_cfl = 200.0 200.0
! CFL numbers (input schedule_number of
! these) for CFL ramping schedule
! (ginput.faces: CFL1l, CFL2 equivalent to
! use of schedule_number=2, schedule_cfl=
! CFL1,CFL2)
! DEFAULT=200.0,200.0

schedule_cflturb = 50.0 50.0

! turb CFL numbers (input schedule_number
! these) for CFL ramping schedule
! (ginput.faces: CFLTURBl, CFLTURB2
! equivalent to use of schedule number=2,
! schedule_cfl=CFLTURB1, CFLTURB2)
! currently does nothing for generic path
! DEFAULT=50.0,50.0
= 2.0
! not used by cal perf paths
! (ginput.faces: RF_INV for generic)
! DEFAULT=2.0
visc_relax_factor = 1.0
! not used by cal_perf paths
! (ginput.faces: RF_VIS for generic)
! DEFAULT=1.0

invis_relax_factor

/
&linear_solver parameters

http://fun3d.larc .nasa.gov/chapter-6.html 5/77

6/5/2014

http://fun3d.larc .nasa.gov/chapter-6.html

FUN3D Manual :: Chapter 6: Analysis

meanflow_sweeps =

turbulence_sweeps

1
]
!
line implicit = "off

/

&code_run_control
steps =

stopping_toleranc

restart_write_ fre

restart_read = "o

jacobian _eval fre

/

&special_parameters
large_angle fix =

/

&flow_initialization
number_of_volumes =

e

q

n

q

15

number of Gauss-Seidel sub-iterations for
the linear problem at each time step

(ginput.faces: NSWEEP)

DEFAULT=15
10

same, for turbulence; not used by generic
path (ginput.faces: NCYCT)

DEFAULT=10

current options: on,

off

(ginput.faces: NSWEEP negative)

DEFAULT=0ff

number of time steps or multigrid cycles
to run the code (ginput.faces: NCYC)

DEFAULT=500
1.0E-015

absolute value of the RMS residual at
which the solver will terminate early

(ginput.faces: RMSTOL)

DEFAULT=1.e-15
250

frequency of restart write based on time
steps or multigrid cycles

(ginput.faces: ITERWRT)

DEFAULT=250

current options: off,

on_nohistorykept

(ginput.faces: IREST)

DEFAULT=on
10

frequency of jacobian evaluation based on

on,

time steps or multigrid cycles
(ginput.faces: JUPDATE)

DEFAULT=10

TOff"

0

fix to neglect viscous fluxes in cells
containing angles equal to 178 degrees or
more; current options: on,
(ginput.faces: IVGRD)

DEFAULT=off

off

number of initialization volumes

DEFAULT=0

type_of volume(n)='none'
volume definition index

pmin(l:3,n) = 0.0,

pmax(1:3,n) = 0.0,

center(1:3,n)= 0.0,

radius(n)=0.0

pointl(1l:3,n) = 0.0
point2(1:3,n) = 0.0
radius(n) = 0.50
pointl(1:3,n) = 0.0
point2(1:3,n) = 1.0

0.

0

0
!
!
0
!
!
!
!
0

!
!
0

Current options:

'box, 'sphere', 'cylinder',

DEFAULT='"none'
, 0.0

coordinates of lower corner of box (n)

DEFAULT= (0.0,0.0,0.0)

, 0.0

coordinates of upper corner of box (n)

DEFAULT= (0.0,0.0,0.0)

0, 0.0

'cone’

coordinates of center of sphere (n)
DEFAULT= (0.0,0.0,0.0)

radius of sphere (n)

DEFAULT= (0.0,0.0,0.0)

.0, 0.0

center of endpoint 1 of cylinder (n)

DEFAULT= (0.0,0.0,0.0)

.0, 0.0

center of endpoint 2 of cylinder (n)

DEFAULT= (0.0,0.0,0.0)

radius of cylinder (n)

DEFAULT=0.0
.0, 0.0

center of endpoint 1 of cone (n)
DEFAULT= (0.0,0.0,0.0)

.0, 0.0

6/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

! center of endpoint 1 of cone (n)
! DEFAULT= (0.0,0.0,0.0)

radiusl(n) = 0.10

radius of endpoint 1 of cone (n)
DEFAULT=0.0

]
iy
.
o
o

radius2(n)
radius of endpoint 2 of cone (n)
DEFAULT=0.0

rho(n) = 1.0
Density (n)
DEFAULT=1.0

c(n) = 0.9
! speed of sound (n)
! DEFAULT=1.0
u(n) = 0.4
! u veloicty (n)
! DEFAULT=0.0
v(n) = 0.0
! v velocity (n)
! DEFAULT=0.0
w(n) = 0.0

! w velocity (n)
! DEFAULT=0.0

/
&component_parameters
number_of components 1
number of individual components to be tracked
DEFAULT=0
component_count(n) 3

DEFAULT=0

component_list(n) '2,3,9'

DEFAULT=""

component_name(n) 'body "’
name used in file header of component force tracking
DEFAULT=""

allow_flow_through_forces = .true.

! allows for nozzle and inlet boundaries to be included

! DEFAULT = .false.

The comments given above describe the default for each parameter, and also give the corresponding
entry from the old ginput. faces file. The comments in the file are not necessary. With this type of
input file, leaving out or misspelling any namelist (the category parameter defined with an ampersand
“&” preceding its name) will result in default values being used for all of the parameters within that
namelist. For example, if the namelist name linear solver parameters were to be misspelled as
linear_solver_ parameter (missing “s”), then all parameters within that namelist that you think
you are specifying would be ignored, and they would assume their default values. This is one good
reason to always leave namelist_verbosity = on, so the top of the screen output has a record not
only of what you input, but also what the code is using as well. Leaving out any parameter within a
namelist results in the default value for that parameter being used. Misspelling or misusing any
particular parameter will typically cause FUN3D to issue an error and stop.

Note that the above namelist file contains many input variables, but in general it is not necessary to
list them all. One can instead rely on the fact that most of the defaults are often desired, and only
those variables that are different from the defaults need to be given. The following might be an
example of a typical namelist file for a calorically-perfect FUN3D run:

&version_number

input_version = 2.2

/

&project
project_rootname = "my_ project"

/

&reference_physical properties
mach_number = 0.84
reynolds_number = 6200000.0
temperature = 252.5
angle_of_attack = 13.7

/

&force moment integ properties
area_reference = 500.2
X_moment_length = 16.444
y_moment_length = 2.2
X_moment_center = 0.25

/

&inviscid_ flux_method

http://fun3d.larc .nasa.gov/chapter-6.html

number of boundaries to be included in each component

string list of boundary numbers for component_count(n

777

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

flux_limiter = "smooth"

/

&turbulent diffusion models
turb_model = "sst-v"

/

&nonlinear_solver parameters
schedule_iteration = 1 150
schedule_cfl = 25.0 200.0
schedule_cflturb = 10.0 50.0

/

&code_run_control
steps = 2000
restart_read = "off"

/

&component_parameters
number_of_ components =1
component_count (1) =2
component_list(1) ='1, 5'
component_name (1) = 'InletCowl'
allow_flow_through_forces = .true.

/

Each of the namelists is described below. The defaults for each parameter can be found in the first
sample file above.

. NAMELIST &VERSION_NUMBER

input_version The version number of the namelist file.

namelist_verbosity Determines how namelist information from fun3d.nml is written to the
screen output. When on, the file fun3d.nml is echoed to the screen output
along with a list of all namelist parameters (including defaults). Additional
information and warnings (if necessary) are also given. This setting (on) is
the recommended option, because the user can check to see all of the
parameters being used by the code, whether explicitly being specified in the
namelist file or implicitly being used by default. When of£, only the input
fﬂefun3d.nmliseChoed.VVhensuppress_all,aH\NﬁﬁngOffun3d.nml
information to screen output is suppressed. Quotes are needed around the
character string.

. NAMELIST &PROJECT

project_rootname The project name for the grid. For example, all grid part files and solution files
have this rootname as part of their filename. Quotes are needed around the
character string.
case_title User-defined title for the case. Quotes are needed around the character string.
part_pathname Either absolute path or relative path from the current working directory to the
location of the grid (part) files. Quotes are needed around the character string.

. NAMELIST &GOVERNING_EQUATIONS

eqn_type Equation type being solved, for example cal_perf_compress for
calorically perfect compressible, cal_perf_ incompress for
calorically perfect incompressible, generic for generic gas. Quotes
are needed around the character string.

prandtlnumber_molecular Molecular Prandtl number.

artificial_compress Artificial compressibility factor (beta), only used when eqn_type =
cal perf incompress.

viscous_terms Describes viscous term usage, for example inviscid for no viscous
term (Euler), 1aminar for Navier-Stokes with no turbulence model,
turbulent for Navier-Stokes with turbulence model. Quotes are
needed around the character string.

chemical_kinetics Describes the chemical kinetics, only used when eqn_type =
generic, for example frozen for chemically frozen flow, finite-
rate for finite-rate chemically-reacting flow. Quotes are needed
around the character string.

thermal_energy_model Describes the thermal energy model, only used when eqn_type =
generic, for example frozen for frozen thermal energy treatment,
non-equilib for non-equilibrium thermal energy. Quotes are needed
around the character string.

http://fun3d.larc .nasa.gov/chapter-6.html 8/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

NAMELIST &REFERENCE_ PHYSICAL_ PROPERTIES

gridlength_conversion Conversion factor to scale the grid by. (generic gas only)

dim_input_type

temperature_units

mach_number

reynolds_number

velocity

density

temperature

Type of input, for example nondimensional Or dimensional-SI.
The user’s choice here determines whether Mach number and
Reynolds number are input (for nondimensional), or dimensional
velocity and density are input (for dimensional). Note, however, that
temperature is always input as a dimensional quantity. Quotes are
needed around the character string.

Units for temperature, for example Kelvin or Rankine. Quotes are
needed around the character string.

Reference Mach number, velocity/speed-of-sound. Only used if
dim_input_type = nondimensional.

Reference Reynolds number, per unit 1 of the grid. For example, If
your Reynolds number is based on the MAC(Mean Aerodynamic
Chord), and the grid is constructed so that the MAC is one, then the
appropriate value for this is the full freestream Reynolds number. If the
grid is constructed so that the MAC is in inches, then this must be set
to the Reynolds number divided by the MAC in inches. Only used if
dim_input_ type = nondimensional.

Reference velocity, in m/s, only used if dim_input_type =
dimensional-SI.
Reference density, in kg/m3"-only used if dim_input_type =

dimensional-SI.

Reference temperature, in units of temperature_units.

temperature_walldefault Wall temperature, currently only used for eqn_type = generic.

angle_of_attack

angle_of_yaw

Freestream angle of attack in degrees.
Freestream angle of yaw (side-slip) in degrees.

NAMELIST &FORCE_MOMENT_INTEG_ PROPERTIES

area_reference Reference area used for non-dimensionalization of forces and moments, in

scaled grid units2-

x_moment_length Reference length in x-direction, used to nondimensionalize moments about y, in
scaled_grid_units.

y_moment_length Reference length in y-direction, used to nondimensionalize moments about x and
Z,in scaled_grid_units.

x_moment_center X-coordinate location of moment center, in scaled grid units.

y_moment_center Y-coordinate location of moment center, in scaled_grid_units.

z_moment_center Z-coordinate location of moment center, in scaled_grid_units.

i NAMELIST &INVISCID_FLUX_METHOD

flux_limiter

http://fun3d.larc .nasa.gov/chapter-6.html

Flux limiter used, for example none for no limiter, barth for Barth
limiter, venkat for Venkatakrishnan limiter, minmod for min-mod
limiter, vanleer for van Leer limiter, vanalbada for van Albada
limiter, smooth for smooth limiter, hminmod for hypersonic-minmod
limiter, hvanleer for hypersonic-van Leer limiter, hvanalbada for
hypersonic-van Albada limiter, hsmooth for hypersonic-smooth limiter,
and hvenkat for hypersonic-Vankatakrishnan limiter, For hypersonic
flows computed using the calorically perfect gas path the hvanleer or
hvanalbada flux limiters are recommended. Please note that use of the
h-series of flux limiters automatically turns on a heuristic pressure based
limiter that is used to augment the selected flux limiter. When using a
mixed element grid (where the near wall grid is made up of either hexes
or prisms) the wall heat transfer and skin friction can be improved by
selecting the hminmod, hvanleer, hvanalbada, hsmooth, Or hvnekat
limiters and invoking the command line option --

limit_near walls_less. This option causes these flux limiter to be
automatically “turned off” as the grid approaches the wall. However use
of this option on tetrahedral grids near the wall can make the wall heat
transfer and skin friction worse. Use of this option may cause a decrease
in robustness so use it with caution. When using the barth, venkat,
hminmod, hvanleer, hvanalbada, hsmooth, Or hvnekat limiter, the

917

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

command line option --freeze_limiter xx may also be of use. This
option freezes the value of the limiter throughout the flow field after xx
number of timesteps. This can be useful in improving convergence that
typically stalls or “rings” when using a limiter. Note the reconstruction
is evaluated at each time step with the current “frozen” value of the
limiter, however if the reconstruction fails due to the extrapolation to the
cell face, the limiter is allowed to be recomputed at these selected
points. Finally, when restarting a solution that has used a frozen limiter,
if you wish to continue freezing the limiter for the restart, you must
specify --freeze_limiter 0.Quotes are needed around the character
string.

first_order_iterations Number of first-order iterations prior to employing second order spatial
accuracy. Note: for time accurate cases (time_accuracy not steady),
this is the number of first-order accurate sub-iterations to run for each
time step.

flux_construction Method for constructing the flux, for example vanleer for van Leer
flux vector splitting, roe for Roe flux difference splitting, h11c for
HLLC, aufs for AUFS, central_diss for central differencing with
scalar dissipation, 1dfss for LDFSS, d1dfss for Dissipative LDFSS,
stvd for STVD, stvd_modified for modified STVD. Roe’s scheme is
suggested, but you may find that others converge better for some cases.
Please note for hypersonic flows computed using the calorically perfect
gas path the d1dfss scheme is recommended. For incompressible flow,
the only valid option is roe. Jacobians are van Leer by default. Other
Jacobians can be selected with --roe_jac,--hllc jac, --aufs_jac,
or --cd_jac command line options. Quotes are needed around the
character string.

rhs_u_eigenvalue_coef Eigenvalue coefficient for RHS, currently only used for eqn_type =
generic. See notes in the Hypersonics section.

lhs_u_eigenvalue_coef Eigenvalue coefficient for LHS, currently only used for eqn_type =
generic. See notes in the Hypersonics section.

: NAMELIST &TURBULENT_DIFFUSION_MODELS

turb_model Name of turbulence model, for example sa for Spalart-Allmaras one-
equation model, des for Detached-Eddy Simulation (DES) used in
conjunction with the Spalart-Allmaras model, sst for Menter SST
two-equation k-omega model (strain producton), sst-v for Menter
SST two-equation k-omega model (vorticity production), abid-ke for
Abid two-equation k-epsilon model, hrles for hybrid RANS-LES
model of AIAA-2008-3854, gamma-ret-sst for 4-eqn Langtry-
Menter transition model of AIAA J 47(12):2894-2906, 2009. Quotes
are needed around the character string.

turb_intensity Freestream turbulence intensity, Tu = sqrt(2k/(3 uinf2*)), where k is
the turbulent kinetic energy, currently only used for eqn_type =
generic.

turb_viscosity_ratio Freestream ratio of turbulent viscosity to molecular viscosity, currently
only used for eqn_type = generic.

re_stress_model Defines whether linear or nonlinear stresses are employed in the
turbulence model, currently only used for eqn_type = generic.
Quotes are needed around the character string.
turb_compress_model Defines whether a turbulence compressibility model is employed (on
or of£), currently only used for eqn_type = generic. Quotes are
needed around the character string.
turb_conductivity_model Defines whether a turbulence conductivity model is employed (on or
off), currently only used for eqn_type = generic. Quotes are needed
around the character string.
prandtlnumber_turbulent Turbulent Prandtl number, currently only used for eqn_type =
generic.
schmidtnumber_turbulent Turbulent Schmidt number, currently only used for eqn_type =
generic.

NAMELIST &NONLINEAR_SOLVER_PARAMETERS

time_accuracy Defines the temporal scheme, for example steady for steady state (non-
time-accurate) runs, 1storder for time-accurate first order backward

http://fun3d.larc .nasa.gov/chapter-6.html

10/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

differencing, 2ndorder for time-accurate second order backward
differencing, 2ndorderopT for optimized second order backward
differencing (scheme is in between second-order and third-order accurate
in time “BDF2opt”), 3rdorder for time-accurate third order,
4thorderMEBDF4 for time-accurate fourth order of type MEBDF4,
4thorderESDIRK4 for time-accurate fourth order of type ESDIRK4.
Quotes are needed around the character string.

time_step_nondim Physical time step, used only for time_accuracy not steady. The
nondimensionalization of this parameter depends on eqn_type: for
cal_perf_compress itis “dta_ref/L”, where a_ref is the reference speed
of sound and L is unit 1 of the grid; for cal_perf_incompress or
generic itis “dt u_ref/L”, where u_ref is the reference velocity.

pseudo_time_stepping Defines whether pseudo-time stepping is used (on or of£). When used, the
value of the time term (or the pseudo-time term for time-accurate runs)
varies spatially according to a local “CFL constraint”. This is the default
method for time_accuracy = steady, and it is also generally used for
time-accurate runs as well (because its use typically allows larger physical
time steps to be taken than might otherwise be possible). When running
time-accurately and ramping the CFL of the pseudo time term, the final
CFL will be obtained only if subiterations >= the number of iterations
over which the CFL number is ramped. By the end of a convergent
subiteration process for time-accurate runs, the pseudo time term drops
out, giving the correct temporal discretization. Quotes are needed around
the character string.

subiterations Number of subiterations applied to solve the implicit time integration, only
used for time accuracy not steady.

schedule_number Number of CFL ramping schedules to input (for changing the CFL
number during a run), currently must be = 2.

schedule_iteration Iteration numbers at which desired CFL numbers are defined (input
schedule_number of these). The parameter schedule_iteration (1)
must = 1, because it defines the starting CFL number at iteration number
1. The actual CFL number is determined by a linear ramp from
schedule cfl (1) at iteration schedule_ iteration (1) to
schedule cfl (2) at iteration schedule_iteration (2).

schedule_cfl CFL numbers (input schedule_number of these). The parameter

schedule cfl (1) is the CFL number desired at schedule_ iteration
(1), and schedule cf1 (2)is the CFL number desired at
schedule_iteration (2), etc. For example, if you wish to start the run at
a CFL number of 10 and ramp up to a CFL number of 200 at iteration
number 50, then schedule iteration (1)=1, schedule iteration
(2)=50, schedule cfl (1)=10, schedule cfl (2)=200.

schedule_cflturb CFL numbers for turbulence equations (input schedule number of
these). Not used for eqn_type = generic.

invis_relax_factor Relaxation factor for inviscid terms, used only for eqn_type = generic.
See notes in the Hypersonics section.

visc_relax_factor Relaxation factor for viscous terms, used only for eqn_type = generic.
See notes in the Hypersonics section.

NAMELIST &LINEAR_SOLVER_PARAMETERS

meanflow_sweeps Number of Gauss-Seidel sub-iterations for the linear problem at each time
step.
turbulence_sweeps Number of Gauss-Seidel sub-iterations for the turbulence model equations
linear problem at each time step. Not used for eqn_type = generic.

line_implicit Defines whether implicit line sweeps are employed (on or of£). If used, it is
suggested to have previously invoked the command line option --
partition_lines wWhen preprocessing with party. This will minimize the
number of implicit lines which may be cut by the partitioning. Quotes are
needed around the character string.

NAMELIST &CODE_RUN_CONTROL

steps Number of time steps or multigrid cycles to run the code.

stopping_tolerance Absolute value of the RMS (root mean square) residual at which the solver
will terminate early.

restart_write_freq Frequency of restart write based on time steps or multigrid cycles. The

http://fun3d.larc .nasa.gov/chapter-6.html

11/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

solution and convergence history will be written to disk every
restart_write_freq time steps.

restart_read Defines restart usage, for example of £ for no reading of old restart files (i.e.,
run from scratch, with the flow initialized as freestream), on for continuation
run from a restart file (flow is initialized by using the previous solution
information, and the convergence history will be concatenated with the prior
solution history), on_nohistorykept for continuation run but disregarding
the previous history of residuals, forces, moments, etc. Quotes are needed
around the character string.

jacobian_eval_freq Frequency of jacobian evaluation based on time steps or multigrid cycles.
After the first 10 iterations, Jacobians are updated every
jacobian eval freq iterations.

. NAMELIST &SPECIAL_PARAMETERS

large_angle_£fix Fix to neglect viscous fluxes in cells containing angles equal to 178 degrees or
more (on or of£). This flag is seldom required. However, you may encounter
cases on meshes with poor cell quality where the computation will suddenly give
NaNs during the solution process. This is due to unusually large angles in the
grid causing gradients in the viscous fluxes to blow up. (Watch for bad angles
reported by the preprocessor.) Quotes are needed around the character string.

. NAMELIST &FLOW_INITIALIZATION

This namelist entry in fun3d.nml is optional and is used for user-specified initialization of
compressible flows in INCOMP=0 path under sflow_initialization.

This namelist allows the user to specify regions in the field with freestream quantities other than those
defined by the fun3d.nml (or ginput.faces prior to release 10.5.0) input file. If a grid point is
contained within a region, it will be initialized as requested when the flow solver is first started.

Regions can be boxes, spheres, cylinders, and conical frustums. The box region is defined by
diagonal end points. The sphere region is specified by a point and a radius. The cylinder region is
defined by a radius and two points that define the cylinder axis, while the conical frustum adds a
second radius to define a linear variation along the axis.

There can be as many regions as desired, and they may overlap each other as well as boundaries in
the mesh. Each subsequent region in this file will supersede the regions listed before it in the event
that a mesh point is contained in more than one region. Any special boundary conditions normally
used by the solver will override these user-specified quantities (no-slip boundary conditions, specified
mass flux, etc).

The initialization data is provided in terms of density, sound speed, and velocity components, non-
dimensionalized in the usual FUN3D convention. Freestream quantities in the solver are normally
given by the following:

rho0 = 1.0

c0 = 1.0

u0 = XMACH * cos(alpha) * cos(yaw)
vO0 = -XMACH * sin(yaw)

wO0 = XMACH * sin(alpha) * cos(yaw)

For more details on the non-dimensionalization scheme, see the information provided at the CFL3D
homepage , which uses the same scheme as FUN3D.

For an example, see the sflow_initialization entry in fun3d.nml in the FUN3D source code
directory.

Note: Previously the initialization geometry and data were read from the user_vol_init.input.

Note: This initialization method was first made available in v10.2.0, and prior to v10.3.2, the file was
named user_box_init.input because only box-shaped regions were allowed.

i NAMELIST &COMPONENT_PARAMETERS

This namelist entry in fun3d.nml is optional and is used for user-specified tracking of the forces and
moments for groups of boundaries. With the inclusion of the command line option --
track_group_forces, the forces and moments for each component will be written in the file
[project_rootname]_[component_name(n)]_component.dat.

http://fun3d.larc .nasa.gov/chapter-6.html

12/77

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

number_of_components Number of collections of boundaries to be tracked.

component_count (n) Number of boundaries to be tracked under component n.
component_list(n) String list of boundary numbers to be tracked under component n.
component_name (n) Name to be used in filename for component n.

allow_flow_through_forces Default is only solid surfaces to be included in force tracking. If
inlet or nozzle forces are desired, allow flow through forces
must be set to .true.

NAMELIST &TWO_D_TRANS

This namelist is optional and is used to Specify a 2d transition location with CLO --
turb_transition. You can use either a upper and lower airfoil patch specification or if you only
have a single airfoil patch, use a z value to test for the upper and lower surface. The transitional
patches must still be specified with a negative boundary number in the mapbc file. (This namelist is
valid for Version 11.4 and higher.)

use_2d_values Enable 2d transition_specification if .true. The default is .false.
upper_x_location Upper x location to use if use_2d_values is .true. Default is 0.0
lower_x_location Lower X location to use if use_2d_values is .true. Default is 0.0
use_z_value Flag to enable use of z test for upper and lower airfoil. The default is .false.
upper_patch Upper patch number to use if use_z_value is .false. Default is 1
lower_patch Lower patch number to use if use_z_value is .false. Default is 1
z_location The z location to use if use_z_value is .true. Default is 0.0

DirrereNces FROM EARLIER FUN3D.NML NAMELIST VERSIONS

input_version = 2.2 —changed pseudo_time_stepping default from off to on. (It should always
be on when time accuracy = steady.)

You can expect the solver to use approximately 300 words of memory per grid point. For example, a
grid with one million mesh points (about 6 million tetrahedra) would require approximately 2.4
gigabytes of memory using 8-byte words. This amount will increase slightly with the number of
processors (i.e., partitions), as there is an increasing amount of boundary data to be exchanged.
Different solution algorithms will also affect the amount of memory required. For example, the full
Jacobians required for a tightly-coupled solution of the turbulence model will increase the memory
requirement significantly.

When you are ready to run an analysis, and you have set up the file fun3d.nml (or ginput. faces
for release 10.4.1 or before) as described above, enter the following at the command prompt:

nodet
To run the MPI version of the solver on 16 processors, you would use the command:
mpirun -np 16 nodet_mpi

Depending on your local configuration, you may also need additional arguments to mpirun, such as -
nolocal and -machinefile [file].See your MPI documentation or system administrator for more
information on such options. If you have processed your grid and set up the input deck correctly, you
will then see the solver start to execute. A detailed description of the output files is given below.
Upon completion, you can either restart your job where it left off, or combine the partitioned solution
files into global solution information using the postprocessing feature of Party.

. CommanDp LiNE OPTIONS

These options are specified after the executable name (e.g. nodet, nodet_mpi, party, etc). These
commands are always preceded by -- (double minus). More than one option may appear on the
command line (each option proceeded by a --). You can always see a listing of the available
command line options in any of the codes in the FUN3D suite by using the command line option --
help after the executable name, e.g.:

http://fun3d.larc .nasa.gov/chapter-6.html 13/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis
Jnodet_mpi --help

or
Jparty --help

etc.

The options are then listed in alphabetical order, along with a short description and a list of any

auxiliary parameters that might be needed, and then the code is stopped. Specific examples of the use
of command line options may be found throughout this manual.

. INpUT FiLES

[project]_part.n

These files contain the grid information for each of the n partitions in the domain. They are generated
using the Party utility.

fun3d.nml (for release 10.4.1 and before, this was ginput. faces)
This file is the input deck for the solver. The name must not be modified.
[project]_flow.n (Optional)

These files contain the binary restart information for each n grid partitions. They are read by the
solver for restart computations, as well as by party for solution reconstruction and plotting purposes.

stop.dat (Optional)

This file is intended to aid the user in gracefully halting the execution of the solver if needed. At the
end of every iteration, the solver will look for this file. If the file is present, it must contain a single
ASCII integer. If this integer is greater than zero and less than the number of iterations already
performed, the solver will dump the current solution and halt execution. The stop.dat file is
removed just before the execution is halted.

movin_body. input (Time-dependent, moving grid cases only)

(replaces grid_motion.schedule of Versions 10.0 through 10.2.0)

This namelist file is used to specify grid motion as a function of time, and is used in conjunction with
the command line option --moving_grid . See the moving grids section below for a more detailed
description of this file.

A template for this file may also be found in the FUN3D_90 source code directory.
rotor.input (For rotor/propeller computations only)

This file is used for specifying input quantities related to rotor/propeller combinations, and is used in
conjunction with the command line option --rotor . See the rotorcraft section below on this
capability for a more detailed description of this file.

A template for this file may also be found in the FUN3D_90 source code directory.
solution.schedule (Optional, for specifying generalized relaxation patterns)

This input deck allows for very general control over the various relaxation schemes and where they
are to be applied across the domain.

A template for this file may be found in the FUN3D_90 source code directory.
remove_boundaries_from_force_totals (Optional)

This file is for specifying boundaries that are NOT to be included in the calculation of force and
moment totals. If this file is not present, then all solid boundaries are included in the force and
moment totals. This file is useful, for example, in situations where there may be a mounting sting on a
wind tunnel model, but only the forces on the model are actually of interest. Note that the forces on
the specified boundaries are still computed, and appear in the [project].forces file, they are just not
added to the totals.

http://fun3d.larc .nasa.gov/chapter-6.html

14/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis
A template for this file may be found in the FUN3D_90 source code directory.

. Output FiLES

[project]_flow.n

These files contain the binary restart information for each n grid partitions. They are read by the
solver for restart computations, as well as by party for solution reconstruction and plotting purposes.

[project]_hist.dat

This file contains the convergence history for the RMS residual, lift, drag, moments, and CPU time,
as well as the individual pressure and viscous components of each force and moment. The file is in
Tecplot format.

[project]_subhist.dat

For time accurate computations only. This file contains the sub-iteration convergence history for the
RMS residuals. The file is in Tecplot format.

[project]_time_animation.tec (introduced version 10.0)

For time accurate computations only, in conjunction with the command line option --
animation_freq . This file contains an animation the grid and solution on selected boundaries in
Tecplot format. See the animation of unsteady flows section for more information.

[project].forces

This file contains a breakdown of all the forces and moments acting on each individual boundary
group. The totals for the entire configuration are listed at the bottom.

. Test Case

To ensure that you have installed and are running the solver correctly, a couple small test cases are
included in the distribution. Go into these directories and just type make. You may find that the last
one or two digits vary on different machines/compilers, but your results should look very similar.

. BouNDARY LAYER TRANSITION LOCATION SPECIFICATION

There is an option in FUN3D to specify transition which is based on the idea of turning off the
turbulent production terms in “laminar” regions of the grid. This is the same approach taken in
CFL3D and NSU3D. FUN3D results from this approach for a DLR-F6 transonic cruise condition
are shown in AIAA Paper 2004-0554 in the Publications section. For this option however, you have
to generate a grid with the transition location specified by having “laminar” and “turbulent”
boundaries defined upstream and downstream of the transition location. When you specify the type
for a laminar boundary use a negative number for the viscous boundary types in the boundary
definition file. For example, a viscous solid boundary would be defined a -4 instead of a 4 in the
[project].mapbc file for a VGrid mesh. In the flow solver, the field nodes will look at the type of
boundary closest to that field node to decide whether or not it is a laminar or turbulent node. To
invoke specified transition for a specific run you must use the command line option --
turb_transition,e€.g.

mpirun -np 16 nodet_mpi --turb_transition

If you run the flow solver without the --turb_transition, it will default to fully turbulent even
though you have the laminar boundaries defined. Note this option is only valid for perfect gas SA
turbulence model and for non-moving grid cases.

As of Version 11.4 you can visualize the laminar and turbulent volume nodes by outputting a integer
variable (iflagslen) via the &sampling_output_variables or &volume_output_variables. If the volume
node is “laminar” the iflagslen value will be negative. If “turbulent”, it will be positive. This allows
the user to check the specification of the transition location.

As of Version 11.4 can also specify a 2d transition x-location with CLO —turb_transition. You can
use either a upper and lower patch specification or if only have a single airfoil patch, use a z value to
test for the upper and lower surface. The transitional patches must still be specified with a negative
boundary number in the mapbc file.

http://fun3d.larc .nasa.gov/chapter-6.html

15/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

The new specifications are given in the fun3d.nml namelist &two_d_trans. For use with a separate
upper and lower patch number, an example of the namelist is:

&two_d_trans
use_2d_values
use_z_value
upper_patch
lower_patch
upper_x_location = 0.05
lower_x_location =

.true.
.false. !default

N

|
o
)
(6]

/

<pre>

For use with a single upper and lower airfoil patch, an example of the
namelist is:

<pre>
&two_d_trans
use_2d_values = .true.
use_z_value = .true.
upper_x_location = 0.05
lower_x_location = 0.25

z_location = 0.0
/

<pre>

FUN3D is capable of modeling a rotating blade system using different levels of approximation. In
order of increasing complexity/fidelity/cost, rotor systems may be analyzed using either a time-
averaged actuator disk, or via first principles modeling of the moving, articulated, rotor blades
using overset, moving grids.

The actuator method utilizes momentum/energy source terms to represent the influence of the rotating
blade system. Use of the source terms simplifies grid generation, since the actuator surfaces do not
need to be built into the computational grid. However, the computational grid should have some
refinement in the vicinity of the actuator surfaces to obtain accurate results.

. RunninG AN AcTUATOR SURFACE ROTORCRAFT SoLution IN FUN3D

[This capability was originally implemented by Dave O’Brien, at the time a PhD candidate at
Georgia Tech. Note FUN3D v11.0 and higher also contains the actuator disk library subsequently
developed by Dave for the DoD HI-ARMS/CREATE/HELIOS project: Software Module for
Engineering Methods of Rotor Dynamics (SMEMRD) version 1.3.1. The FUN3D team does not
provide technical support/documentation for the DoD modules; users must contact Dave O’Brien for
help. The DoD modules add the ability to trim to thrust values and the ability to read in airfoil lookup
tables. This version of the actuator disk model is triggered through the use of the --hiarms_rotor
command line option.]

The actuator surface routines are triggered through the use of the --rotor command line option, e.g:
mpirun -np 16 nodet mpi --rotor

Once the rotor option has been invoked, FUN3D will search for the rotor input deck file,
rotor.input. This file is located in the FuN3D_90 directory and is required along with the standard
input file, fun3d.nml (or ginput. faces prior to release 10.5.0).

The two main parameters used by the actuator surface solution are mach_number in fun3d.nml
(XMACH in ginput. faces in release 10.4.1 and before) and adv_Ratio in rotor.input. These two
parameters affect the force coefficient calculations. To non-dimensionalize the forces with the rotor
tip speed set XMACH=Tip Mach Number and Adv_Ratio=V_freestream/V_tip. To non-
dimensionalize the forces with the freestream velocity set XMACH=Freestream Mach Number and
Adv_Ratio=1.0. For incompressible solutions xMACH is the artificial compressibility parameter
(suggested value = 15.0), but the adv_Ratio will still affect the force non-dimensionalization as
described above.

. SampLE RoToR INPUT DECK

A sample rotor. input file is shown below for a conventional main rotor / tail rotor helicopter.

http://fun3d.larc .nasa.gov/chapter-6.html 16/77

mailto:David.ObrienJr@us.army.mil

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Rotors Vinf Ratio Write Soln Force Ref Moment Ref
2 1.0 50 1.0 1.0
=== Main Rotor
Rotor Type Load Type # Radial # Normal Tip Weight
1 0 50 720 0.0
X0_rotor YO0_rotor Z0_rotor phil phi2 phi3
0.00 0.00 0.00 0.00 -5.00 0.00
Vt_Ratio ThrustCoff PowerCoff psi0 PitchHinge DirRot
6.666 0.005 -1.00 0.00 0.00 0
Blades TipRadius RootRadius BladeChord FlapHinge LagHinge
4 1.00 0.00 0.05 0.00 0.00
LiftSlope alpha, L=0 cd0 cdl cd2
6.28 0.00 0.002 0.00 0.00
CL_max CL_min CD_max CD_min Swirl
1.50 -1.50 1.50 -1.50 0
Theta0 ThetaTwist Thetals Thetalc Pitch-Flap
5.00 -2.00 0.00 0.00 0.00
FlapHar Beta0 Betals Betalc
0 0.00 0.00 0.00
Beta2s Beta2c Beta3s Beta3c
0.00 0.00 0.00 0.00
LagHar DeltaOl Deltals Deltalc
0 0.00 0.00 0.00
Delta2s Delta2c Delta3s Delta3c
0.00 0.00 0.00 0.00
=== Tail Rotor
Rotor Type Load Type # Radial # Normal Tip Weight
1 0 50 720 0.0
X0_rotor YO0_rotor Z0_rotor phil phi2 phi3
1.00 0.00 0.00 -90.00 0.00 0.00
Vt_Ratio ThrustCoff PowerCoff psi0 PitchHinge DirRot
3.333 0.001 -1.00 0.00 0.00 0
Blades TipRadius RootRadius BladeChord FlapHinge LagHinge
3 0.20 0.00 0.01 0.00 0.00
LiftSlope alpha, L=0 cd0 cdl cd2
6.28 0.00 0.002 0.00 0.00
CL_max CL_min CD_max CD_min Swirl
1.50 -1.50 1.50 -1.50 1
Theta0 ThetaTwist Thetals Thetalc Pitch-Flap
8.00 0.00 0.00 0.00 0.00
FlapHar Beta0 Betals Betalc
0 0.00 0.00 0.00
Beta2s Beta2c Beta3s Beta3c
0.00 0.00 0.00 0.00
LagHar Deltal Deltals Deltalc
0 0.00 0.00 0.00
Delta2s Delta2c Delta3s Delta3c
0.00 0.00 0.00 0.00

The header line is where the user specifies the number of rotors, the rotor advance ratio, and how
often to output the plot3d loading file. The remainder of the file is in a block structure, where each
block represents the inputs for one rotor. The first line of each block is a text line that can be edited to
keep the rotors organized for the user.

. Heaper LiNe INPuTS

Number of actuator surfaces to create. The number of variable blocks must match the
number of rotors specified.

#Rotors

vinf_Ratio Ratio of V_freestream to V_force_ref, where V_freestream is the freestream velocity
and V_force_ref is the velocity used for force normalization. If V_force_ref = V_tip, as
is typical for rotorcraft applications, then Vinf_Ratio = Advance ratio. Note that if
V_force_ref = V_tip, then the mach_number in the fun3d.nml file should correspond
to the tip mach number, rather than the freestream mach number.

WriteSoln Specifies how many iterations to run before writing the Plot3D rotor loading data. The
suggested value is Wwrite Soln = NCYC.

Force Ref Conversion factor to allow user to obtain forces in desired units; = 1.0 for standard
FUNS3D nondimensional force coefficients; = (L_ref x L_ref x a_ref x a_ref) / (pi x R
x R x V_tip x V_tip) to get standard rotorcraft nondimensional force coefficients; =
rho_ref x a_ref x a_ref x L_ref x L_ref to get dimensional forces

Moment Ref Conversion factor to allow user to obtain moments in desired units

i AcTUATOR SURFACE INPUTS

RotorType Type of rotor model to apply. Rotor Type=1 models the rotor as an actuator disk.
Rotor Type=2 models the rotor as actuator blades [In development].

http://fun3d.larc .nasa.gov/chapter-6.html 17/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

LoadType Type of loading to apply to the rotor model. Load Type=1 constant pressure jump. Load
Type=2 linearly increasing pressure jump. Load Type=3 blade element based loading.
Load Type=4 user specified loading.

#Radial Number of sources to distribute along the blade radius. Suggested value is #
Radial=100.

#Normal Number of sources to distribute in the direction normal to the radius. Suggested value is
Normal=720 for Rotor Type=1 (one source every 0.5 degrees). Suggested value is
Normal=20 for Rotor Type=2.

TipWweight Hyperbolic weighting factor for distributing sources along the blade radius. Input range
is 0.0 to 2.0, values larger than 2.0 concentrate too many sources at the blade tip.
Suggested value is Tip Weight=0.0 (uniform distribution)

. RoTor REFERENCE SYSTEM PLACEMENT AND ORIENTATION

xX0_rotor The x coordinate of the hub (a.k.a. center of rotation).
Y0_rotor The y coordinate of the hub (a.k.a. center of rotation).
z0_rotor The 7 coordinate of the hub (a.k.a. center of rotation).
phil The first Euler angle describing a rotation about the x axis.
phi2 The second Euler angle describing a rotation about the a;_ 5yjs.

phi3 The third Euler angle describing a rotation about the b3~ axis.

The Euler angles are one of the more confusing inputs in the rotor input deck. These angles must be
input correctly to obtain the correct orientation of the source based actuator disk. The angles should
all be input in degrees.

The following example will attempt to explain how to determine these angles. The picture below
depicts the rotations phil = 10,phi2 = -15,and phi3 = 15. Initially, the thrust is assumed to be
in the z direction and the disk in located in the x-y plane. The first rotation of phil about the x_ axis
takes the _x,y_, zsystemtothea_;_ ,2 ,3~ system shown in red below. The second rotation of
phi2 about the ay_ yis takes the a_!, a2a 3~ System to the _by_j 2 3~ system shown in green
below. The final rotation of phi3 about the b3 ayis takes the »_I,_p2 p3~ System to the rotor reference
system shown in blue below. The black circle represents the initial disk orientation and the blue circle
represents the final disk orientation. In general phil and phi2 are sufficient to define the thrust
orientation. phi3 only serves to change the location of the zero azimuth angle for the rotor.

. RoToR LoADING PARAMETERS

vt_Ratio* The ratio of the tip speed to the velocity used for force normalization, V_force_ref; if
V_force_ref is V_freestream, then Vt_Ratio = 1 / Advance Ratio

ThrustCoff The rotor thrust coefficient. C 1. = Thrust / (Density ~ref X Pi X R 2% x (Omegapim x R) A2)
Used when Load Type=1 or Load Type=2.Note: The blade element model does not
trim to specified thrust coefficient.

powercoff The rotor power coefficient [Not implemented].

. BLADE PARAMETERS

psio The initial azimuthal position of blade 1; usually (always?) O

http://fun3d.larc .nasa.gov/chapter-6.html

18/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis
PitchHinge The radial position of the blade pitch hinge (normalized by tip radius).
#Blades The number of rotor blades, only used for Load Type=3.
TipRadius The radius of the blade.
RootRadius The radius of the blade root, used to account for the cutout region.

Bladechord The chord length of the blade, only used for Load Type=3. The can only handle
rectangular blade planforms.

FlapHinge The radial position of the blade flap hinge (normalized by tip radius).
LagHinge The radial position of the blade lag hinge (normalized by tip radius).

. BLADE ELEMENT PARAMETERS, ONLY USED WHEN Loa> Tyee=3

LiftSlope;
alpha,L=0
cd0, cdl, cd2 Used to compute the drag coefficient.

Used to compute the lift coefficient.

CL_max, CL_min Limiters to control the lift coefficient beyond the linear region.
cp_max, cD_min Limiters to control the drag coefficient.

Swirl swirl=0 neglects the sources terms that create rotor swirl. swirl=1 includes the
swirl inducing terms.

CL = LifiSlope x (alpha — alphaL.=0,

CD = cd0 + cdl x alpha + cd2~ x alpha2

PitcH ConTROL PARAMETERS, ONLY USED WHEN Loap Tyee=3

Theta0 Collective pitch in degrees, defined at r/R=0.
ThetaTwist Linear blade twist.

Thetals Longitudinal cyclic pitch input in degrees.

Thetalc Lateral cyclic pitch input in degrees.
Pitch-Flap Pitch-Flap coupling parameter, not implemented.

Theta = Theta0O + ThetaTwist X r/R + Thetalc x cos(psi) + Thetals x sin(psi)

. PrescriBeD FLAP PARAMETERS

#FlapHar Number of flap harmonics to include, valid input range is O to 3
BetaO Coning angle in degrees
Betals, Betalc Fist flap harmonics
Beta2s, Beta2c Second flap harmonics
Beta3s, Beta3c Third flap harmonics

Beta = Beta0 + Betals x sin(psi) + Betalc x cos(psi) + Beta2s x sin(2 psi) + Beta2c x cos(2 psi) +
Beta3s x sin(3 psi) + Beta3c x cos(3 psi)

. PRESCRIBED LAG PARAMETERS

#LagHar Number of lag harmonics to include, valid input is O to 3
Delta0 Mean lag angle in degrees

Deltals, Deltalc Fistlag harmonics

Delta2s, Delta2c Second lag harmonics

Delta3s, Delta3c Third lag harmonics

Delta = Delta0 + Deltals x sin(psi) + Deltalc x cos(psi) + Delta2s x sin(2 psi) + Delta2c x cos(2
psi) + Delta3s x sin(3 psi) + Delta3c x cos(3 psi)

. RunniNG AN Overset, Moving MesH RoToRcRAFT SoLution In FUN3D

UNDER CONSTRUCTION
Warning: information incomplete, subject to change, or perhaps even just plain wrong!

This is a very advanced application and it is recommended that the user have experience running
basic Time Accurate cases and simpler Moving Grid cases without the complications of overset

http://fun3d.larc .nasa.gov/chapter-6.html

19/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

meshes.

Overset grid applications require the SUGGAR++ and DiRTlib libraries developed by Ralph
Noack. The user should gain experience with the SUGGAR-++ code for simpler overset cases before
embarking on the more complex rotorcraft problem.

Overset, moving mesh rotorcraft solutions can be divided into those involving rigid blades and those
involving flexible (aeroelastic) blades. The latter case is quite complex, and requires the use of a
“comprehensive” rotorcraft structural dynamics (CSD) code such as CAMRAD II or Dymore
The CSD code provides the structural model for the blade deformation, and furnishes trim algorithms
for determining the basic rotor settings such as the collective and cyclic pitch angles. Currently, only
the “loose coupling” approach has been implemented, limiting the analysis to hover or steady level
flight.

. Basic Steps — Ricip BLADES

The following are the primary steps required to run a rotorcraft simulation in which the blades are
treated as being rigid.

1) Set up the rotor.input and moving_body.input files
2) Generate the component fuselage/background and rotor blade VGRID meshes

3) (Optional) Set up the &slice_data namelist in the fun3d.nm1l file to extract airloads data along the
reference blade

4) Generate the composite mesh with the rotor blades in the t=0 position using the dci_gen utility
code

6) Run the flow solver for one rotor revolution, using --dci_on_the_£1ly to generate the overset
connectivity files; you may optionally use—dci_period NP for this first run (required for subsequent
runs), where NP is the number of time steps taken to complete one revolution (e.g. 360 for 1 deg.
motion per time step)

7) Run the flow solver for a number of additional rotor revolutions, either without --
dci_on_the fly (i.e reuse the dci from step 6), or with --reuse_existing dci in addition to --
dci_on_the f£ly; you also need to use —dci_period NP for any revolution beyond the first one,
where NP is the number of time steps taken to complete one revolution

8) (Optional) Post process the rotor airloads data from step 3 using the process_rotor_data utility
code

Note: Steps 6) and 7) above can be combined into a single run by first ensuring that the only dci file
in the run directory is the initial one (i.e. the [project].dci file), and then using the combination --
dci_on_the fly --reuse_existing dci --dci_period NP command-line options. This will
create the required dci files during the first revolution (since they don’t exist), and then reuse them on
subsequent revolutions. If the --reuse_existing_dci command-line option is omitted, new dci files
will be generated each revolution (unnecessary for rigid blades undergoing cyclic motion).

In addition to the command-line options for the flow solver given above, all overset, moving-grid,
rigid-blade rotorcraft cases with FUN3D will also require

--moving grid --overset_rotor
And one may also choose to use (optional steps 3 and 8 above)

--slice_freq 1 --output_comprehensive_loads

. Basic Steps — ELasTic BLADES

The following are the primary steps required to run a rotorcraft simulation in which the blades are
treated as being elastic, and thus the flow solver is coupled to an external CSD code.

1) Set up the rotor.input and moving_body.input files
2) Generate the component fuselage/background and rotor blade VGRID meshes

3) Set up the &slice_data namelist in the fun3d.nml file to extract airloads data along the reference
blade (Required)

4) Generate the composite mesh with the rotor blades in the t=0 position
5a) Set up and run the comprehensive rotorcraft code to generate reference motion data

5b) Set up and run the comprehensive rotorcraft code using only the comprehensive code’s built-in
linear aerodynamics model

5¢) Generate a blade motion file from the comprehensive code data
6a) Run the flow solver for 1 rotor revolutions, using --dci_on_the_f£ly to generate the overset

http://fun3d.larc .nasa.gov/chapter-6.html

20/77

http://fun3d.larc.nasa.gov/chapter-2.html#suggarpp
http://fun3d.larc.nasa.gov/chapter-2.html#dirtlib
http://www.camrad.com/CAMRADII.html
http://www.ae.gatech.edu/people/obauchau/

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

connectivity files; you may optionally use—dci_period NP for this first run (required for subsequent
runs), where NP is the number of time steps taken to complete one revolution (e.g. 360 for 1 deg.
motion per time step)

6b) Run the flow solver for 1-2 additional revolutions, either without --dci_on_the f1ly (i.e reuse
the dci from step 6a), or with --reuse_existing_dci in addition to --dci_on_the fly and --
dci_period NP

7a) Generate a “delta airloads” file for the comprehensive rotorcraft code

7b) Set up and run the comprehensive rotorcraft code using the current “delta airloads”

8) Go back to step Sc and repeat until “delta airloads” converge and trim targets are met; on
subsequent cycles through step 6, run the flow solver for 2/Nblades revolutions each time, using --
dci_on_the_f£ly (i.e. recompute the dci data) and --dci_period NP

Note: The first pass through Steps 6a) and 6b) above can be combined into a single run by first
ensuring that the only dci file in the run directory is the initial one (i.e. the [project].dci file), and then
using the combination --dci_on_the_fly --reuse_existing_dci --dci_period NP command-
line options. This will create the required dci files during the first revolution (since they don’t exist),
and then reuse them on subsequent revolutions. Note that for subsequent coupling cycles, for which
only partial revolutions are completed in a given run, do not use --reuse_existing_dci, as new dci
files are needed when the blade motion/shape changes.

In addition to the command-line options for the flow solver given above, all overset, moving-grid,
elastic-blade rotorcraft cases with FUN3D will also require

--moving_grid --overset_rotor --comprehensive_rotor coupling 'camrad' --

slice_freq 1

For elastic/coupled blade analysis, a sample PBS run script RUN_LOOSE_COUPLING is provided in the
utils/Rotorcraft directory. This script removes much of the tedium of running a coupled rotorcraft
analysis “by hand” as outlined above. The run script is set up to work with the CAMRAD II
comprehensive code, although the changes to the script to work with other comprehensive codes
should be relatively minor.

Aerodynamic data from FUN3D to the comprehensive code is provided via the FUN3D output file
rotor N.onerev.txt (N the rotor number). This file has the same form and function as the
corresponding file that is output from the OVERFLOW code.

Blade motion data to FUN3D from the comprehensive code is provided via the FUN3D input file
camrad_motion_data_rotor_ N.dat (N the rotor number). Despite the name difference, this file has
the same form and function as the motion.txt file used by the OVERFLOW code.

Note that CAMRAD does not directly use the rotor_N.onerev.txt file. To utilize the

rotor N.onerev.txt file to generate the “delta airloads” file actually used by CAMRAD, an
intermediate translation code is required. Likewise, CAMRAD does directly output the
camrad_motion_data_rotor_ N.dat file needed by FUN3D; again, an intermediary code is
required. Suitable intermediary codes (gen_delta_for_cii and gen_motion_for_cfd) have been
written for OVERFLOW/CAMRAD coupling and can be used with FUN3D/CAMRAD as well.
These intermediary codes may be requested from:

Doug Boyd (NASA Langley Aeroacoustics Branch)

The RUN_LOOSE_COUPLING script relies on the above-mentioned conversion codes.

UTiLity Copes / Scripts / FILES

The FUN3D suite includes several utility codes in the utils/Rotorcraft directory:

dci_gen.£90 Uses (lib)SUGGAR++ to create a composite rotorcraft mesh from
component rotor blade and fuselage/background grids

dci_gen.input A sample input file for the dci_gen code
RUN_DCI_PARALLEL A run script for the dci_gen code

process_rotor_data.£90 Reads the rotor_N.onerev.txt file and corresponding
motion_rotor N.onerev.txt file and generates Tecplot files for
plotting airloads and motion data

RENUMBER_DCI_FILES A script to renumber existing dci files so that a set of dci files generated
for one time step can be reused with a different time step

RUN_LOOSE_COUPLING A script to run a loosely coupled CFD/CSD elastic-blade rotorcraft
simulation

hart2_ref.scr

Sample CAMRAD run scripts set up for compatibility with the

http://fun3d.larc .nasa.gov/chapter-6.html

21/77

mailto:d.d.boyd@nasa.gov

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

hart2_0.scr RUN_LOOSE_COUPLING SCript
hart2_n.scr

| SuBSET OF ROTOR.INPUT VARIABLES USED FOR “FIRsT PRINCIPLES” ROTORCRAFT CASES

Of the parameters in the rotor. input file described above, only the following are needed for
overset, moving mesh cases; zeroes may be entered for all other values. Note that for flexible-blade
simulations the pitch, flap and lag harmonics are not used, although the pitch, flap and lag hinge
locations are used. For flexible-blade simulations, the pitch, flap and lag motions are accounted for in
the motion file provided (indirectly) by the comprehensive rotorcraft code.

No. Rotors, Vinf_Ratio

X0_Rotor, YO_Rotor, ZO0_Rotor

phi2

Vt_Ratio, PitchHinge

No. Blades, TipRadius, RootRadius, BladeChord, FlapHinge, LagHinge

ThetaO, Thetals, Thetalc (ignored for elastic blades)

No. FlapHar, BetaO, Betals, Betalc (ignored for elastic blades)

Beta2s, Beta2c, Beta3s, Beta3c (ignored for elastic blades)

No. LagHar Delta0O, Deltals, Deltalc (ignored for elastic blades)

Delta2s, Delta2c, Delta3s, Delta3c (ignored for elastic blades)

ROTATION SPEED AND TIME STEP

In the discussion below, it is assumed that the geometry represented by the grid is unscaled relative to
the actual configuration; e.g. if the actual rotor radius is 26.833 ft., then the corresponding rotor radius
in the grid used for computations is also 26.833.

The non-dimensional rotor rotation rate is not set directly by the user, but rather via a combination of
Vt_Ratio and TipRadius values in the rotor. input file, and the mach_number value in the
fun3d.nml file:

omega = vt_ratio X mach_number / r_tip (compressible flow)

omega = vt_ratio / r_tip (incompressible flow)

where omega is in radians (per unit nondimensional time).

To set the value of time_step_nondim in the fun3d.nml input file, first decide on the desired
azimuthal resolution for each time step, dpsi. A value of dpsi of 1 degree per time step is usually a
reasonable starting point.

The nondimensional time step may be determined using

dpsi = omega x time_step_nondim x 180 / pi

So that

time_step_nondim = dpsi x pi/ 180 x r_tip / vt_ratio / xmach (compressible)

time_step_nondim = dpsi x pi/ 180 x r_tip / vt_ratio (incompressible)

Tip: As a check, the resulting non-dimensional rotation rate and azimuth change per time step are
output to the screen in the “Rotor info” section. Make sure this output value matches your desired
value to a fair degree of precision, to ensure that the rotor blades are accurately positioned at each

time step. Inaccuracies can occur if, for example, you base your calculation of time_step_nondim on a
value of r_tip = 26.8330 but in the rotor.input file you have a value of r_tip = 26.8333

SuBSET OF MOVING_BODY.INPUT VARIABLES USED FOR “FIRsT PRINCIPLES” ROTORCRAFT CASES

As with all moving body simulations, a moving_body. input file is required. However, the
moving_body.input file for rotorcraft cases is primarily used to define the moving bodies (the rotor
blades) as particular boundary surfaces within the mesh, while the blade motion is specified in the

http://fun3d.larc .nasa.gov/chapter-6.html

22/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

rotor input deck described above . The value of Vt_ratio sets the rotation rate of the rotor while the
values of the theta, beta, and delta variables set the pitch, flap and lag motions of the blades. Note: for
elastic blades, the pitch, flap and lag motions are not set via the rotor. input file, but rather via a
separate “blade motion” file; Vt_ratio does set the rotation rate, however. This differs from the usual
moving body case wherein the body motion is specified in the moving_body. input file. For
rotorcraft cases, the motion_driver variable should not not be specified in the sbody_definitions
namelist, and the sforced_motion namelist should be omitted entirely.

A sample moving_body. input file for a single 4-bladed rotor is shown below

&body_definitions
n_moving bodies = 4,

body_name(l) = 'rotorl_bladel’,
n_defining bndry(l) = 1,
defining bndry(1,1) = 2,
mesh_movement(1l) = 'deform',
body_name(2) = 'rotorl_blade2',
n_defining bndry(2) = 1,
defining bndry(1,2) = 4,
mesh _movement(2) = 'deform',
body name(3) = 'rotorl blade3',
n_defining bndry(3) =1,
defining bndry(1,3) = 6,
mesh_movement(3) = 'deform',
body name(4) = 'rotorl_blade4',
n_defining bndry(4) = 1,
defining bndry(1,4) = 8,
mesh_movement(4) = 'deform',

/

&composite_overset_mesh
input_xml_ file = 'Input.xml 0'

/

4 blades

name is set by *dci_gen* - must use unalt
number of boundaries that define this bla
index 1: boundary number index 2: body nu
blades are elastic

! generated by *dci_gen*

i CREATE THE COMPONENT MESHES

At this point in time, only VGRID meshes can be utilized. The component meshes for a single-rotor
simulation are 1) a fuselage/background mesh and 2) a mesh around a single rotor blade. At this point
in time, the assumption is that all blades on a given rotor are identical. If more than one rotor is
present, with a blade geometry that differs from the first rotor, additional component rotor blade
mesh(es) may be used to define the additional rotor(s). The fuselage/background mesh defines the
region of space surrounding the rotor, and may or may not contain an actual fuselage geometry — i.e.
the fuselage/background mesh can simply be an empty box (or other simple shape) mesh if one
wishes to analyze an isolated rotor. Whether or not an actual fuselage is modeled, it is important that
the fuselage/background mesh have sufficient mesh density in the region of the rotor disk so that 1)
the appropriate flow features can be resolved, and 2) that high-quality interpolation stencils can be
obtained between the background mesh and the blade meshes. In particular, fine rotor meshes and a
coarse background mesh in the vicinity of the rotor disk is a poor practice.

NOTE: The mapbc file for the component blade grid must have the outer boundaries set with a BC
type of -1, rather than the usual characteristic farfield type 3. The value of -1 is used to indicate to
SUGGAR-++ that this is an overset boundary. The fuselage/background grid should have the usual

type 3 BC at its outer boundaries.

The component meshes are required to be oriented in specific directions. The fuselage/background
mesh must be in the standard FUN3D orientation, i.e. with the x-axis in the (nominal) flow direction
and the z-axis “up”. The y-axis should then be oriented following the right-hand rule. The blade mesh
must be oriented such that the x-axis runs out the span of the blade. The y-axis must point in the
“anti-chordwise” direction, i.e. from the trailing edge to the leading edge. The z-axis then points “up”
following the right-hand rule. The origin of the blade axis system should be chosen such that the x-
axis corresponds to the blade feathering/pitch axis. These required orientations for the component

grids are shown in the next two figures.

http://fun3d.larc .nasa.gov/chapter-6.html

23/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Correct Axes Orientation For Blade Component Grid
(x-axis should correspond to blade feathering/pitch axis)

http://fun3d.larc .nasa.gov/chapter-6.html

24/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

Comrect Axes Orientation For Fuselage Component Grid
(location of origin not critical)

. CREATE THE ComPOSITE MESH

A utility code, dci_gen, is provided with the FUN3D suite of codes, in the utils/Rotorcraft
directory. Compiling of the utility code is performed with a top-level “make” in your configuration
directory; alternatively in the configuration directory, cd to utils/Rotorcraft and type make there.
NOTE you will have had to configure with the --with-suggar option (see SUGGAR++).

Before using dci_gen, the rotor. input file should be set up. For rigid-blade analysis, the
collective/cyclic data in rotor. input is used to position the blades in the composite mesh at the
correct orientation at t=0. If this is a simulation with elastic blades, an initial “motion.txt” file must
also be available. For those familiar with the OVERFLOW code for rotorcraft applications, this is the
same file, with the same format, as used with OVERFLOW. However, with FUN3D, this initial
“motion.txt” file must have a very specific name (at the time of writing):

camrad motion data rotor N_t0.dat (N the rotor number). The required motion file may be the
result from an initial comprehensive code analysis using the CSD code’s internal aerodynamics
module, i.e. the initial step in a coupled CFD/CSD coupling. In this case additional motion files will
generated later as the coupling progresses. Alternatively, you may have a final motion file resulting
from some other process; in this case you will have only one motion file, but that motion file must still
be named camrad_motion_data_rotor_N_t0.dat for dci_gen. In the case of elastic blades, the
orientation of the blades at t=0 is determined from this initial motion file, rather than from the
rotor.input file.

Upon execution, dci_gen will prompt the user for input:

1) a project name (for the assembled, composite grid)
2) the name of the VGRID component fuselage grid

3) the name of the VGRID component blade grid for the first rotor (if multiple rotors, additional
component blade grid names will be requested)

4) the initial_azimuth, final_azimuth and azimuthal_increment

http://fun3d.larc .nasa.gov/chapter-6.html 25/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

5) whether or not the blades are considered rigid
6) if more that one rotor was specified, the gear ratio to rotor 1 for each additional rotor

If the blades are rigid, then the specified final_azimuth could larger than the initial_azimuth (some
multiple of the increment), and dci_gen would generate multiple dci files, one for each azimuth.
There is even a provision for doing so in parallel. However, the easiest process, and the only one
described here, is to set initial_azimuth = final_azimuth = 0. In this case, only one dci file is
generated, corresponding to psi = 0. Subsequent dci files are then generated “on the fly” when
running running FUN3D. For elastic blades, this is the only approach available (i. e. only the psi=0
dci file created up front, others computed “on the fly”)

dci_gen will read your rotor. input file (and if elastic, the “motion.txt” file), take the component
VGRID meshes that you specify, and create SUGGAR++ xml commands to position the blade grid
at appropriate locations and orientations around the rotor disk (e.g. at 90 deg. locations for a 4-bladed
rotor, with appropriate pitch settings, etc.). This xml file will be named Input.xml_0, and is the xml
file that should be specified as the input_xml_file in the scomposite_overset_mesh namelist of
the moving_body. input file. dei_gen will then use (lib)SUGGAR++ to generate both a composite
mesh and the corresponding dci file for the rotor in the initial position, at t=0. In the composite mesh,
blade 1 will be aligned with the axis of the fuselage (the x-axis), as shown below.

dci_gen will also set up a mapbc file for the composite grid. In this mapbc file you should find/verify
that the BCs from the original blade component grid have been replicated nblade times, and in
particular the overset BC (-1) should appear for each blade. The family names of the blade and outer
boundaries will be prepended by rotorN_ (N the rotor number) and appended by the blade number.
For example, if the family name for the blade surfaces in the blade component grid was “Blade”, then

in the composite mapbc file, the blades will have family names “rotor1_Blade1”, rotor]_Blade2”, etc.

The BCs and family names of the fuselage/background grid will be unchanged from the component-
grid mapbc file.

Domain connectivity files (dci files) will be generated for each azimuthal angle psi from the initial to
the final value, with the specified increment. A composite mesh is generated only if the initial psi
value is zero.

Below is the resulting 4-bladed composite geometry created from the blade and fuselage component
geometries shown above.

http://fun3d.larc .nasa.gov/chapter-6.html

26/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Blade 3

Z Blade 2

Composite 4-Bladed Rotorcraft (Surface) Gnd

i MaiN SoLver INpuT FiLE

Subsequent to release 10.4.1, the old input file ginput . faces was replaced by a namelist file. Many
of the input parameters for hypersonic (generic gas) cases are given there, as described in the Flow
Solver Namelist Input section.

The generic gas path can currently accommodate perfect-gas, equilibrium gas, and mixtures of
thermally-perfect species in chemical and/or thermal non-equilibrium. The user specifies the gas
model in a separate file called tdata to be defined later.

Note that in the generic gas path, the turbulent model equations are solved in a fully coupled manner
with the other conservation laws.

Two options are available for second-order spatial accuracy using mixed elements. When
flux_construction = roe, then the right and left states are reconstructed to second-order using
primitive variable gradients computed using least squares from the right and left nodes. These
gradients may in turn be limited according to the standard definition of £1ux_limiter in FUN3D.
When flux_construction = stvd, then the right and left states use the nodal values (first-order-
formulation) but a second-order, anti-dissipative correction is introduced using a STVD (Symmetric
Total Variation Diminishing) formulation involving the same nodal values of gradients. In this case
there is no limiting of gradients, other than that occurring in the STVD formulation. The stvd option
is recommended for mixed element cases. The roe option engages a sub-iteration to accommodate
thermodynamic variables with the reconstructed states that sometimes broadcasts warning messages
when the sub-iterations fail to achieve a target residual in a fixed number of sub-iterations.

In the case of a pure tetrahedral element grid flux_construction =multidm is recommended. In
this option, the inviscid flux is computed within a tetrahedral element using information from the

http://fun3d.larc .nasa.gov/chapter-6.html 27177

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

three-dimensional stencil of nodes defining the element. It provides far superior results for heating and
shear across high aspect ratio tetrahedral cells than any of the edge-based reconstruction methods
tested to date. Heating and shear are still best simulated using a semi-structured grid across the
boundary layer and orthogonal to the wall — but if such a grid is not available it is recommended to
convert the grid to a pure tets using the command line option --make_tets and use

flux construction =multidm.

Mach number and Reynolds number per grid unit are computed from the fundamental inputs of
velocity,density, and temperature.

If a non-constant wall temperature boundary condition is specified (see Boundary Conditions for
Generic Gas Option) then the parameter temperature_walldefault serves only to initialize the
surface boundary condition.

The flag chemical_kinetics is engaged only in the case of multiple species defined in file tdata. If
chemical_kinetics is set to frozen for chemically frozen flow then the chemical source term is
never called and species mass fractions can only be changed through the action of diffusion. If it is set
to finite-rate for chemically reacting flow then the chemical source term is called and species
mass fractions change by kinetic action of dissociation, recombination, ionization, and de-ionization.
The flag thermal_energy_model is set to frozen for thermally frozen flow or to non-equilib for
thermally active flow (flow in thermal non-equilibrium). This flag is engaged only when a thermal
non-equilibrium model is specified in the file tdata; otherwise thermal equilibrium is assumed. If it is
set to frozen for thermally frozen flow then the thermal energy exchange source term is never called
and the modeled modal temperatures (vibrational, electronic) can be changed only by the action of
conduction. (Translational temperature still evolves through the action of flow work but this energy is
never transferred to internal energy modes.) If it is set to non-equilib then the source term models
particle collisions in which particle internal energy in the translational, rotational, vibrational, and
electronic modes can be exchanged.

The parameter invis_relax_factor is a relaxation factor on the update, dq, to the conservative
flow variables g. Before an update, dg is divided by the maximum value of five limiting factors
including invis_relax_factor. The first four limiting factors are computed internally and designed
to limit the rate of change of pressure, density, temperature, and velocity. If invis_relax_factor is
set to 1.0, no further limiting is engaged. The parameter visc_relax factor is a relaxation factor
that multiplies only the viscous Jacobian. Its value should be set to 1. 0; it is retained here as a place
holder for future research. The parameter rhs_u_eigenvalue_coef is the eigenvalue limiter. It acts
only on the evaluation of the eigenvalues used on the right-hand-side convective portion of the
residual using Roe’s method. If eigenvalues are less than rhs_u_eigenvalue_coef times the local
sound speed then a formula due to Harten is employed to smoothly limit the eigenvalue. Numerical
tests show that the heating and solution quality near the wall are severely compromised using
eigenvalue limiting when tetrahedra are used throughout. The parameter value should be setto 1.e-
30 (it must be positive definite) in this case. It is retained as an input parameter in case it is needed, as
in the structured grid approach of LAURA, when prismatic elements are introduced. The parameter
lhs_u_eigenvalue_coef is also an eigenvalue limiter but is applied only in the evaluation of the
inviscid Jacobian (left-hand-side) by Roe’s method. Recommended values between .001 and 1.0
provide a more well-determined matrix. Larger values enhance robustness with the possible penalty
of slower convergence, particularly in stagnation regions.

i Gas MopEL INPUT FILE: toara

The file tdata defines the gas model. Information in this file is likely to change from one application
to another, depending on the flow regime, velocity, and atmospheric composition. It contains a list of
key words, sometimes followed by numeric values, which identify components of the gas model.
One or more spaces must separate keyword and values when appearing on the same line. Spaces may
appear to the left or right of any key word. The first line of the file must not be blank. Options for
perfect-gas, equilibrium gas, and mixtures of thermally perfect gases can be accommodated. An
example of the input data file tdata used for each will be presented.

. PerrecT Gas

The perfect-gas option is engaged with any of the following keywords: perfect_gas, PERFECT_GAS,
Perfect_Gas, Perfect_gas.

If no further data is provided in this file, this single line tdata file will assume the following
parameter values in SI units for air:

gamma 1.4

mol_wt 28.8

sutherl 0.1458205E-05
suther2 110.333333
prand 0.72

http://fun3d.larc .nasa.gov/chapter-6.html 28/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

Here, gamma is the gas specific heat ratio, mol_wt is the gas molecular weight, prand is the gas
Prandtl number, and suther1 and suther2 are the first and second Sutherland’s viscosity
coefficients where

mu = sutherl*T**(3/2)/(T +suther2)

These values can be modified and explicitly defined in the tdata using the species_properties
namelist by placing the keyword sspecies_properties in the second line of tdata followed by the
gas parameters and / at the last line of the file. For example,

perfect_gas
&species_properties
gamma = 1.4

mol _wt = 28.0
sutherl = 0.1E-05
suther2 = 110.3
prand = 0.7

/

_ EauiLiBrium GAs

To engage the Tannehill curve fits for thermodynamic and transport properties of equilibrium air the
following keyword should be used in the first line of the tdata file:

equilibrium air_t

To use a table look-up capability for equilibrium gases the following keyword should be placed in the
tdata file:

equilibrium air r

Table look-up data for air is contained in the files eq_air_coeffs.asc and eq_air_ 1lk_up.asc
which may be found in the PHYSICS_MODULES directory. Note that this option still uses the Tannehill
transport properties. No additional inputs or files are required to engage the Tannehill option for
equilibrium air.

- MixTure oF THERMALLY PERFECT GASES

two
N2 .767

02 .233

NO
H2
N2
H20

OH

The first entry of the file may contain an optional flag which identifies the thermal model. If no
thermal flag is present or if the flag says one, one, or oNE then the gas is in thermal equilibrium (a
one-temperature model). If there is no thermal flag then the first line of this file must contain species
information as described in the next paragraph; this file cannot begin with a blank line. If the flag says
two, Two, or TWo then the gas is modeled using a two-temperature model. The two temperature model
assumes energy distribution in the translational and rotational modes of heavy particles (not electrons)
are equilibrated at temperature T and all other energy modes (vibrational, electronic, electron
translational) are equilibrated at temperature T_V. No other thermal models are currently available;
however, the source code is written to accommodate an arbitrary number of additional thermal
degrees of freedom.

Subsequent file entries include species names, appearing exactly as defined in the master data file
species_thermo_data (see below). If a value appears to the right of the species name, separated by
one or more spaces, then that value denotes the mass fraction of the species at an inflow boundary. If
no value appears to the right of the species name then that species is not present on inflow but may be
produced through chemical reactions elsewhere in the flow field.

http://fun3d.larc .nasa.gov/chapter-6.html 29/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Multiple instances of inflow boundaries can be accommodated. However, this option is not yet been
exercised. For example, air may flow in from an inlet boundary and fuel may flow in from a separate
inflow port. A blank line (line (7) in the example) separates instances of inflow boundary conditions.
If new species are introduced in subsequent instances they are automatically initialized to zero at any
previous inflow boundary. They are also available as a reactant throughout the entire flow field.

. THERMODYNAMIC DATA INPUT FiLE

The file species_thermo_data is the master file for species thermodynamic data. Here is a sample.

C

&species_properties

molecule = .false.

ion = .false.

elec_impct_ion = 11.264 ! Moore ? 4.453 in mars.F
siga = 7.5e-20, 5.5e-24, -1l.e-28

mol wt = 12.01070

/

3
0.64950315E+03 -0.96490109E+00 0.25046755E+01 -0.12814480E-04
0.19801337E-07 -0.16061440E-10 0.53144834E-14 0.00000000E+00
0.85457631E+05 0.47479243E+01 200.000 1000.000

-0.12891365E+06 0.17195286E+03 0.26460444E+01 -0.33530690E-03
0.17420927E-06 -0.29028178E-10 0.16421824E-14 0.00000000E+00
0.84105978E+05 0.41300474E+01 1000.000 6000.000
0.44325280E+09 -0.28860184E+06 0.77371083E+02 -0.97152819E-02
0.66495953E-06 -0.22300788E-10 0.28993887E-15 0.00000000E+00

0.23552734E+07 -0.64051232E+03 6000.000 20000.000
gamma_air
&species_properties
molecule = .true.
ion = .false.
mol wt = 28.8
sutherl = 0.1458205E-05
suther2 = 110.333333

prand = 0.7

/

1

0.00000000E+00 0.00000000E+00 0.10000000E+01 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.0 100000.000

A species record consists of the species name, a species properties namelist, the number of
thermodynamic property curve fit ranges, and the curve fit coefficients for each range.[1]

' B. J. McBride and S. Gordon, “Computer Program for calculation of Complex Chemical
Equilibrium Compositions and Applications”, NASA RP 1311, June 1996.

. INTRODUCTION

The basic input parameters for running fixed-mesh, time-dependent cases, are described under Flow
Solver Input Deck . This section describes other essential information needed to run fixed-mesh
time-dependent cases, and time-dependent cases in which the geometry moves.

Nondimensionalization
Temporal Order of Accuracy
Temporal Error Controller
Animation of Unsteady Flows

é NONDIMENSIONALIZATION

A description of the nondimensionalization is under construction; in the interim, the description given
in the CFL3D documentation will suffice. For compressible flows, the two codes use exactly the
same nondimensionalization. Note that for incompressible flow (for which CFL3D has no
counterpart), the reference velocity is the freestream velocity, rather than the freestream speed of
sound.

. TemporAL ORDER OF ACCURACY

http://fun3d.larc .nasa.gov/chapter-6.html

30/77

http://cfl3d.larc.nasa.gov/Cfl3dv6/V5Manual/Nondim.pdf

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Currently, the available time-advancement schemes in FUN3D are multistep, backward difference
(BDF) schemes. Second-order accuracy (itime = 2) has been the order of choice for a long time,
although in Version 10.0, third order (itime = 3) and an “in between” second and third order scheme
(“BDF2opt”, itime = -3) were added. Note that the third-order scheme is not guaranteed to be stable;
in practice this is usually not a problem, but in a few cases the lack of guaranteed stability has lead to
solutions which diverge after a very long time. The BDF2opt is guaranteed to be stable and hence is
recommended if accuracy higher than second order in time is needed. Bear in mind that for practical
applications, solution accuracy is likely to be limited by low grid resolution, so a high-order time
advancement may not lead to improved overall accuracy. First order accuracy in time is rarely used.
A possible exception being to reproduce steady state convergence while running in unsteady mode —
as may be needed for static aeroelastic applications, for example. With a very large time step (e.g.
1.e20) and first-order time accuracy (itime=1), the time-accurate path will converge exactly as the
steady state path (itime=0).

- TemporaL ERROR CONTROLLER

The name is somewhat misleading, in that this controller addresses one source of temporal errors,
namely, insufficient subiterations. As described in the Flow Solver Input Deck section, the user
must specify the number of subiterations in pseudo time in between each physical time step. Ideally,
enough subiterations should be used to converge the mean flow and turbulence residuals to machine
zero. That of course is prohibitively expensive, so a more reasonable number of subiterations must be
used. The question then is, how many subiterations are enough? It has also been observed that a
certain points during unsteady simulations, subiterations converge faster, and conversely slower at
other times in the simulation. Using a fixed number of subiterations sufficient for the harder portions
means there will be an excess of iterations on the easier portions, thereby wasting CPU time.

The temporal error control options seeks to mitigate these issues by providing a well-founded cutoff.
When using the controller, a reasonably large number of subiterations is specified, perhaps 25 to 75.
The error controller itself is invoked with the command line option

--temporal_ err_ control TOL

where TOL is a real valued tolerance. Limited calibration studies suggest a value of 0.05 to 0.1 is
reasonable. When run with this command line option, the solver will obtain an estimate of the
temporal error, and when the x-momentum and turbulence residuals drop below TOL times the
estimated error, the subiteration loop will terminate. If the tolerance is not reached by the end of the
specified number of subiterations, a warning message is printed.

- AnimaTION OF UNsTEADY FLOWS

This information has been moved to Flow Visualization Output Directly From Flow Solver

. INTRODUCTION

This section describes the capability for simulating flows with moving/changing geometry. It is
strongly recommended that the user become familiar with time-dependent stationary-geometry
simulations before attempting moving-geometry cases.

Moving Bodies/Grids — General Information
Post-Processing/Repartitioning Moving Grid Cases
Defining Moving Bodies

Specified Body Motion

Specified Observer Motion (for animation)

Body Motion via File Input

6DOF Motion

Aeroelastic Motion (Mode Based)

Sample moving_body.input Files

Mesh Deformation

- Moving BopiEs/GRIDS — GENERAL INFORMATION

NOTE: this is an active area of development, so implementation or input details may change
with time.

http://fun3d.larc .nasa.gov/chapter-6.html

31/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

The ability to move the grid as a rigid body (no deformation) was introduced in Version 10.0; prior
versions have no provisions for moving geometries. Later versions have increased capability for
deforming meshes, thereby allowing some distinction between “body motion” and “grid motion”.
The current nomenclature is such that one specifies the motion of a “body” (a collection of one or
more solid surfaces within the grid), and associates with that body a mechanism for moving the
surrounding grid points — either rigidly, so that all points move in concert with the body, or in a
deforming manner so that points near the body move in concert with the body, but points far away
move little, if at all.

Grid motion is enabled via the command line option
--moving_grid

In addition to this command line option, an additional file is required to specify the details of the body
motion, and to specify how the grid is moved to accommodate the motion of the body.

The --moving grid command line and moving_body.input file are also required for postprocessing
moving grid solutions with party. Contrary to earlier versions of the flow solver, the part files are not
modified as the grid is moved. Thus the part files always contain the grid at is was at t=0; the restart
(flow) files now contain the mesh coordinates for the current position. Thus it is not possible to restart
old moving grid solutions with the current solver.

Data in the moving_body .input file is used to define the motion of one or more “bodies”, which are
user-defined collections of solid boundaries in the mesh. Grid motion is specified to accommodate the
motion of the bodies: either rigid (all nodes of the mesh rotate/translate in unison with the body) or
deforming (the mesh locally deforms to accommodate the motion of the solid body). Rigid mesh
movement is very fast compared to a flow solution; mesh deformation requires the iterative solution to
an elasticity PDE, and can range in cost from a fraction of a (time-accurate) flow solve to more than a
(time-accurate) flow solve, depending on the stiffness of the elasticity PDE. Mesh deformation
requires additional input files compared to rigid mesh motion, and is discussed further in the Mesh
Deformation section

Two useful commandline options, especially for complex mesh movements, are
--grid motion_only

which moves the grid without solving the flow equations, and
--body_motion_only

which moves only the body without solving the elasticity equations or the flow equations. These
options will generally be used with the Animation of Unsteady Flows capability so that the resulting
body/grid motion can be visualized. The first option, --grid_motion_only is all that is needed for
checking rigid mesh motion input data, as the cost of moving all mesh points is very small, and there
is no chance of generating negative volumes during the course of moving. For deforming meshes, --
body_motion_only should be used first to verify that the desired body motion has been input; this
process runs very quickly (relative to a flow solve). Once the body motion is verified, the case can be
rerun with --grid_motion_only to verify that the mesh can be deformed to follow the specified
body motion without generating negative volumes. See the section on Mesh Deformation for more
information. Once the body/mesh motion input data has been verified are correct, the flow solution
may be carried out.

If the command line option --moving grid is invoked, the file moving_body.input must be present
in the project directory. This file may contain data for one or more of the following namelists:

&body_definitions — defines which mesh surfaces define the moving bodies

&forced_motion — specifies body motion as a function of time

&observer_motion — specifies motion of an observer as a function of time for animation purposes
&motion_from_file — specifies rigid grid (and body) motion via a file containing a 4x4 transform
matrix as a function of time; allows general, user-defined motion, compared to the limited types of
motions available in the s forced_motion namelist

&surface_motion_from_file — specifies body motion from one or more files; must be used with
deforming mesh option; the surface itself may be rigid or deforming; allows general, user-defined
motion, compared to the limited types of motions available in the s forced_motion namelist

&sixdof_motion — specifies mass/inertial properties for bodies with 6DOF motion

&aeroelastic_modal_data — specifies modal data for static/dynamic aeroelastic analysis via time
integration of the structural dynamics equations within FUN3D (Version 10.4 and higher)

http://fun3d.larc .nasa.gov/chapter-6.html

32/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

&composite_overset_mesh — specifies component meshes to associate with moving and non-
moving bodies in the simulation — only used if overset grids are utilized. See Overset Grids for more
information.

Descriptions of the variables in each namelist, and their default values, are given in subsequent
sections. Note that because the data are in namelists, only data that is different from the default
typically need be specified. The exception is that some data for the body_definitions namelist MUST
be specified to define the body of interest (e.g. the default number of bodies is 0 and must be
changed); data for the other namelists may be optional depending on the application.

Sample moving_body.input files and the resulting body/grid motions are given below (animations
of the motion require Flash Player to view).

- PosT-PRoCESSING/REPARTITIONING Moving GRID CASES

To post-process (or repartition) moving grid cases using party, you must use the command line option
--moving grid.

For versions 10.4 and higher, in the post-processing mode, party will give the option of viewing the
results in the inertial frame or in a moving-body frame. Note: the choice is only meaningful for
specified motion cases or 6DOF cases; for aeroelastic and surface-from-file cases, both options give
the inertial-frame view. Below, pressure contours and velocity vectors from a falling (6DOF) cylinder
case are shown from both the inertial and body frames. Pressure, being a scalar, appears the same in
both views. The fluid velocity at the surface in this viscous flow problem must be identical to the
surface velocity: in the inertial frame, this is the instantaneous body velocity (in -z direction); in the
body frame, the body (and hence fluid) velocity is zero.

2.7 F

2.8}

B.24

0.9995

lInertial Frame|

http:/fun3d.larc .nasa.gov/chapter-6.html

33/77

http://macromedia.com/

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

0.6

0.4

0.2

|Body Frame|

-0.6 -0.4 -0.2 0

- DerininG Moving Bobies

The following namelist, which is input via the moving_body. input file, is used to specify one or
more bodies as collections of boundary surfaces within the mesh. This namelist is required for all
moving body/mesh cases, i.e. whenever the --moving_grid command line option is invoked. The
input structure is fairly general in that the motion of multiple bodies may be specified, and
connections between various bodies may be specified via family trees. For example, a wing-flap
system may be defined such that the flap is a child of the wing. Thus the flap inherits any motion
specified for the wing, and may have its’ own motion specified on top of that. For example, the wing
may be specified to translate up and down, and the flap to rotate about a hinge line such that the net
motion of the flap is a combination of translation and rotation. Such a wing-flap system is given in
one of the examples below.

A (G) following a variable description means that this is a global descriptor, i.e. applicable to all
moving bodies; a (B) following a variable description means that the data may be specified for each
moving body

&body_definitions namelist

n_moving bodies Number of bodies in motion (G) (Default: 0)
body_name Name to identify the body (B) (Default: **)

parent_name Name of the parent body (B) (Default: >’ [indicates inertial ref. frame as
parent])

n_defining_bndry Number of boundaries that define the body (B) (Default: 0)
defining_bndry List of n_defining_bndry boundaries that define the body (B) (Default: 0)
motion_driver Mechanism by which body motion is driven (B) (Default: ‘none’ Options:
‘forced’, ‘6dof’, ‘surface_file’, ‘motion_file’, ‘aeroelastic’)
mesh_movement Type of grid movement associated with body motion (B) (Default: ‘static
Options: ‘rigid’, ‘deform’)

il

x_mc X-coordinate of moment center at t=0 (B) (Default: xmc from input file)
y_mc Y-coordinate of moment center at t=0 (B) (Default: ymc from input file)

http://fun3d.larc .nasa.gov/chapter-6.html 34/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

z_mc Z-coordinate of moment center at t=0 (B) (Default: zmc from input file)

s_ref Reference area (non-dimensional) for force/moment normalization (B)
(Default: sref from input file)

c_ref Reference length (non-dimensional) for force/moment normalization (B)
(Default: cref from input file)

b_ref Reference length (non-dimensional) for force/moment normalization (B)
(Default: bref from input file)

move_mc Flag to move (1) or leave the moment center fixed in space(0) (B) (Default:

9]
dimensional_output Logical flag to output the body state data (displacements, velocities, and aero
forces for each body) in dimensional form for forced or 6DOF motions (G)
(Default: .false.)
body_frame_forces Logical flag to output the (aerodynamic) forces/moments on the body in the
body-frame (G) (Default: false. i.e. output forces/moments in inertial frame)
ref_length Reference length for converting to dimensional output (G) (Default: 1.0 ft.)
Reference density for converting to dimensional output (G) (Default:
0.002378 slug/ft/ft/ft)

Reference velocity for converting to dimensional output (G) (Default: 1117.0
ft/sec)

output_transform Output 4x4 transform matrix at each time step for each body (G) (Default:
false.)

ref_density

ref_velocity

. SeeciFiep Booy Motion

The following namelist, which is input via the moving_body. input file, is used to specify how the
body is defined via the sbody_definitions namelist move as a function of time. Note that this is
one of several ways body motion may be specified, and is appropriate if the desired body motion may
be described as a simple rigid-body translation or rotation, with constant velocity or sinusoidally-
varying displacement. For specified motions not amenable to such basic descriptions, either a 4x4
transform matrix for the (rigid) body may be specified at each time step, or the (rigid or deforming)
body surface points may be specified at each time step (see Body Motion via File Input), so that any
desired motion can in principle be defined (including shape-morphing bodies).

A (B) following a variable description means that the data may be specified for each moving body

&forced_motion namelist

rotate Type of rotational motion O=none, 1=constant rotation rate, 2=sinusoidal
(B) (Default: 0) For type 2, theta = rotation_amplitude x sin(2 X pi x
rotation_freq x t), where t=nondimensional time

Rotation rate (non-dimensional) associated with rotate=1 (B) (Default:
0.0)

Rotation reduced frequency (non-dimensional) associated with rotate=2
(B) (Default: 0.0)

Rotation phase shift (degrees) associated with rotate=2 (B) (Default: 0.0)
Rotation phase shift (degrees) applied to transform matrix (B) (Default:
0.0)

Rotation amplitude (degrees) associated with rotate=2 (B) (Default: 0.0)

rotation_rate

rotation_freq

rotation_phase

rotation_tphase

rotation_amplitude

http://fun3d.larc .nasa.gov/chapter-6.html

rotation_origin_x
rotation_origin_y
rotation_origin_z
rotation_vector_x
rotation_vector_y
rotation_vector_z
rotation_start
rotation_duration

translate

translation_rate

translation_freq

X-coordinate of rotation center (B) (Default: 0.0)

Y -coordinate of rotation center (B) (Default: 0.0)

Z-coordinate of rotation center (B) (Default: 0.0)

X-component of unit vector along rotation axis (B) (Default: 0.0)

Y -component of unit vector along rotation axis (B) (Default: 1.0)
Z-component of unit vector along rotation axis (B) (Default: 0.0)
Start time (non-dimensional) of rotational motion (B) (Default: 0.0)
Duration (non-dimensional) of rotational motion (B) (Default: 1.0e99)

Type of translational motion O=none, 1=constant translation rate,
2=sinusoidal (B) (Default: 0) For type 2, displacement =
translation_amplitude x sin(2 x pi x translation_freq x t), where
t=nondimensional time

Translation rate (non-dimensional) associated with translate=1 (B)
(Default: 0.0)

Translation reduced frequency (non-dimensional) associated with
translate=2 (B) (Default: 0.0)

35/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis
translation_phase Translation phase shift (degrees) associated with translate=2 (B) (Default:
0.0)

translation_tphase Translation phase shift (degrees) applied to transform matrix (B)
(Default: 0.0)

translation_amplitude Translation amplitude (grid units) associated with translate=2 (B)
(Default: 0.0)

translation_vector_x X-component of unit vector along translation axis (B) (Default: 0.0)

translation_vector_y Y-component of unit vector along translation axis (B) (Default: 1.0)

translation_vector_z Z-component of unit vector along translation axis (B) (Default: 0.0)
translation_start Start time (non-dimensional) of translational motion (B) (Default: 0.0)

translation_duration Duration (non-dimensional) of translational motion (B) (Default: 1.0e99)

. Output DATA

In version 10.4 and higher, specified body motion (sforced_motion namelist) will result in the
following ASCII output files being generated (below, in filenameBody_N, N is the body number):

PositionBody_N.hst Contains “CG” (rotation center) position and Euler angles (pitch,
roll, yaw) as functions of time; default output is non-dimensional;
Tecplot format. Note that Euler angles have multiple singularities
and are non-unique!

VelocityBody N.hst Contains linear and angular velocity components of the CG
(rotation center) as functions of time; default output is non-
dimensional; Tecplot format.

AeroForceMomentBody_N.hst Contains the aerodynamic forces and moments (about the specified
moment center) acting on the body as functions of time; default
output is non-dimensional; Tecplot format.

TransformMatrixBody_ N.hst (Optional) Contains the 4x4 transform matrix for the body as a
function of time; format is described in the file header. Output only
if output_transform = .true. in namelist sbody definitions.
A similar file, TransformMatrixObserver.hst (for the motion of
the observer frame) is also output if output_transform = .true.

Note: these files are created from scratch if irest=0 or irest=-1; any existing files with these names
are overwritten. The files are appended to (if they exist) when restarting with irest=1. If they have
been deleted before restarting with irest=1 they will be created but the preceding history will be
lost.

In addition to the above files, the [project]_hist.dat file contains the X, y, and z components of the
specified rotation vector, as well as the position of the rotation origin as functions of time. Except for
special cases, the rotation vector components will differ from the Euler angles. Note that the data in
this file is for body 1 only, and is also output from versions prior to 10.4.

- SpECIFIED OBSERVER MOTION (FOR ANIMATION)

The following namelist, which is input via the moving_body. input file, is used to specify the motion
of an observer. This optional namelist is only used when requesting Flow Visualization Output
Directly From Flow Solver for cases that involve moving bodies, and is not available in versions
prior to 10.4. If the observer_motion is specified, then the resulting animation will be from the
observer’s reference frame rather than the (default) inertial reference frame. This capability may be
used for, among other things, assessing relative motions in complex dynamic motions (e.g. insuring
that the cyclic pitch in a rotor simulation is correctly enforced). The data to specify observer motion is
analogous to specifying body motion; the observer motion is applied on a global basis (G).

&observer_motion namelist

ob_parent_name Parent reference frame for observer (G) (Default: >’ [indicates inertial
ref. frame]
ob_rotate Type of rotational motion O=none, 1=constant rotation rate,
2=sinusoidal (G) (Default: 0)
ob_rotation_rate Rotation rate (non-dimensional) associated with rotate=1 (G)
(Default: 0.0)
ob_rotation_freq Rotation reduced frequency (non-dimensional) associated with

rotate=2 (G) (Default: 0.0)
ob_rotation_phase Rotation phase shift (degrees) associated with rotate=2 (G) (Default:

http://fun3d.larc .nasa.gov/chapter-6.html 36/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

0.0)

ob_rotation_tphase Rotation phase shift (degrees) applied to transform matrix (G)
(Default: 0.0)

ob_rotation_amplitude Rotation amplitude (degrees) associated with rotate=2 (G) (Default:
0.0)

ob_rotation_origin_x X-coordinate of rotation center (G) (Default: 0.0)
ob_rotation_origin_y Y-coordinate of rotation center (G) (Default: 0.0)
ob_rotation_origin_z Z-coordinate of rotation center (G) (Default: 0.0)
ob_rotation_vector_x X-component of unit vector along rotation axis (G) (Default: 0.0)
ob_rotation_vector_y Y-component of unit vector along rotation axis (G) (Default: 1.0)
ob_rotation_vector_z Z-component of unit vector along rotation axis (G) (Default: 0.0)
ob_translate Type of translational motion O=none, 1=constant translation rate,
2=sinusoidal (G) (Default: 0)
ob_translation_rate Translation rate (non-dimensional) associated with translate=1 (G)
(Default: 0.0)

ob_translation_freq Translation reduced frequency (non-dimensional) associated with
translate=2 (G) (Default: 0.0)

ob_translation_phase Translation phase shift (degrees) associated with translate=2 (G)
(Default: 0.0)

ob_translation_tphase Translation phase shift (degrees) applied to transform matrix (G)
(Default: 0.0)

ob_translation_amplitude Translation amplitude (grid units) associated with translate=2 (G)
(Default: 0.0)

ob_translation_vector_x X-component of unit vector along translation axis (G) (Default: 0.0)
ob_translation_vector_y Y-component of unit vector along translation axis (G) (Default: 1.0)
ob_translation_vector_z Z-component of unit vector along translation axis (G) (Default: 0.0)

If it is desired to have the observer in the frame of a moving body whose motion is specified, or
results from 6DOF motion, then all that is needed is to set ob_parent_name equal to the name of that
body (in quotes), without any further sobserver_motion data. There may be cases in which there is
no body with the desired motion, in which case the sobserver_motion parameters above can be
used to specify the motion relative to the ob_parent_name reference system. Note: a body whose
motion is specified via file input, or whose motion is the result of aeroelastic motion, cannot be used
as the ob_parent_name.

http://fun3d.larc nasa.gov/chapter-6.html 3777

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

- Booy Morion via FiLE INpuT

There are currently two ways to specify arbitrary body/grid motion via user-supplied files to describe
the motion. The first is applicable to rigid-body motion with either rigid or deforming meshes. The
second is applicable to either rigid or deforming bodies but must be used in conjunction with the
deforming mesh motion.

1) Specifying the 4x4 Transform Matrix as a Function of Time — Rigid Body / Rigid or Deforming Grid

To utilize this option, you must set motion_driver = 'motion_file' in the sbody definitions
namelist. In addition, at least some data in the smotion_from file namelist must be specified:

&motion_from_file namelist

n_time_slices_file Number of time steps at which the transform matrix will be supplied (B)
(Default: 0)

http://fun3d.larc nasa.gov/chapter-6.html 38/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

repeat_time_file Non-dimensional time at which the specified motion will repeat (B) (Default:
1.99)

motion_file Name of the file containing the 4x4 transform matrix of the body (B)
(Default: » — a valid file name MUST be specified by the user)

motion_file_type Type of motion file: ‘transform_matrix’, the 4x4 transform matrix, or
‘inverse_transform_matrix’, the inverse of the transform matrix (B) (Default:
‘transform_matrix’)

As used in FUN3D, the 4x4 transform matrix at time t is defined so as to take the body from its
position at t=0 in the inertial frame to its current position. The inverse transform does the opposite, i.e.
maps the body from its current position to its position at t=0. If the body undergoes a rotation of theta
(radians) about a point that at t=0 is given by (x0,y0,z0), and rotates about an (instantaneous) axis
defined by the unit vector (nx,ny,nz), and furthermore undergoes a translation that moves the rotation
center (center of gravity) by an amount (dx,dy.dz) from its initial position (x0,y0,z0) to its current
position (xcg,ycg,zcg), then the transform matrix M is given by:

M = rll rl2 rl3 -(rll*x0+rl2*y0+r13*z0)+x0 + dx
r2l r22 r23 -(r21*x0+r22*y0+r23*z0)+y0 + dy
r31 r32 r33 -(r31*x0+r32*y0+r33*z0)+z0 + dz

0 0 0 1

where the pure rotational components of M are given by:

rll = (1 - cost)*nx*nx + cost
rl2 = (1 - cost)*nx*ny - nz*sint
rl3 = (1 - cost)*nx*nz + ny*sint
r2l = (1 - cost)*ny*nx + nz*sint
r22 = (1 - cost)*ny*ny + cost
r23 = (1 - cost)*ny*nz - nx*sint
r3l = (1 - cost)*nz*nx - ny*sint
r32 = (1 - cost)*nz*ny + nx*sint
r33 = (1 - cost)*nz*nz + cost
and where:
cost = cos(theta)
sint = sin(theta)

Note that the 4th row of the transform matrix should always be (0,0,0,1).

The instantaneous center of gravity (rotation center) is given by:

xcg = x0 + dx
ycg = y0 + dy
zcg z0 + dz

See also Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications (p 6-
7).

File Format:

The transform file(s) are ASCII files. The transform file contains 9 (nine) header lines (which are
ignored but must be present), and for each of the n_time_slices_file steps, a line with the value of
the non-dimensional time, a line with the x,y,z coordinates of the body “center of gravity” (center of
rotation), and four lines defining each row of the 4x4 transform matrix.

Note: The input transform option does not directly support parent-child motions. All input transforms
must be specified relative to the inertial frame. This also implies that in the sbody_definitions
namelist, parent_name = '' for any body for which motion_driver = 'motion_file'

The following is an example of an input 4x4 transform file:

4x4 Transform Matrix For Body 1
Written as:
loop over time steps
write() simulation_time
write() xcg, ycg, zcg
do i=1,4
write() transform matrix(i,j),j=1,4)

http://fun3d.larc .nasa.gov/chapter-6.html 39/77

http://fun3d.larc.nasa.gov/papers/biedron_orlando_09.pdf

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

end do
end time step loop
0.0000000000E+00
0.2500000000E+00 0.0000000000E+00 0.0000000000E+00
0.1000000000E+01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.1000000000E+01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.1000000000E+01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.1000000000E+01
0.3228110000E+00
0.2500000000E+00 0.0000000000E+00 0.0000000000E+00
0.9999968340E+00 0.0000000000E+00 0.2516342349E-02 0.7914986049E-06
0.0000000000E+00 0.1000000000E+01 0.0000000000E+00 0.0000000000E+00
-0.2516342349E-02 0.0000000000E+00 0.9999968340E+00 0.6290855872E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.1000000000E+01
0.6456220000E+00
0.2500000000E+00 0.0000000000E+00 0.0000000000E+00
0.9999873485E+00 0.0000000000E+00 0.5030185447E-02 0.3162865712E-05
0.0000000000E+00 0.1000000000E+01 0.0000000000E+00 0.0000000000E+00
-0.5030185447E-02 0.0000000000E+00 0.9999873485E+00 0.1257546362E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.1000000000E+01
etc.

The file format is the same regardless of whether motion file type is ‘transform_matrix’ or

‘inverse_transform_matrix’

It may be noted that this file format is identical to that generated when output_transform =
.true. in the sbody definitions namelist. So, if the motion file type is ‘transform_matrix’

and the file contains the transform at times corresponding exactly to each time step in the simulation,

the output transform file can be compared (to machine precision) against the input transform file to
verify that the input data has been read correctly.

As implied above, the time increments in the motion_f£ile need not correspond to the time step
specified in the fun3d.nml file; however, it is recommended that this be the case. If the time
increments in the motion_file do not correspond to the time step specified in the fun3d.nml file,

the specified transforms are “interpolated” to the time dictated by the time step. Interpolated is quoted
because in fact transform matrices cannot be directly interpolated. Rather, the transforms are first
converted into quaternions, the quaternions (and centers of gravity/rotation) are linearly interpolated
and then recast as the required transform matrix. This interpolation process has not been widely tested
at this point in time.

2) Specifying the Body as a Function of Time — Rigid or Deforming Body / Deforming Grid

NOTE: this option requires that Mesh Deformation be used for grid movement.

If the ssurface motion_from_ file namelist is specified in the moving body.input file, i then the
solver will attempt to read in the specified number of files for the body:

&surface_motion_from_file namelist

n_time_slices Number of files defining motion of the body (B) (Default: 0)
repeat_time Non-dimensional time at which motion in files will repeat (B) (Default: 1.e99)

The names of the file(s) containing the surface data as a function of time MUST adhere to the naming
convention given below. The points defining the surface(s) in the file(s) must correspond to the
surface(s) defined in the sbody_definitions namelist. Generally speaking, the time span covered
by these files should either encompass the time span of the current run, or the period of motion if the
body motion is cyclic. The exception to this is for static aeroelastic cases, where the flow solver is
only periodically coupled to a structural solver; in this case only one surface file is read in (for any
one body) at the start of a run, and the TIME data is ignored (and in fact is not required).

The time values given in the files need not correspond to increments of time as specified by the
parameter time_step_nondim in fun3d.nml (DT in the ginput.faces in release 10.4.1 and before)
(though it is probably best to do so). For example, if DT=1.0, then as the code executes, the non-
dimensional time runs as 0.0, 1.0, 2.0, 3.0... The times specified at the top of the surface files (see
below) might be 0.0, 2.5,5.0,7.5... In this case the positions defined in the files are linearly
interpolated in time to the current solver time.

Surface File Naming Convention:
{project}.bodyN_timestepM

where:

http://fun3d.larc .nasa.gov/chapter-6.html

40/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis
N is the body number, 1...Number of Moving Bodies

M is the file number, 1...Number of Surface Files Defining Boundary Motion
File Format:

The surface files are ASCII Tecplot files, in FEPOINT format. A time value must appear in the title
line as indicated below. An exception to the requirement of a time value appearing in the title line is if
there is only one surface file specified for the current run for the current body; in that case the time
value is optional, and is ignored if present. The file must contain the variables X, Y, Z, and ID for
each point on the surface, where ID is the GLOBAL node number of the surface point; see below for
instructions how to generate a baseline tecplot file containing the required ID information. While the
surface file must have X, Y, Z and ID as the first 4 values as shown, additional variables may also be

present — they will be ignored.

The following is an example of an input surface file:

TITLE

="MyTitle"

VARIABLES = "X" "y" "g" "
T = "TIME 0.563380281690E+02", I = 27379 J =

ZONE

.749999803300000E+00
.749999709200000E+00
.749999596400000E+00

.749999306600000E+00
.749999122200000E+00

D"

0.
.466716000000000E-02
.614341000000000E-02
.773828000000000E-02
.945972000000000E-02
.113178000000000E-01

332401000000000E-02

54616,

F=FEPOINT

.568688647000000E-03
.581249831300000E-03
.594249581500000E-03
.608274493500000E-03
.623389823100000E-03
.639686203200000E-03

0
0
0
0.749999463300000E+00
0
0
0

O O OO oo
oo ooooo

.749998905500000E+00 .133233000000000E-01 .657242011700000E-03

many lines of similar x,y,z,id data deleted

-0.179577227400000E+00 0.126451000000000E+01 -0.150364604100000E+00

-0.180001486000000E+00 0.123791000000000E+01 -0.148198832700000E+00

-0.179293826000000E+00 0.129235000000000E+01 -0.152598086400000E+00
24130 24058 24057 24057
24058 24059 23940 23940
24129 24130 24056 24056
337 2573 335 335
23966 23967 23916 23916
24059 24061 24060 24060
24126 24129 24128 24128

many lines of similar face connectivity data deleted

1218 1193 1192 1192
1142 1130 1718 1718
24910 24899 25991 25991
24899 24910 24909 24909

The characters TIME in the zone title may be upper or lower case, but the word time followed by
value for time MUST appear in the zone title. Also in the ZONE T line is the number of data points
to follow, while J is the number of elements (triangles and/or quads) on the surface.

Since the user specifies the surface motion, the values of X,Y, and Z at different points in time must
obviously be known. What the user will not know a priori is the correct value of ID for each node.
However, the user may generate a template file for the surface in the original position as it appears in
the input grid/part files by first obtaining a static-grid solution (1 steady-state iteration would be
sufficient) and then post-process that solution with party to generate a MASSOUD file (TECPLOT
option 3, then sub-option 2) containing the initial (t=0) file with the correct ID information. The ID
data remains fixed with time even though the X,Y ,Z data change, so this MASSOUD file may be
used as input into a user-developed program to generate the subsequent surface motion files for the
particular case at hand. NOTE: the MASSOUD file generated by party will not follow the required
naming convention for moving-body specification and so must be appropriately renamed; also, the
title line will not have the requisite time value and must be edited accordingly.

6DOF MorTion

Note: Use of the 6DOF capability requires linking to third-party software. The required 6DOF
libraries are available from Nathan Prewitt

Note: all 6DOF input is dimensional, and refers to values at t=0; the values of ref_length,
ref_velocity, ref_density from the sbody_definitions namelist are used for non-dimensionalization
of the input data, so they must be set consistently with the 6DOF input data.

For 6DOF cases, the --grid_motion_only and --body_motion_only are probably not particularly
useful predictors of the subsequent motion, unless the aerodynamic loads (not computed when either

http://fun3d.larc .nasa.gov/chapter-6.html

41/77

mailto:Nathan.C.Prewitt@usace.army.mil

6/5/2014

FUN3D Manual :: Chapter 6: Analysis
option is invoked) have very little impact on the dynamics.
A (B) after the description indicates the data may be specified for each body; (1-3,B) indicates one or

all of 3 (x,y,z) components may be specified for each body. For example body_lin_vel(2,3) would be
input to specify an initial y-component of velocity for body 3.

&sixdof_motion namelist

mass Mass of the body (B) (Default: 1.0)

cg_x X-coordinate of CG (B) (Default: 0.0)

cg_y Y -coordinate of CG (B) (Default: 0.0)

cg_z Z-coordinate of CG (B) (Default: 0.0)

i xx Moment of inertia about x axis (B) (Default: 1.0)

i yy Moment of inertia about y axis (B) (Default: 1.0)
i_xx Moment of inertia about z axis (B) (Default: 1.0)
i_xy Moment of inertia about x-y axis (B) (Default: 0.0)
i_xz Moment of inertia about x-z axis (B) (Default: 0.0)
i_yz Moment of inertia about y-z axis (B) (Default: 0.0)

body_1lin_vel Components of linear velocity (1-3,B) (Default: 0.0, 0.0, 0.0)
body_ang_vel Components of angular velocity (1-3,B) (Default: 0.0, 0.0, 0.0)
euler_ang Euler angles (1-3,B) (Default: 0.0, 0.0, 0.0)
gravity_dir Normalized components of the gravity vector (G) (Default: 0.0, 0.0, -1.0)
gravity_mag Magnitude of the gravity vector (G) (Default: 32.2)
n_extforce Number of imposed external forces, excluding gravity (B) (Default: 0)
n_extmoment Number of imposed external moments (B) (Default: 0)
file_extforce File specifying external forces (B) (Default: **)
file_extmoment File specifying external moments (B) (Default: ’)

Output Data

6DOF body motion (ssixdof_motion namelist) will result in the following output files being
generated (below, in filenameBody_N, N is the body number):

PositionBody_N.hst Contains CG position (as specified in ssixdof_motion) and
Euler angles (pitch, roll, yaw) as functions of time; default
output is non-dimensional; Tecplot format. Note that Euler
angles have multiple singularities and are non-unique!

VelocityBody_ N.hst Contains linear and angular velocity components of the CG as
functions of time; default output is non-dimensional; Tecplot
format.

AeroForceMomentBody_N.hst Contains the aerodynamic forces and moments (about the CG)
acting on the body as functions of time; default output is non-
dimensional; Tecplot format. Note: the aero forces and
moments in the output file are non-dimensionalized in the
standard fashion for aerodynamics; this is not the same way
they are non-dimensionalized for the 6DOF equations

ExternalForceMomentBody_N.hst Contains any user-specified external forces and moments
acting on the body as functions of time; default output is non-
dimensional (6DOF non-dimensionalization); Tecplot format.

Note: these files are created from scratch if irest=0 or irest=-1; any existing files with these names
are overwritten. The files are appended to (if they exist) when restarting with irest=1. If they have
been deleted before restarting with irest=1 they will be created but the preceding history will be
lost.

- AeroeLastic MoTion (Mope-Basep)

NOTE: this option requires that Mesh Deformation be used for grid movement.

Note: the implementation of the modal aeroelastic analysis in FUN3D follows nearly exactly the
implementation in CFL3D, so interested parties may find some useful supplemental information on
pp 191-223 of the CFL3D Tutorial.

A (G) following a variable description means that this is a global descriptor, i.e. applicable to all
aeroelastic bodies; (B) means that the data may be specified for each body; (M,B) means the data may

http://fun3d.larc .nasa.gov/chapter-6.html

42/77

http://cfl3d.larc.nasa.gov/Cfl3dv6/nasatm-2006-214301bartels.pdf

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

be specified for each mode associated with each body. For example, freq(4,2) would specify the
frequency of mode 4 for body 2.

The modal aeroelastic capability is available in Version 10.4 and higher

&aeroelastic_modal_data namelist

nmode Number of aeroelastic modes used to represent the structural deformation (B)
(Default: 0)
plot_modes Logical flag to generate tecplot files of each mode shape added to the body
surface to help insure validity of input modal surface data (G) (Default: .false.)
single_modal_file Logical flag to read all mode shapes from a single file for each body (G)
(Default: false. i.e. each mode in a separate file for each body)

grefl Scale factor between CFD grid units and structural dynamics equation units
(B) (Default: 1.0)
uinf Free stream velocity, in structural dynamics equation units (B) (Default: 0.0)
qginf Free stream dynamic pressure, in structural dynamics equation units (B)
(Default: 0.0)
gdispl0 Generalized displacement of specified mode at starting time step; used to
perturb mode for excitation of dynamic response (Default: 0.0)
gvelo Generalized velocity of specified mode at starting time step; used to perturb
mode for excitation of dynamic response (Default: 0.0)
gforce0 Generalized force of specified mode at starting time step; used to perturb mode
for excitation of dynamic response (Default: 0.0)
gmass Generalized mass of specified mode (M,B) (Default: 0.0)
freq Frequency of specified mode, rad/sec (M,B) (Default: 0.0)
damp Critical damping ratio (z) of specified mode (M,B) (Default: 0.0)
moddfl Type of time-varying perturbation of specified mode: 0, no perturbation; <0,

modal displacement and velocity set to O; 1, harmonic (sinusoidal); 2,
Gaussian pulse; 3, Step pulse; 5, ROM input (M,B) (Default: 0)

moddfl_amp Amplitude of perturbation of specified mode (M,B) (Default: 0.0)

moddfl_freq Frequency of perturbation of specified mode if moddfl=1; half-width of
Gaussian pulse if moddfl=2 (M,B) (Default: 0.0)

moddfl_t0 Time (dimensional) at which sinusoidal perturbation starts if moddfl=1; time
about which Gaussian pulse is centered if moddfl=2; start time of step pulse if
moddfl=3 (M,B) (Default: 0.0)

moddfl_add Flag to determine whether perturbation is to be added (1) to any existing static
aeroelastic solution or whether the perturbation replaces (0) the static
aeroelastic solution (if one exists) (M,B) (Default: 0, replace)

In addition to the saeroelastic_modal_data namelist, one or more files containing the modal
surface definitions must be provided. FUN3D accepts two types of modal files: 1) each mode
associated with an aeroelastic body is in a separate file or 2) all modes associated with an aeroelastic
body are contained in the same file. The points defining the modal surface(s) in the file(s) must
correspond to the surface(s) defined in the sbody definitions namelist.

In addition, for ROM (Reduced Order Model) analysis (triggered by moddfl=5), an additional file,
called rom_inputs_bodyN.dat (N the body number), must be available. Rather than give an example
of a rom_inputs_bodyN .dat file, the following code snippet shows how the file is read:

! read number of time steps and starting time step from the rom data fil

read(iu,*) ncyc_rom, nstart_rom

! read number of modes in the rom data file
read(iu,*) nmodes_rom file

! read the list of modes to (potentially) be used for rom
read(iu,*) (rom data(body)%rom mode(nm), nm=1,nmodes_rom_file)

! read the rom excitation data (modal displacement and velocity)
do timestep = 1,ncyc_rom
do nm=1,nmodes_rom file
nml = rom_data(body)%rom_mode(nm)
read(iu,*,iostat=istop) rom_data(body)%gen_disp(nml,timestep),
rom_data(body)%gen_vel(nml,timestep)
end do
end do
L —————————

http://fun3d.larc .nasa.gov/chapter-6.html

43/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

where ncyc_rom is the number of timesteps contained in the file, and nstart_rom is the timestep at
which to start the ROM excitation for the current run. Thus nstart_rom should be 1 for the first run,
and if all time steps are not completed in a single run, then nstart_rom should be set to
last_time_step_of_previous_run + 1 for the next run. Any modes with moddfl=5 in the
moving_body.input file must appear in the rom_inputs_bodyN .dat file (in both the rom_mode list and
the excitation data).

Modal Surface File Naming Convention:
1) Separate file for each mode:

{project} .bodyN_modeM

2) All modes in one file:
{project}.bodyN_all_modes

where:

N is the body number

M is the mode number

File Format:

The modal surface files are ASCII Tecplot files, in FEPOINT format. The file must contain the
variables X, Y, Z and ID as the first four variables, where X, Y, Z define the baseline surface and ID
is the GLOBAL node number. For the single-mode-per-file format, these are followed by the modal
coordinates XMD, YMD, ZMD; for the all-modes-in-one-file format, XMD1, YMD1, ZMD1,
XMD2, YMD2,ZMD?2, etc, follow.

The following is an example of a modal surface file (containing a single mode):

title="Mode 1"

variables = "x" "y

V4

"id" "xmd" "ymd" "zmd"

zone t = model, i = 176, j = 88, f=fepoint
0.160000000000E+02 0.000000000000E+00 0.000000000000E+00 9377 0.0000
0.160000000000E+02 -0.640000000000E+02 0.000000000000E+00 9442 0.0000
0.158624877930E+02 0.000000000000E+00 -0.195790082224E-01 9571 0.0000
0.158624877930E+02 0.000000000000E+00 0.195790082224E-01 9572 0.0000
0.158624877930E+02 -0.640000000000E+02 -0.195790082224E-01 9639 0.0000
0.158624877930E+02 -0.640000000000E+02 0.195790082224E-01 9640 0.0000
0.156976051331E+02 0.000000000000E+00 -0.427785292272E-01 9769 0.0000

many lines of similar x,y,z,id,xmd,ymd,zmd data deleted

0.368598237408E-03 -0.640000000000E+02 0.139784077182E-01 19630 0.0000
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 19759 0.0000
0.000000000000E+00 -0.640000000000E+02 0.000000000000E+00 19824 0.0000

1 2 5 3

3 5 9 7

7 9 13 11

11 13 17 15

15 17 21 19

19 21 25 23

23 25 29 27

many lines of similar face connectivity data deleted

16 18 14 12
12 14 10 8
8 10 6 4
4 6 2 1

The starting point for generating a modal shape file as shown above is to first obtain a static-grid
solution (1 steady state iteration would be sufficient) and then post-process that solution with party to
generate a MASSOUD file (TECPLOT option 3, then sub-option 2) containing the baseline file with
the correct X, Y, Z and ID information. This baseline file can then be used as input into a user-
developed program to add the appropriate XMD, YMD, ZMD data for the case at hand (the

X,Y ,Z.ID data remain unchanged). NOTE: the MASSOUD file generated by party will not follow
the required naming convention for modal file specification and so must be appropriately renamed.

Output Data

Aeroelastic body motion (saeroelastic_modal_data namelist) will result in the following output
files being generated (below, in filename_bodyN_modeM, N is the body number and M is the mode

http://fun3d.larc .nasa.gov/chapter-6.html

44/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis
number):

aehist_bodyN_modeM.dat Contains the generalized displacement, generalized velocity, and

generalized force for mode M of body N as functions of time; the output
is non-dimensional;. Tecplot format.

In addition, if the plot_modes variable is set to . true. in the saeroelastic_modal data namelist,
then the following files are also output:

aesurf_bodyN_modeM.dat Contains the X, y, z coordinates of a surface created by adding the
baseline (rigid) shape of body N to the input modal shape of mode M,
read from the {project}.bodyN_modeM or {project} .bodyN_all_modes
files. As such it is a tool for assessing if the modal shapes have been
specified and read correctly. Tecplot format.

. SAMPLE MOVING_BODY.INPUT FILES

The first example constitutes a simple pitching airfoil, in which the mesh surrounding the airfoil
moves rigidly with the airfoil. This example illustrates a shortcut: to indicate a body is made up of all
solid surfaces in the mesh, without having to list each boundary surface, set n_defining_bndry = -1,

and then use any integer number (0 is fine) for defining_bndry. Note that this shortcut is only
applicable for n_moving_bodies = 1:

(Animation requires Flash Player‘g to view)

http://fun3d.larc nasa.gov/chapter-6.html

&body_definitions

n_moving_bodies = 1, ! number of bodies in motion
body name(l) = 'airfoil', ! name must be in quotes :
parent_name(1l) = "', [

means motion relative to inertial ref fram

45/77

http://macromedia.com/

6/5/2014

/

FUN3D Manual :: Chapter 6: Analysis

n_defining bndry(l) = -1,
defining bndry(1,1) = 0,
motion_driver(1l) = 'forced',

Xx_mc(l) = 0.25,
y mc(l) = 0.0,
z mc(l) = 0.0,
move mc(l) =1

&forced_motion

/

! shortcut to specify all solid surfaces

! index 1: boundary number 2: body number; use

! 'forced', '6dof', 'surface file', 'motion_fil
mesh_movement(l) = 'rigid', ! 'rigid', 'deform'

! x-coordinate of moment_center

! y-coordinate of moment center

! z-coordinate of moment_ center

! move mom. cntr with body/grid: 0=no, l=yes

rotation type: l=constant rate 2=sinusoida

max rotational displacement

of rotation origin
of rotation origin
of rotation origin

unit vector x-component along rotation axi
unit vector y-component along rotation axi

rotate(l) = 2, !

rotation_rate(1l) = 0.0, ! rate of rotation

rotation freq(l) = 0.015489, ! reduced rotation frequency
rotation amplitude(l) = 4.59, !

rotation_origin_x(1) = 0.25, ! x-coordinate
rotation_origin_y(1l) = 0.0, ! y-coordinate
rotation_origin_z(1) = 0.0, ! z-coordinate
rotation_vector_x(1) = 0.0, !

rotation vector y(1l) = 1.0, !

rotation_vector_z(1l) = 0.0, !

unit vector z-component along rotation axi

The second example is for a wing with a flap. The wing (‘main’) is constituted from boundary 1 in
the mesh, while the flap (‘flap’) is constituted from boundary 2 in the mesh. The wing undergoes a
plunging motion in the z-direction, while the flap undergoes a pitching motion about an axis parallel
to its’ leading edge. The flap is identified as a child of the wing, so that the complete motion of the
flap consists of the inherited wing plunging motion plus the flap pitching motion. This 2-body motion
cannot be accommodated with rigid mesh motion (unless overset, not considered here), so
mesh_movement is chosen as ‘deform’:

(Animation requires Flash Player‘g to view)

&body_definitions

http://fun3d.larc .nasa.gov/chapter-6.html

n_moving_bodies = 2, ! number of bodies in motion

body name(l) = 'main’, ! name must be in quotes

body name(2) = 'flap', ! name must be in quotes

parent_name(1l) = "', ! '' means motion relative to inertial ref fram
parent_name(2) = 'main’, ! '' means motion relative to inertial ref fram
n_defining bndry(l) = 1, ! number of boundaries that define this body
n_defining bndry(2) = 1, ! number of boundaries that define this body
defining bndry(1,1) = 1, ! index 1: boundary number index 2: body number
defining bndry(1,2) = 2, ! index 1: boundary number index 2: body number
motion_driver(l) = 'forced', ! 'forced', '6dof', 'surface file', 'motion_ fil
motion_driver(2) = 'forced', ! 'forced', '6dof', surface_file', 'motion_file
mesh_movement(1l) = 'deform', ! 'rigid', 'deform'

46/77

http://macromedia.com/

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

mesh_movement(2) = 'deform', ! 'rigid', 'deform'

x_mc(l) = 0.25, ! x-coordinate of moment_center
x_mc(2) = 0.25, ! x-coordinate of moment_center
y_mc(l) = 0.0, ! y-coordinate of moment_center
y_mc(2) = 0.0, ! y-coordinate of moment_center
z_mc(l) = 0.0, ! z-coordinate of moment_center
z_mc(2) = 0.0, ! z-coordinate of moment_center

move mc(l) = 0, ! do not move mom. cntr with body/grid
move_mc(2) = 0 ! do not move mom. cntr with body/grid

/

&forced_motion
translate(l) = 2,
rotate(2) = 2,

translation type: l=constant rate 2=sinus
rotation type: l=constant rate 2=sinusoid

]

1
translation_freq(l) = 0.03, ! reduced translation frequency
rotation_freq(2) = 0.06, ! reduced rotation frequency
translation_amplitude(l) = -0.1, ! max translational displacement
rotation_amplitude(2) = +5.00, ! max rotational displacement
rotation_origin_x(2) = 0.7798, ! x-coordinate of rotation origin
rotation_origin_y(2) = 0.0, ! y-coordinate of rotation origin
rotation origin_z(2) = 0.0, ! z-coordinate of rotation origin
translation_vector_x(1l) = 0.0, ! unit vector x-component along translation
rotation_vector_x(2) = 0.0885398,! unit vector x-component along rotation ax
translation_vector_y(l) = 0.0, ! unit vector y-component along translation
rotation_vector_y(2) = 0.996073, ! unit vector y-component along rotation ax
translation_vector_z(l) = 1.0, ! unit vector z-component along translation
rotation_vector_z(2) = 0.0, ! unit vector z-component along rotation ax

/
T ——

The next example consists of a grid with two solid boundaries (boundaries number 2 and 3 in the
mapbc file) representing two blades of a rotor. These two surfaces are grouped for the purpose of
motion specification into 5 moving “bodies”: 1) ‘hub’ contains both blades and the surrounding mesh
undergoes rigid mesh rotation at the angular speed of the rotor system; 2) ‘flap1’ is the first blade, and
the surrounding mesh undergoes mesh deformation to accommodate a sinusoidal flapping motion
about the blade root; 3) ‘bladel’ is used to specify a sinusoidal pitching motion about a spanwise axis
of the first blade; 4) ‘flap2’ and; 5) ‘blade2’ specify the corresponding motions of the second blade.
Thus the complete 5-body system defines a 2-bladed rotor undergoing a general rotation about a
common axis, with simultaneous flapping and pitching of each blade. The rotation, flap, and pitch
axes are all distinct. Each blade undergoes one flap and one pitch cycle for every rotation of the
complete system. The flap and pitch amplitudes are both +/- 10 degrees.

(Animation requires Flash Player‘g to view)

http://fun3d.larc nasa.gov/chapter-6.html 47171

http://macromedia.com/

6/5/2014

http://fun3d.larc .nasa.gov/chapter-6.html

&body_definitions

FUN3D Manual :: Chapter 6: Analysis

n_moving_bodies = 5,

body name(1l) = 'hub',

body name(2) = 'flapl'

body name(3) = 'bladel',

body name(4) = 'flap2'
body_name(5) = 'blade2',
parent_name(l) = '', !
parent name(2) = 'hub'’

parent _name(3) = 'flapl',
parent_name(4) = 'hub'’
parent_name(5) = 'flap2’',
n_defining bndry(l) = 2, !
n_defining bndry(2) = 1,
n_defining bndry(3) = 1,
n_defining bndry(4) = 1,
n_defining bndry(5) = 1,
defining bndry(1,1) = 2, !
defining bndry(2,1) = 3,
defining bndry(1,2) = 2,
defining bndry(1,3) = 2,
defining bndry(1l,4) = 3,
defining bndry(1,5) = 3,
motion_driver(l) = 'forced',6 !
motion_driver(2) = 'forced',
motion_driver(3) = 'forced',
motion_driver(4) = 'forced',
motion_driver(5) = 'forced',
mesh _movement(l) = 'rigid', !
mesh _movement(2) = 'deform',
mesh_movement(3) = 'deform',
mesh_movement(4) = 'deform',
mesh_movement(5) = 'deform',

/

&forced_motion
rotate(l) = 1,
rotate(2) = 2,
rotate(3) = 2,
rotate(4) = 2,
rotate(5) = 2,

rotation_rate(1l) =
rotation freq(2) =
rotation freq(3) =
rotation_ freq(4) =
rotation_freq(5) =
rotation_amplitude(
rotation_amplitude(
rotation_amplitude(
rotation amplitude(

number of bodies in motion
name must be in quotes

means motion relative to inertial ref fram

number of boundaries that define this body

index 1: boundary number index 2: body number

options: 'forced', '6dof', 'surface file', 'm

options: 'rigid', 'deform'

rotation type: l=constant rate 2=sinusoidal

-0.011712921516,

0.00186416935695, !

reduced rotation frequency

0.00186416935695,
0.00186416935695,
0.00186416935695,

2)
3)
4)
5)

rotation origin_x(1)
rotation_origin_y(1)
rotation_origin_z(1)
rotation_origin_x(2)
rotation_origin_y(2)
rotation origin z(2)
rotation origin_x(3)
rotation_origin_y(3)
rotation_origin_z(3)
rotation_origin_x(4)
rotation_origin_y(4)
rotation_origin_z(4)
rotation origin_ x(5)
rotation origin_y(5)
rotation_origin_z(5)
rotation_vector_x(1)
rotation_vector_y(1)
rotation_vector_z(1)
rotation_vector_x(2)
rotation vector y(2)
rotation vector_z(2)
rotation_vector_x(3)
rotation_vector_y(3)
rotation_vector_z(3)
rotation_vector_x(4)
rotation vector y(4)
rotation vector_ z(4)
rotation_vector_x(5)

= +10.00,
= +10.00,
= +10.00,
= +10.00,
= 0.0,

= 0.0,

= 0.0,

= -1.875,
= +6.75,

= 0.0589,
= -1.875,

+6.75,
0.0589,
+1.875,

= -6.75,
= 0.0589,
= +1.875,
= -6.75,

! flap blade 1

pitch blade 1

flap blade 2

pitch blade 2

x-coordinate of rotation origin
y-coordinate of rotation origin
z-coordinate of rotation origin

! unit vector x-component along rotation ax
! unit vector y-component along rotation ax
! unit vector z-component along rotation ax

48/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis
rotation_vector_y(5) = 1.0,
rotation_vector_z(5) = 0.0,

/

The next example consists of a wing (comprised of boundaries 7-16 in the mapbc file) in which the
surface motion is specified via a series of 73 files, each representing an instant of (non-dimensional)
time between t=0 and t=1. The surface motion given by the files is repeated after the repeat_time of
1.0. Details describing the format for the surface motion files, as well as an example of such a file

may be found in the section Body Motion via File Input

&body_definitions

parent_name(l) =
n_defining bndry(1)
defining bndry(1,1)
defining bndry(2,1)
defining bndry(3,1)
defining bndry(4,1)
defining bndry(5,1)
defining bndry(6,1)
defining bndry(7,1)
defining bndry(8,1)
defining bndry(9,1)

motion_driver(l) =
mesh_movement(1l) =
move _mc(l) = 0,

/

repeat_time(l) = 1.0
/

n_moving bodies = 1,
body_name(l) = 'wing',

defining bndry(10,1) = 16,

&surface_motion_from file
n_time_slices(1l) = 73,

! number of bodies in motion

! ''" means motion relative to inertial ref fram
define this body

boundaries that

number
number
number
number
number
number
number
number
number

index
index
index
index
index
index
index
index
index

2:
2:
2:
2:
2:
2:
2:
2:
2:

body
body
body
body
body
body
body
body
body

numbe
numbe
numbe
numbe
numbe
numbe
numbe
numbe
numbe

! index 1l: boundary number index 2: body numb

'6dof ',

! name must be in quotes
’
= 10, ! number of
=17, ! index 1: boundary
=8, ! index 1: boundary
=9, ! index 1: boundary
= 10, ! index 1: boundary
=11, ! index 1: boundary
=12, ! index 1: boundary
= 13, ! index 1: boundary
= 14, ! index 1: boundary
= 15, ! index 1: boundary
'surface_file', ! 'forced',
'deform', ! 'rigid', 'deform'

'surface_file', 'mo

! do not move mom. cntr with body/grid

! number of files defining motion for this body
! time at which motion in files will repeat

- MesH DEFORMATION

Mesh deformation is invoked from within the flow solver (as opposed to the stand-alone mesh

deformation code used in the design process) when running in time accurate node (itime > 0) with the

commandline option --moving grid and the mesh_movement variable for one or more bodies

defined in the moving body.input file is set to 'deform'. Mesh deformation is also invoked from
within the flow solver if running in steady-state mode (itime=0) and the commandline option --

http://fun3d.larc nasa.gov/chapter-6.html

49/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

read_surface_from_file is specified, as would be the case for static aeroelastic computations (see
Aceroelastic Coupling for more information).

An additional commandline option that is sometimes useful for problem mesh deformation cases is:
—-elasticity INT

where INT signifies the variable used to set the modulus of elasticity: 1 (E=1/s [default], where s is
the distance function used in the turbulence models) or 2 (E=1/vol). Generally speaking, the default is
preferred, as the resulting system of equations tends to require fewer iterations to converge to a
reasonable tolerance. However, if there are some small sliver cells located out in the field away from
the body, and the default results in negative volumes, --elasticity 2 may help. Note that for
inviscid cases (more precisely, if all wall bes are inviscid), the distance function s is not computed,
and thus is not an appropriate choice. In version 10.4 and above, the flow solver checks to see if s if
available, and if not, uses the volume instead.

To solve the elasticity PDE that governs mesh deformation, the Generalized Minimum Residual
Method (GMRES) is used. Reasonable default control variables for the GMRES method have been
chosen, and are listed below. However, there may be certain situations for which the default values
need to be adjusted; this is done via a namelist called elasticity_gmres in the fun3d.nm1 file.
Note to long-time users of mesh deformation with FUN3D: the data set by elasticity_gmres was
formerly set in a file called move_gmres. input — should you happen to have this file in your run
directory, the code will stop, advising you to use the elasticity gmres namelist instead.

Optionally, a file move_relaxation.schedule may be used for further control of the PDE solution
process; however, in practice this is never used.

&elasticity_gmres namelist

ileft Flag for left preconditioning (O=no, 1=yes, Default: 1)
nsearch Number of search directions (Default: 50, more will require extra memory, typically
without benefit)
nrestarts Number of restarts (Default: 10; more if convergence rate is slow)
tol Convergence tolerance (Default: 10e-6)
show Print the contents and values of the namelist (Default: .false.)

A note on tol: grids with tight spacing in the wake, as are typically found on structured “C-grid”
meshes (but typically NOT found in unstructured meshes) will require much smaller values of tol,
perhaps 10e-9 or smaller. Reaching the lower tolerances will require significantly more restarts.

move_relaxation.schedule data (optional, in practice never used)

This file is analogous to the optional relaxation.schedule file for the flow solver, except that the
relaxation schedule prescribed in the move_relaxation.schedule file govern the solution of the linear
system associated with the elasticity PDE rather than the linear system arising from the solution of
flow equations. In some cases the relaxation schedule can improve convergence of the mesh
deformation.

Number of Pre-Relaxation Number of Pre-Relaxation Schedules to Perform
Schedules to Perform (Recommended: 0)
Number of Global Schedules to Number of Global Schedules to Perform (Recommended:
Perform 1)
Number of Post-Relaxation Number of Post-Relaxation Schedules to Perform
Schedules to Perform (Recommended: 0)
Number of Steps Number of steps for each of the pre-, global-, and post-

relaxation schedules

Type Type of relaxation to perform in the specified step (see
example for full description)

Sample move_relaxation.schedule File

KhKKkKKRKKKAK KA A Xk kk*k*kx*x**% HEFSS Relaxation Schedule *****xxxkkxkkkxkhkkkhkkk k%

This file lays out the relaxation schedule for the HEFSS solver in
terms of pre-relaxations, global relaxations, and post-relaxations

The step types are as follows:

L I I

Type 1: Line-implicit relaxation through stretched grid regions

http://fun3d.larc .nasa.gov/chapter-6.html

50/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

* Type 2: Point-implicit relaxation through entire domain

* Type 3: Point-implicit relaxation through boundary swaths

* Type 4: Point-implicit relaxation through entire domain - line region
* Type 5: Newton-Krylov through entire domain - line region

* Type 6: ILU(0) relaxation through entire domain

* Type 7: Global Newton-Krylov

*

IR EE R R RS SRS SR SRS S SRR R RS RS R R R R R R R EEER SRR SRR SRR R R R R R R R R EREREESEEESEEEESERSEE]
Number of Pre-Relaxation Schedules to Perform

0

Number of Global Schedules to Perform

1

Number of Post-Relaxation Schedules to Perform

0

Number of Steps
0
Step Type Sweeps Turb Sweeps
————— Global Relaxation Schedule -----
Number of Steps
2

Step Type Sweeps Turb Sweeps
1 2 5 0
2 7 0 0

————— Post-Relaxation Schedule -----
Number of Steps
0
Step Type Sweeps Turb Sweeps
L eI AR

This section describes the capability to utilize overset meshes within FUN3D. Unlike structured grids,
there is no compelling reason to use overset unstructured meshes unless the analysis involves moving
bodies. For general information on moving bodies, see Moving Grids

NOTE: this is an active area of development, so implementation or input details may change
with time.

Overset Grids — Overview
Static Grid Simulations
Dynamic Grid Simulations

. OverseT GRIDS — OVERVIEW

To use overset grids, the third-party libraries SUGGAR++ and DiRTlib are required. See Chapter 2
of this manual for more information on where to obtain these libraries, which make targets
should be compiled, and special soft-links that must be made for FUN3D to utilize these
libraries.

For overset grid applications, FUN3D Version 10.5 or higher is recommended; all information below
is geared toward Version 10.5 and higher. This is an evolving capability, so usually it is best to have
the latest release. When configuring the FUN3D suite for overset-grid applications, be sure to use the
following:

--with-dirtlib=/path/to/dirtlib
--with-suggar=/path/to/suggar

where /path/to/dirtlib(suggar) is the path to your DiRTlib and SUGGAR++ executables. Note that if
FUN3D is to be run in parallel, DiRTlib must also be configured for parallel execution, built against
the same version of MPICH.

The process for using overset grids in FUN3D is to first create a composite mesh by running
SUGGAR-++ as a stand-alone process. It is beyond the scope of this web page to act as a detailed
guide to the usage of SUGGAR++. Ralph Noack provides documentation with the SUGGAR++
distribution along these lines. However, the general idea is to generate two or more independent grids
about individual bodies in a multibody system (e.g. a grid for a wing and a grid for a store in a store-
separation problem, or a grid for a rotor blade and a grid for the fuselage in a rotorcraft problem). In
the discussion that follows, these independent grids are referred to as component grids. The
commands to position these component grids relative to one another, commands to affect hole cutting,
etc, are set in the XML input file (typically called Input.xml) that SUGGAR++ reads. When
executed with the XML commands, SUGGAR++ will perform the composite assembly of the

http://fun3d.larc .nasa.gov/chapter-6.html 51/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

component grids, and will (with the appropriate XML command) dump out a composite mesh. As of
this time, the only unstructured composite mesh format that SUGGAR++ can dump out that is also
compatible with FUN3D is the VGRID tetrahedral format. Thus, the SUGGAR++ XML file that
creates the initial composite mesh for FUN3D use must have:

<output>
<unstructured _grid style="unsorted vgrid set" filename="project">
</unstructured_grid>

</output>

where project is a name of the user’s choice, and will become the name of the output composite
VGRID set (e.g., project.cogsg, project.iface, project.mapbc, project.bc). It is this
composite VGRID set that is processed by the PARTY preprocessor and utilized by FUN3D, rather
than the individual component grids.

In principle, one of the other file formats that SUGGAR++ reads besides VGRID could be used for
the input component grids and then a VGRID composite grid could be output using the XML syntax
shown above. To date, FUN3D developers have only utilized input component grids in VGRID
format. When using VGRID input component grids, the boundary conditions specified in the .mapbc
files are set as usual, except for grids whose outer boundary in the composite mesh will need to be
interpolated from another component mesh. Typically, in VGRID parlance, these outer boundaries
are labeled “box” and usually have a characteristic boundary condition (type 3). For overset cases,
such boundaries should be assigned a boundary condition type -1 to inform SUGGAR++ that it must
compute interpolation coefficients for these boundary points. Note that the component mesh that
serves as the “background” mesh should have its outer boundary conditions unchanged (e.g. type 3).
After SUGGAR++ has been run, the .mapbc file for the resulting composite mesh will also have
boundary condition type -1 for the interpolated boundaries. It is possible to not set the the boundary
condition type to -1 for the interpolated outer boundaries in the component-grid . mapbc file(s), and
instead use SUGGAR++ XML commands to specify those boundaries as overset. However this is
not the recommended procedure, since then the corresponding boundaries in the composite-grid
.mapbc file do not get marked as -1, and there is no “paper trail” on the FUN3D side that these
boundaries are overset.

Once SUGGAR-++ is successfully executed it will generate a [project_name].dci file. This file
will later be read in by FUN3D. Likewise, the successful execution of SUGGAR++ will create the
composite VGRID set ([project_name].cogsg, [project_name].iface, [project_name].bc,
and [project_name].mapbc). This VGRID set must now be processed with PARTY in the usual
way, with the exception that the following command-line option MUST be used:

--overset

NOTE: this same command-line option must be used when postprocessing with PARTY (in addition
to --moving_grid if the case is a moving grid overset case). When PARTY offers the option to
group boundaries, you will probably want to group boundaries by VGRID Family Type in order to
simplify the amount of input required when Defining Moving Bodies for dynamic-grid applications.
The boundaries that were assigned bc type -1 will appear with the name “overset_interp” in the
[project].part_info file written by PARTY.

. StaTIc GRID SIMULATIONS

Static, overset grid simulations may be desired in order to provide a steady-state starting point for
subsequent dynamic grid simulations. Once SUGGAR++ has been successfully run and the resulting
composite mesh partitioned with PARTY, FUN3D is run with the command-line option

--overset

This will read in the [project].dci file, and use the data therein to provide communication of the
flow solution between the various components of the composite overset mesh.

- DyNnAMIC GRID SIMULATIONS

This section only addresses the additional input needed for the utilization of overset grids in moving-
grid applications; see Moving Grids for much additional information covering other required input.

For moving grids, a new dci file is required for each time step. The new dci files may either be
created “on the fly”” as FUN3D is run, or read in if they already exist. Most moving-body problems
involve periodic motion, so the usual practice is to compute the required dci files “on the fly” during
the first period of motion, and read the dci files computed during the first period for subsequent
periods of motion. It requires much more time to compute the connectivity data than to read it, so this
strategy should be used whenever appropriate. Certain types of motion are not periodic and cannot

http://fun3d.larc .nasa.gov/chapter-6.html 52/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

benefit from this strategy — 6 DOF simulations are one example.

To compute the connectivity information on the fly, use the following command line when running
FUN3D:

--dci_on_the_fly

When this command line is used, the code will compute and use the connectivity data for the current
time step, and will also write out the data for the current time step N to the file

[project]N.dci
At the current time the code will overwrite an existing [project]N.dci file.

If the --dci_on_the_f£1y command-line option is not used, FUN3D will assume the required
[project]N.dci files are available and will attempt to read them as needed.

For cases with periodic motion, first run enough time steps with the command-line option --
dci_on_the_f£ly to create a sufficient number of dci files to cover the entire period. Say the number
of time steps per period is NP. Subsequent runs should then be run with the command-line option

--dci_period NP

Once all the dci files have been created for period motion and the --dci_period NP is used,
subsequent runs can be made with an arbitrary number of time steps — not necessarily NP steps per
run.

When restarting, the flow solver will keep track of the last dci file computed or read during the last
time step of the previous run, and will use this to determine the next dci file that needs to be created or
read. No special commands or flags are needed to restart an overset mesh case.

IMPORTANT: For computing connectivity data “on-the-fly”, the current paradigm in FUN3D is to
have SUGGAR++ running as a concurrent process — currently a single, concurrent process. As a
result, when the --dci_on_the_f1y command-line option is used, the number of processors
assigned to an MPI run must be 1 (one) greater than the number of partitions. For example, if the
composite mesh has been partitioned into 64 parts, a total of 65 processors are required; €.g. mpirun
-np 65 nodet_mpi --dci_on_the_ fly --overset. In the machinefile list, the FIRST processor
will be assigned to SUGGAR+. Furthermore, since the SUGGAR+ process requires that the entire
mesh fit in core, the first processor in the machinefile list must have sufficient memory to contain the
complete mesh. As an improved, parallel version of SUGGAR++ becomes available, this restriction
on one memory-laden processor will be removed.

NOTE: When the --dci_on_the fly command-line option is NOT used, such as when continuing
a periodic simulation after all connectivity files have been created, then the number of processors
must be set back to be identical to the number of grid partitions.

&composite_overset_mesh namelist

This namelist is input via the moving_body . input file — see Moving Grids for additional namelist
input required for dynamic mesh simulations. Note that for versions 10.8 and higher, the
scomposite_overset_mesh namelist is greatly simplified and requires only the name of the xml file
used previously for the static overset assembly.

FUN3D Version 10.8 and higher:

input_xml_£ile File containing XML commands for SUGGAR++; specify the same Input.xml
file as was used to generate the initial composite grid with the “stand-alone”
SUGGAR++ code

FUN3D Version 10.7 and lower:

A (G) following a variable description means that this is a global descriptor, i.e. applicable to all
moving bodies; a (B) following a variable description means that the data may be specified for each
moving body. Note: although there are defaults set for all namelist items, virtually all defaults must be
overwritten with user-supplied data.

n_component_grids Number of component grids in the composite mesh (G) (Default: 0)

ref_vgrid_set Name of the component VGRID set for the body; must be same as the
corresponding filename of the vgrid_set in the SUGGAR++ Input.xml file
used to create the composite mesh (B) (Default: **)

ref_vol_name (Version 10.7) Name of the volume grid for the body; must be the same as the
name of the volume_grid in the SUGGAR++ Input.xml file used to create

http://fun3d.larc .nasa.gov/chapter-6.html 53/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

the composite mesh (B) (Default:)

ref_body_name (Version 10.7) Name of the body; must be the same as the name of the body
in the SUGGAR++ Input.xml file used to create the composite mesh; this
same body name should be used in the &body_definitions namelist (B)
(Default: *)

associated_body Body number to associate with this component mesh (B) (Default: 0) (note:
the non-moving background grid must be associated with body 0)

input_xml_file (Version 10.7;in older versions: manual_hole_commands) File containing
XML commands for SUGGAR++; typically used to “tweak’ hole cutting
beyond SUGGAR++’s default settings(G) (Default: >’) NOTE: in version
10.7 an higher, one may use the same Input.xml file as was used to generate
the initial composite grid with the “stand-alone” SUGGAR++ code; in prior
versions of FUN3D the manual_hole_commands file was related to, but not
syntactically the same as,a SUGGAR++ Input.xml file

This section describes how coupling between the FUN3D flow solver and an external structural
model may be achieved. Typically, this capability would be used to incorporate the effects of static
structural deflections in an aerodynamic analysis. In principle the coupling could also be performed in
time accurate mode, allowing for dynamic structural interactions, but this is probably not practical due
to the file I/O method of data transfer. For dynamic aeroelastic simulations, the modal approach is
preferred.

It should be noted that static aeroelastic coupling in FUN3D requires third-party middleware that is
not provided with the FUN3D suite. The middleware must serve two purposes (separate middleware
codes may be utilized for each purpose if desired). First, the middleware must map the aerodynamic
loads data output by FUN3D onto the FEM surface used by the external structural model, and
second, middleware must map the surface deflections computed by the structural model back onto the
surface grid for FUN3D, in a format described below. The middleware is responsible for performing
these mapping tasks in a consistent manner.

Jamshid Samareh at NASA Langley can provide suitable middleware for this purpose.

In the sections below, two command-line options are described: --write aero loads_to file and
--read_surface_from_file. These command lines may be specified singly or in combination. For
static aeroelastic simulations these options are usually used in combination. When starting from
scratch (in what might be called the “zeroth coupling cycle”), with the surface is in the undeformed
shape, the --write_aero_aero_loads_to_file option would be used by itself. Subsequent
coupling cycles, where a new surface is available for input and new loads will be written on output,
will require both command-line options. Alternatively for subsequent coupling cycles, the command
line --aeroelastic_external will automatically enable both the --read_surface_from_file
and --write_aero_aero_loads_to_file command line options.

- Loaps Output

Aerothermodynamic loads may be output from the flow solver by using the command line --
write_aero_loads_to_file. In steady-state mode, this will create a file or files called

[project] ddfdrive bndryN.dat, where N is the boundary number, with one file for each solid
boundary in the mesh. Note that the boundary numbering will reflect any boundary lumping options
that the user has selected in the raw_grid namelist. In time accurate mode the timestep is appended to
the file name: [project] ddfdrive bndryN timestepM.dat Static aeroelastic analysis is
performed in steady-state mode.

In steady state mode, this file will be written at the end of the current run. In time accurate mode, a
file will be written every time step. (This can be varied by changing the default value of
structural coupling fregq in the aeroelastic_module from 1 to the desired value and
recompiling).

The ddfdrive file is a formatted Tecplot file containing the following variables in the “fepoint”
format:

In the perfect gas path (incomp = 0 or 1):
variables="x","y","z","id", "cp", "cfx", "cfy", "cfz", "temp","dtdn"
In the generic gas path (incomp = 2):

http://fun3d.larc .nasa.gov/chapter-6.html 54/77

mailto:Jamshid.A.Samareh@nasa.gov

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

variables="x","y", z ,"id","cp ,

cfx","cfy","cfz", "temp", "heat flux"

where x, y, z are the coordinates of each point on the aeroelastic surface; id is the node number in the
global (raw) grid for each surface point; cp is the pressure coefficient; cfx, cfy, and cfz are the
components of the local shear stress coefficient vector; temp is the wall temperature; dtdn is the wall
temperature gradient (for the generic gas path, heat_£1ux is the local normal heat flux coefficient).

As mentioned above, by default one ddfdrive file is written for each solid boundary in the mesh. The
user may elect to group selected boundaries into one or more “bodies” and output the aggregate
bodies to individual ddfdrive files. Note: although multiple bodies can be output, on the input side of
the static aeroelastic coupling process, only one body is allowed.

To have the aero loads data grouped into user selectable bodies, use the aero_loads_output

namelist in the fun3d.nml file. For example, in a grid for which boundaries 3,4, 5,7, and 9 are solid
boundaries, to group boundaries 3 and 9 into one body for output, use:

&aero_loads_output

n_bodies = 1 ! define one body

nbndry(1l) = 2 ! body 1 consists of 2 boundaries
boundary list(l) = '3, 9' ! these boundaries

/

In this case the ddfdrive files will be named [project]_ddfdrive_ bodyB.dat from a steady-state
simulation and [project] ddfdrive bodyB_ timestepM.dat from a time-accurate simulation, B
being the body number. Again, although this output option supports more than one body, the
corresponding input needed for static aeroelastic coupling, described next, supports only one body.
That single body may be comprised of more than one surface, however.

- DeFLECTED SURFACE INPUT

The loads output as described above must be passed through an intermediate processing step
(middleware) to interpolate/transfer them to the structural grid, as the structural grid typically differs
from the CFD grid. Similarly, output deflections from the structural model must be transferred back to
the CFD grid via middleware. Ultimately, a new surface definition must be provided to the flow
solver in the form of an input file. This file must adhere to the following naming convention:

[project].bodyl_ timestepl

The command-line option --read_surface_from_file (Or --aeroelastic_external as noted
above) will cause the flow solver to read in this new surface.

For static aeroelastic simulations, only one body is allowed, and static aeroelastic simulations are run
in steady-state mode, so that the new surface is read once at the start of the current computation, at
timestep 1. Each new CFD run within the CFD-structures coupling loop begins with “timestep” 1.
Hence the body1_timestep1 extension to this surface file. In fact the naming convention is slightly
more general, so that if the coupling were to be carried out in a time accurate manner, a new file
[project].bodyl timestepM would be read at each time step in the current CFD run, 1 <= M <=
ncyc.

Note: the default assumption is that a static aeroelastic surface is comprised of all solid surfaces in the
mesh. To define an aeroelastic surface that is only a subset of all solid surfaces, use the namelist
smassoud_output (this namelist governs several tasks, both input and output). For example, to be
compatible with the saero_loads_output example given above, this namelist would need to be:

&massoud_output

n_bodies =1 ! define one (and only one body for input)
nbndry(1l) = 2 ! body 1 consists of 2 boundaries
boundary_list(l) = '3, 9' ! these boundaries

/

The user must make sure that the aeroelastic surfaces are defined properly, and consistent with the
underling grid. If not, you will encounter error messages similar to

Error, pack_boundary_surfaces for body 1

Partition 1
body has total of 50827 points
found only 10601 points
lmpi_conditional_stop, total stop with 1

http://fun3d.larc .nasa.gov/chapter-6.html

55/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

The [project].bodyl_timestepl file is a formatted Tecplot file of the fepoint format, and is
identical to that described the the Time Dependent Flows Section, under Surface File Format In
steady state mode, where only one surface file is provided for the entire run of the flow solver, the
time value is not required as part of the title line.

This is a description of the old method for input to FUN3D. As of release 10.5.0, the ginput. faces
input deck has been replaced by a namelist file. See the Flow Solver Namelist Input section for
details.

. PerFecT Gas

A typical ginput. faces input deck:

CASE TITLE
XMACH ALPHA YAW RE TREF PRANDTL
0.300 2.000 0.000 1.0e6 460.0 0.72
INCOMP IViscC IFLIM NITFO IHANE IVGRD
0 0 0 0 2 0
SREF CREF BREF XMC YMC zMC
1.00000 1.00000 1.00000 0.25 0.00 0.00
CFL1 CFL2 IRAMP CFLTURB1 CFLTURB2
10.0 200.0 50 1.0 50.0
NCYC ITERWRT RMSTOL IREST
100 20 l.e-9 0
JUPDATE NSWEEP NCYCT PSEUDO_DT
3 15 10 1
ITIME DT SUBITERS
0 5.0 5
NGRID FMG_LEVS FMG_PRLNG NU1 NU2
1 1 1 1 1
FAS_LEVS FAS_CYCS NGAM
1 1 1
PROJECT_NAME:
'projectname’

The entries for each pair of lines is described in the following sections:

- FREESTREAM CONDITIONS

xMacH This is the freestream Mach number for compressible flows. For incompressible flows, this
is the artificial compressibility parameter, beta. For incompressible flows, the suggested
value iS XMACH=15.

arpHA This is the freestream angle of attack in degrees.
vaw This is the freestream side-slip angle in degrees.

RE This is the freestream Reynolds number. For inviscid computations, this value is ignored.
The input value depends on the reference length, and how the grid is dimensioned. If your
Reynolds number is based on the MAC, and the grid is constructed so that the MAC is
one, then the appropriate value for RE is the full freestream Reynolds number. If the grid is
constructed so that the MAC is in inches, then RE must be set to the Reynolds number
divided by the MAC in inches.

TREF This is the freestream reference temperature in degrees Rankine. The usual value is 460.
PRANDTL This is the value of the Prandtl number. The usual value is 0.72.

- ALGORITHM

1ncomp This flag toggles the incompressible option. If IncomMp=0, then compressible flow is assumed
with a freestream Mach number equal to xMacH. If 1NcoMP=1, then incompressible flow is
used with an artificial compressibility factor of xMaCH.

1visc This controls the physics that you want. The valid options are: 0:Euler, 2:Laminar,
6:Spalart-Allmaras model, 7:DES with Spalart-Allmaras model, 8:Menter’s SST model.

1rLIM This controls the limiter for the reconstruction process. The valid options are: 0:No limiter,
1:Min-mod type, 2:Venkatakrishnan limiter. We usually do without a limiter. However, for
Mach numbers > about 1.2, you may need to use IFLIM=1. When using a limiter, the
command line option --freeze_limiter xx may also be of use. This option freezes the
value of the limiter throughout the flow field after xx number of timesteps. This can be
useful in improving convergence that typically stalls or “rings” when using a limiter. Note

http://fun3d.larc .nasa.gov/chapter-6.html 56/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

the reconstruction is evaluated at each time step with the current “frozen” value of the
limiter, however if the reconstruction fails due to the extrapolation to the cell face, the limiter
is allowed to be recomputed at these selected points. Finally, when restarting a solution that
has used a frozen limiter, if you wish to continue freezing the limiter for the restart, you must
specify --freeze_limiter 0.

NiTFo This is the number of spatially first-order accurate time-steps to run prior to switching to
second-order spatial accuracy. Note: for time accurate cases (itime /= 0), this is the
number of first-order accurate sub iterations to run for each time step. The suggested value is
NITFO=0.

1HANE This controls which flux function you want to use for the inviscid fluxes. The valid options
are: 0:Van Leer, 2:Roe, 3:HLLC, 4:AUFS, 5:central difference. Roe’s scheme is suggested,
but you may find that Van Leer converges better for some cases. For incompressible flow,
the only valid option is THANE=2. Jacobians are Van Leer by default. Other Jacobians can be
selected with --roe_jac, --hllc_jac, --aufs_jac, Or --cd_jac command line options.

1verp This flag is only relevant for viscous computations. If 1vGrD=1, the viscous fluxes will be
neglected in cells containing angles equal to 178 degrees or more (admittedly a hack). This
flag is seldom required, however, you may encounter cases on meshes with poor cell quality
where the computation will suddenly give NaNs during the solution process. This is due to
unusually large angles in the grid causing gradients in the viscous fluxes to blow up. (Watch
for bad angles reported by the preprocessor.) The suggested value is IVGRD=0.

- GEOMETRIC REFERENCES

srEF This is the reference area used for non-dimensionalization of forces and moments.
crEF This is the reference chord used for non-dimensionalization of moments.

BREF This is the reference span used for non-dimensionalization of moments.

xmMc This is the x coordinate used for moment computations, in grid units.

yMc This is the y coordinate used for moment computations, in grid units.

zmc This is the z coordinate used for moment computations, in grid units.

CFL ContRroLs

Note: When running in time accurate mode (itime /= 0), the same definitions hold, except that they
are applied over TRAMP sub iterations during each time step:

crrl This is the starting CFL number. The suggested value is cFL1=1. The actual CFL number
is determined by a linear ramp from CFL1 to CFL2 over IRAMP time steps.

crr2 This is the maximum CFL number. The suggested value is crL.2=200. The actual CFL
number is determined by a linear ramp from CFL1 to CFL2 over IRAMP time steps.
1raMP This is the number of time steps over which to linearly ramp the actual CFL number from
crL1 to cFL2. The suggested value is 50.
crLTURB1 This is the starting CFL number for the turbulence equation. The suggested value is
cFLTURB1=1. The actual CFL number is determined by a linear ramp from CFLTURB1 to
CFLTURB2 Over IRAMP time steps.
crFLTURB2 This is the maximum CFL number for the turbulence equation. The suggested value is
crFLTURB2=50. The actual CFL number is determined by a linear ramp from cFLTURB1 to
CFLTURB2 Over IRAMP time steps.

. IteraTioN CONTROLS

Ncyc This is the number of time steps to be run.
1TERWRT The solution and convergence history will be written to disk every ITERWRT time steps.
rMsToL This is the absolute value of the RMS residual at which the solver will terminate early.
1rResT This flag controls the restart option. If IREsT=0, the flow is initialized as freestream. If
IREST=1, the flow will be initialized by using the previous solution information, and the
convergence history will be concatenated with the prior solution history. If IREsT=-1, the
flow will be initialized by using the previous solution information, but the convergence
histories will not be concatenated.

- UpDATES

JuPDATE After the first 10 iterations, Jacobians are updated every JUPDATE iterations. The
suggested setting is JUPDATE=3.

http://fun3d.larc .nasa.gov/chapter-6.html 5777

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

NsweeP Number of Gauss-Seidel sub iterations for the linear problem at each time step. The
suggested value is 15.

ncycr Number of Gauss-Seidel sub iterations for the turbulence model linear problem at each
iteration. The suggested value is 10.

psEupo_DT Needs to be set to 1 for steady-state-type cases (1TIME=0). For time accurate cases,
controls whether a pseudo time term is added to the physical (global) time step or not.
Use pseupo_DT=1 to add the term; otherwise use pseupo_DT=0. When added, the value
of the pseudo time term varies spatially according to a local CFL constraint. Note that
when ramping the CFL of the pseudo time term, the final CFL will be obtained only if
subiters >= iramp. The psuedo time term typically allows larger physical time steps to be
taken than might otherwise be possible. By the end of a convergent subiteration
process, the pseudo time term drops out, giving the correct temporal discretization. The
suggested value is PSEUDO_DT=1. [Introduced version 3.2.3.]

Tive

1riMe Controls time accuracy: 0:steady-state, 1:the scheme is first-order accurate in time, 2:the
scheme is second-order accurate in time, 3:the scheme is third-order accurate in time
[Introduced version 10.0], -3:the scheme is in between second-order and third-order
accurate in time (“BDF2opt”) [Introduced version 10.0]. Before version 3.2.3: 1:steady-
state, 2:the scheme is second-order accurate in time. The suggested value is the steady-
state value. The physical time step is controlled by T > 0.

pr This is the actual time step used for time-accurate computations (ITIME > 0). The value of
pr will depend on your time-dependent problem. Before version 3.2.2, local time-
stepping is used if DT < 0 so it was only used when bt > 0.

prau This is the pseudo-time step used for the sub iterations. [Removed version 3.2.3: now
controlled by PSEUDO_DT, CFL1, CFL2]

suBITERS The number of sub iterations applied to solve the implicit backward time formula.

- MuLTIGRID

NGRID, FMG_LEVS, FMG_PRLNG, Multigrid parameters. This option is not complete —leave all
FAS_LEVS, parameters at their default: 1.

- ProJecT RooTNAME

PROJECT_NAME Project name for the grid. It must be enclosed in single quotes.

i Hypersonics

In the old ginput. faces input deck, a hypersonic (generic gas) case contained the same 21 lines of
input information as ideal-gas cases (although not all parameters were used), plus an additional 10
lines specifically for generic gas at the end.

A sample of the input file, ginput. faces, is shown below. Line numbers are not part of the file.

1 CASE TITLE

2 XMACH ALPHA YAW RE TREF PRANDTL
3 15.00 3.00 0.0000 4.00e5 200.0 0.72
4 INCOMP IVISC IFLIM NITFO IHANE IVGRD
5 2 2 0 0 2 0
6 SREF CREF BREF XMC YMC ZMC
7 1.00000 1.00000 1.00000 0.25 0.00 0.00
8 CFL1 CFL2 IRAMP CFLTURB1 CFLTURB2

9 l.e+06 l.e+06 100 000.100 200.000

10 NCYC ITERWRT RMSTOL IREST

11 1000 50 1.E-15 1

12 JUPDATE NSTAGE NCYCT

13 10 10 10

14 ITIME DT DTAU SUBITERS

15 1 -5.000 .001 10

16 NGRID FMG_LEVS FMG_PRLNG NU1 NU2

17 1 1 1 1 1

18 FAS_LEVS FAS_CYCS NGAM

19 1 1 1

20 PROJECT_NAME:

21 'cylinder'

22 V_INF RHO_INF T INF LEN_REF T WALL
23 5000.0 0.00100 200. 1. 500.
24 CHEM_FLAG THERM_FLAG TURB_MODEL_TYPE

http://fun3d.larc .nasa.gov/chapter-6.html

58/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

25 0 0 0

26 RF_INV RF_VIS EIGO EIGO_IMP

27 2.0 1.0 1.0e-30 5.e-02

28 TURB_INT_ INF TURB_VIS RATIO INF PRANDTL_ TURB

29 0.01 0.1 0.9

30 REYNOLDS_STRESS_MODEL TURB_COND MODEL TURB_COMP_ MODEL
31 0 0 0

The first 21 lines of the file have identical format to traditional perfect gas FUN3D specifications.
However, some entries are ignored or play a different role if the generic gas path for hypersonic flow
is selected. These differences will be explained subsequently but it is assumed that the user is already
familiar with these first twenty-one (21) lines. If not, the user should consult the description of the
ginput. faces file in the perfect gas section of the FUN3D users manual first. Additional parameters
required for the generic gas path appear in lines (22) — (31). The format maintains the pattern of a list
of parameter names on one line and the associated parameter values positioned under the respective
name on the next line.

The generic gas path is selected when the input integer parameter INCOMP is set to 2 on line (5).
Recall that the perfect gas, compressible path is selected when IncowmP is set to 0 and the
incompressible path is selected when 1NcoMp is set to 1. Lines (22)-(31) will only be read if 1NcoMPp is
set to 2 on line (5). The generic gas path can currently accommodate perfect-gas, equilibrium gas, and
mixtures of thermally-perfect species in chemical and/or thermal non-equilibrium.The user specifies
the gas model in a separate file called tdata to be defined later.

The parameter Ivisc may be set to 0 (inviscid flow) or 2 (viscous flow). Other options used in
FUN3D do not apply in the generic gas path (when IncoMP is set to 2). Branches for laminar or
turbulent flow using various models are controlled by the new parameter TURB_MODEL_TYPE to be
defined subsequently. Because the turbulent model equations are solved in a fully coupled manner
with the other conservation laws in the generic gas path the parameters which control relaxation of an
independent set of turbulence equations, CFLTURB1, CFLTURB2, NCYCT in the perfect-gas path are
ignored.

Two options are available for second-order spatial accuracy. The integer parameter THANE from
FUNS3D on line (3) assumes a new role to define these options. Both options use Roe’s averaging. If
IHANE is set to 1 on line (4) then the right and left states are reconstructed to second-order using
primitive variable gradients computed using least squares from the right and left nodes. These
gradients may in turn be limited according to the standard definition if TFLIM in FUN3D. If THANE is
set to 2 on line (4) then the right and left states use the nodal values (first-order-formulation) but a
second-order, anti-dissipative correction is introduced using a STVD formulation involving the same
nodal values of gradients. In this case there is no limiting of gradients, other than that occurring in the
STVD formulation.

In hypersonic applications, the inflow boundary conditions are given in terms of a uniform velocity
(Vv_1INF), mixture density (RHO_INF), and temperature (T_INF). These input parameter names appear
on line (22) and associated values on line (23). The MKS system is used for these inputs;
consequently, velocity must be entered in units of meters per second, density in units of kilograms per
meter cubed, and temperature in degrees Kelvin. The grid scaling factor (LEN_REF) converts from
grid units to meters in units of meters per grid unit. For example, if grid units are in inches then
LEN_REF i8 set to 0.0254 (meters per inch). Mach number and Reynolds number per grid unit are
computed from these fundamental inputs; consequently, the entries for Mach number (xMaCH),
Reynolds number (RE), reference temperature TREF, and Prandtl number (pPRaNDTL) from the perfect-
gas path are ignored on line (3).

A wall temperature (TwALL) is also entered on line (23) in units of degrees Kelvin. If a non-constant
wall temperature boundary condition is specified (see Boundary Conditions for Generic Gas Option)
then this parameter serves only to initialize the surface boundary condition.

Three gas model flags are defined on lines (24) and (25). The flag name appears on line (24) and the
associated value appears beneath it on line (25). The flag cHEM_FLAG is set to 0 for chemically frozen
flow or to 1 for chemically reacting flow. This flag is engaged only in the case of multiple species
defined in file tdata. If it is set to zero for chemically frozen flow then the chemical source term is
never called and species mass fractions can only be changed through the action of diffusion. If it is set
to one for chemically reacting flow then the chemical source term is called and species mass fractions
change by kinetic action of dissociation, recombination, ionization, and de-ionization. The flag
THERM_FLAG is set to 0 for thermally frozen flow or to 1 for thermally active flow (flow in thermal
non-equilibrium). This flag is engaged only when a thermal non-equilibrium model is specified in the
file tdata; otherwise thermal equilibrium is assumed. If it is set to zero for thermally frozen flow then
the thermal energy exchange source term is never called and the modeled modal temperatures
(vibrational, electronic) can be changed only by the action of conduction. (Translational temperature
still evolves through the action of flow work but this energy is never transferred to internal energy
modes.) If it is set to 1 then the source term models particle collisions in which particle internal energy
in the translational, rotational, vibrational, and electronic modes can be exchanged. The flag

http://fun3d.larc .nasa.gov/chapter-6.html 59/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

TURB_MODEL_TYPE engages various multi-equation turbulence models. This flag is set to 0 for laminar
flow. Other models are under construction.

Four numerical parameters unique to the generic gas path are named on line (26) and set on line (27).
Their names and intended function are inherited from the structured grid, hypersonic flow solver
LAURA. As experience is gained with the generic gas path, the role of these numerical parameters has
been modified. The parameter RF_INV is a relaxation factor on the update, dg, to the conservative
flow variables ¢. Before an update, dq is divided by the maximum value of five limiting factors
including RF_1Inv. The first four limiting factors are computed internally and designed to limit the rate
of change of pressure, density, temperature, and velocity. If RF_INV is set to 1.0, no further limiting is
engaged. The parameter RF_V1Is is a relaxation factor that multiplies only the viscous Jacobian. Its
value should be set to 1. 0; it is retained here as a place holder for future research. The parameter
EIGO is the eigenvalue limiter. It acts only on the evaluation of the eigenvalues used on the right-
hand-side convective portion of the residual using Roe’s method. If eigenvalues are less than E1G0
times the local sound speed then a formula due to Harten is employed to smoothly limit the
eigenvalue. Numerical tests show that the heating and solution quality near the wall are severely
compromised using eigenvalue limiting when tetrahedra are used throughout. The parameter value
should be set to 1.e-30 (it must be positive definite) in this case. It is retained as an input parameter
in case it is needed, as in the structured grid approach of LAURA, when prismatic elements are
introduced. The parameter EIG0_IMP is also an eigenvalue limiter but is applied only in the evaluation
of the inviscid Jacobian (left-hand-side) by Roe’s method. Recommended values between .001 and
1.0 provide a more well-determined matrix. Larger values enhance robustness with the possible
penalty of slower convergence, particularly in stagnation regions.

Lines (28)-(31) contain parameter names and values for various multi-equation turbulence models.
These models are under construction.

This section describes how to obtain solution output for flow visualization directly from the flow
solver, without having to run party in the postprocessing mode. At the current time, only TECPLOT
data output is supported; this is not to be considered as an endorsement of TECPLOT.

This capability is available in Version 10.7 and higher.
This capability is not currently available for the Generic Gas Option.

Beginning with Version 11.0, all of the options below may be used with a value of nsteps = 0 in
the scode_run_control namelist within the fun3d.nml file. This will allow generation of
visualization output without having to do additional timesteps/iterations on your existing solution —
analogous to post processing with the old party code, only faster because multiple processors can be
used. Of course, “existing solution” implies that the restart_read variable is set to something other
than "of£". Note however, if you set nsteps=0 you MUST use at least one of the command line
options described below; otherwise an error message will be generated and the code will stop.

General Information

Output Variable Choices

Boundary Data Output

Sampling Surface Data OQutput

Volumetric Data OQutput

‘Sliced’ Boundary Data Output (less general than other options)

. GENERAL INFORMATION

The FUN3D partitioning code, party, has long had a postprocessing capability in which the
[project]_flow.N files generated by the flow solver are read, combined into a single global image of
the solution, and then output via user-selected options for either surface or volumetric data, typically
in TECPLOT or FIELDVIEW format. There are several drawbacks to the party postprocessing
approach: 1) it is slow for large meshes since one processor must do all the work; 2) it requires a
processor with a significant amount of memory if the problem size is large; 3) although there are a
number of output options, the output is not particularly customizable for individual requirements in
terms of which variables are output.

In FUN3D Version 10.7, some of these deficiencies are addressed by allowing output to be requested
from the flow solver directly. At the present time, only TECPLOT-compatible data is output, but
what data is output is customizable (see Output Variable Choices). There are 3 basic categories of
output: boundary data, “sampling surface” data (on surfaces such as planes, boxes and spheres), and
volumetric data. Depending on user requirements, these data may be output at specified frequencies

http://fun3d.larc .nasa.gov/chapter-6.html 60/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

(i.e. every Nth time step / iteration) or only at the end of the execution. The processing of this data is
done largely in parallel, and so is typically much faster than requesting similar output from party.
Boundary data and sampling surface data are reduced to a single global image before output at a
particular time step, although volumetric data is not. Thus, a solution for which volumetric data as
requested will write out one file from each processor for each time step at which output is requested.
TECPLOT’s multiple file read option can be used to manage the large number of files, but the
number of volumetric files written out from a time-dependent case can be quite large even if written
infrequently.

The naming convention for each type of data output will be described below, but the file extension
will either be .dat for ASCII files or .plt for binary files. Binary files are output when FUN3D is
configured with TECPLOT’s tecio library (See Third-Party Libraries - TECPLOT). Assuming you
have configured FUN3D with the tecio libraries, you may still obtain ASCII output by specifying the
command-line option --ascii_tecplot_ output

By default, output occurs in the inertial reference frame; for stationary geometries, that is the only
reference frame to consider. For moving bodies, it is also possible to request output in a reference
frame moving with an observer, such that the resulting data is relative to the observer’s reference
frame, rather than the inertial frame. The observer could be fixed to one of the moving bodies or

moving in some other way. See Specifying Observer Motion

- OuTPUT VARIABLE CHOICES

By default, the variables that are output from the flow solver are x,y,z and the primitive variables rho,
u, v, w, and p. For overset meshes, iblank is also part of the default output. If these variables are not
what is wanted, alternate data can be chosen via namelist input in a file called “namelist.input”
(“fun3d.nml” in 10.9.0 and later); each output category (boundary data output, sampling surface data
output or volumetric data output) has its own namelist — see the individual sections for details. The
variables listed below are available for either boundary data output, sampling surface data output or
volumetric data output. Boundary data output has a few additional variables that are available for
output; these special variables are listed in that section. Most variable names should be relatively self-
descriptive — a brief description is given in [] for completeness. Note that each variable must be
spelled as shown below, i.e. pressure coefficient must be requested as cp and not Cp, c_p etc. Also
note that all are input as logical variables, either .true. or .false. — e.g. cp = .true. All output variables
are nondimensional.

X, YV, 2 [grid coordinates]

u, v, w [velocity components]

P, Cp [pressure, pressure coefficient]

mach [Mach number]

entropy [entropy]

vort_x, vort_y, vort_z [components of vorticity]

vort_mag [magnitude of vorticity]

q criterion [second invariant of the velocity-gradient tensor
iblank [grid blanking value (overset grid) - output as r
iflagslen [integer flag to indicate laminar volume nodes -

imesh [associated component mesh number (overset moving
slen [distance from nearest solid surface]

turbl, turb2 [turbulence variable (1 or 2 equation turb. model
mu_t [turbulent eddy viscosity]

mu_t_ratio [ratio of turbulent eddy viscosity and local lami
uuprime, vvprime, wwprime [turbulent fluctuation

uvprime, uwprime, vwprime velocity products]

volume [dual-cell volume]

resl, res2, res3, res4, res5 [mass, momentum(3) and energy residuals]

turresl, turres2 [turbulence residuals (1 or 2 equation turb. mode
res_gcl [geometric conservation law residual]

rho_tavg, p_tavg [time-averaged density and pressure (version 10.8
u_tavg, v_tavg, w_tavg [time-averaged velocity components (version 10.8

rho_trms, p_trms [time-rms density and pressure (version 10.8 and

u_trms, v_trms, w_trms [time-rms velocity components (version 10.8 and h
processor_id [processor number (starting at 0) on which node r

In addition, there are a few “short cut” names available — the variables in [] are covered by the short-
cut name:

primitive_variables [rho, u, v, w, p]

turbulent_fluctuations [uuprime, vvprime....vwprime]

residuals [resl, res2...resd4, (res5)...turresl, (turres2)]
primitive_tavg [rho_tavg, u_tavg, v_tavg, w_tavg, p_tavg (version 10
primitive_trms [rho_trms, u_trms, v_trms, w_trms, p_trms (version 10

http://fun3d.larc .nasa.gov/chapter-6.html

61/77

http://fun3d.larc.nasa.gov/chapter-2.html#tecplot

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

NOTE: If you do not desire one or more of the default variables, you must explicitly set those
variables as false in the appropriate namelist. For example, to get X, y, z and pressure coefficient
output instead of X, y, z, and rho, u, v, w, and p, set primitive_variables = .false. and cp = .true. In this
example, use is made of the short cut name for the primitive variables, but alternatively they could be
turned off individually.

Note that although any or all of these variables may be requested, there are combinations of input
parameters and output variable requests that are simply incompatible. For example, if your input deck
is set for laminar flow and you request turb1, turb2 or mu_t, the code will warn you you cannot have
that output, and will carry on and output just the valid output requests. Likewise, if you request turb2
output from a 1-equation turbulence model, that will be denied. There are potentially numerous other
incompatible output requests — hopefully all are caught.

. BounpaRY DaTA Output

Boundary output is activated via the command-line option -- animation_freq N, where N =+/—
1,2,3... A”+” (or no) sign for N will cause the output to be generated every Nth time step/iteration.
A ”-” sign with any (non-zero) value of N will cause output to be written only at the end of a run.
The behavior of the +/- sign is the same whether the case is time accurate or steady, but typically one
would use ”-” for steady-state (where only the final data is usually of interest) and ”+” for unsteady
flows.

To alter the default variable output (X, y, z, tho, u, v, w, p), the undesired variables must be turned off
and the desired variables turned on in the sboundary output_ variables namelist in the
namelist.input file (fun3d.nml for releases 10.9.0 and later). The example below illustrates the
use of the namelist input to output only x and z, and rho, u, w, and cp on the boundary, as might be
desired for a 2D case:

&boundary output_variables

y = .false.
v = .false.
p = .false.
cp = .true.
/

Note that these variable selections in the sboundary_output_variables namelist apply ONLY to
boundary output. Other output (e.g. sampling surface) will still contain default variables unless similar
choices are made in the appropriate namelist.

By default, the -—animation_freq command will cause output of solution data for all solid surfaces
in 3D and on one y=const. symmetry plane in 2D. The user may alter this default output by setting
the variable number of_boundaries and providing a string with the list of desired boundaries in the
variable boundary_list. Note that number of_ boundaries and boundary_list apply ONLY to
boundary output.

(Note: in earlier versions this was accomplished by providing an file called “boundaries_to_animate”
in the run directory; this is no longer supported)

For example, to output (default, primitive-variable) data on boundaries 2, 5, and 9-12:

&boundary_output_variables

number_of_boundaries = 6
boundary_list = '2,5,9,10,11,12"'
/

All output boundaries are written to one file each time boundary data output is triggered.

The resulting boundary-data files will have the following naming convention:

[project]_tec_boundary_ timestepT.dat (or .plt) i
[project]_tec_boundary.dat (or .plt) i

H Hh
2 =2
oo

where T is the time step or iteration number. Within the files, each boundary is written as a separate
zone, and zones are identified as, for example:

zone T "time 0.0000000E+00 boundary 5"

where the time value is the integer iteration number for steady-state cases, and the current

http://fun3d.larc .nasa.gov/chapter-6.html 62/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

(nondimensional) time for time-dependent cases.

In TECPLOT360-2008, zones may be parsed by time (i.e. type the word time in the parse box) in the
Unsteady Flow Options dialog box if “Flow Solution is Steady-State” is not checked. Once zones are
parsed by time, they may be animated by time level; this is very useful in animating cases with
multiple boundaries, or if the files corresponding to each time step are not read into TECPLOT in
order.

In addition to the variables listed in Output Variable Choices, the following variables are also
available for output on boundaries:

uavg, vavg, wavg [average off-surface velocity components (for str
yplus [friction length corresponding to minimum grid sp
cf x, cf y, cf_z [skin friction components]

skinfr [skin friction magnitude, with sign]

cq [heat transfer coefficient - actually just dT/dn]
id_12g [local-to-global node map - output as real value]
turbindex [turbulence index - see Recherche Aerospatiale 1:

NOTE The sign assigned to the skin friction magnitude (skinfr) is determined by the the sign of the
inner product of the skin friction vector with the freestream velocity vector. This may or may not be a
precise indication of separated flow.

The following “short cut” name is available — the variables in [] are covered by the short-cut name:
average_velocity [uavg, vavg, wavg]

NOTE The formula used to obtain turbindex is strictly correct only for the SA model (which behaves
as the 4th power of y near walls). For other models, which may behave differently, the turbindex is at
best only an approximate (crude) indicator.

- SAmMPLING SURFACE DATA OuTPUT

Sampling output (output on one or more basic surfaces such as planes, spheres, and boxes) is
activated via the command-line option --sampling_freq N, where N=+/-1,2,3... A ”+” (or no)
sign for N will cause the output to be generated every Nth time step/iteration. A ”-” sign with any
(non-zero) value of N will cause output to be written only at the end of a run. The behavior of the +/-
sign is the same whether the case is time accurate or steady, but typically one would use ”-” for
steady-state (wWhere only the final data is usually of interest) and ’+” for unsteady flows.

To alter the default variable output (X, y, z, tho, u, v, w, p), the undesired variables must be turned off
and the desired variables turned on in the &sampling output variables namelist in the
namelist.input file (fun3d.nml for releases 10.9.0 and later). The example below illustrates the
use of the namelist input to output the distance from the wall (used in turbulence models), along with
the eddy viscosity, rather than the primitive variables, on the sampling surface:

&sampling output variables

primitive_variables = .false.
slen = .true.

mu_t = .true.

/

Note that these variable selections in the ssampling_output_variables namelist apply ONLY to
sampling output. Other output (e.g. boundary data) will still contain default variables unless similar
choices are made in the appropriate namelist.

The surfaces on which solution data is output must be specified by additional namelist input,
described below

The resulting sampling-surface data files will have the following naming convention:

[project]_tec_sampling geomG_timestepT.dat (or .plt) if N > 0
[project]_tec_sampling geomG.dat (or .plt) 1if N < 0

where G = 1,2,..number_of_geometries (as set via the ssampling output_variables namelist)
and T is the time step or iteration number. Within the files, a global image of the sampling surface is
output, with the zone identified as, for example:

http://fun3d.larc .nasa.gov/chapter-6.html

63/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

zone T "time 0.0000000E+00 geom 3"

where the time value is the integer iteration number for steady-state cases, and the current
(nondimensional) time for time-dependent cases. See the note near the bottom of the boundary data
output section for parsing by time level for animation of unsteady flows.

&sampling_parameters namelist

In addition to the ssampling_output_variables namelist, which is similar to those required for
boundary and volumetric output, sampling-surface output requires additional data, which is input via
a namelist called ssampling_parameters; this namelist input must appear in the namelist.input
file (fun3d.nml for releases 10.9.0 and later). Details of the variables in this namelist are described
below. A (G) implies that the input value is set once/applies to all output surfaces; and (S) indicates
that variable must be specified for each surface.

Note: Boundary_point and volume_point sampling currently output a subset of the total sampling
variable options, i.e. tho, u, v, w, p, cp, mach, temperature, entropy, slen, iflagslen, mu_t, mu_t_ratio,
turbl, turb2, turres1 and turres2. This list is expected to be expanded in future releases. Output of
Schlieren images contain only image intensity data and will not include any other requested sampling
output variable data.

number_of_geometries Number of geometries (sampling surfaces) to be output (G) (Default: 0)

type_of_geometry Description of the geometry (S) (Default: ‘none’; choices: 3D or volume
geometries are ‘box’ and ‘sphere’; 2D or planar geometries are ‘quad’,
‘circle’ , ‘plane’ and ‘schlieren’; singular geometries are ‘boundary_point’
and ‘volume_point’ and ‘isosurface’ will extract data at a constant value
throughout the flowfield.)

label Alternate label of sampling output filename (S)
[project]_[label]_timestepT.dat (or .plt) if N > 0Or
[project]_{]label].dat (or .plt) if N < 0

sampling_frequency Sampling output is activated via the namelist option
sampling_ frequency(ivol)=N, where N=+/-1,23... A ”+” (or no)
sign for N will cause the output to be generated every Nth time
step/iteration. A ”-” sign with any (non-zero) value of N will cause output
to be written only at the end of a run. The behavior of the +/- sign is the
same whether the case is time accurate or steady, but typically one would

99 99

use ”-” for steady-state (where only the final data is usually of interest) and
”+” for unsteady flows. sampling_frequency[] = N (S) (Default: 0)
plane_center x,y,z coordinates of the center of the plane, for type_of_geometry =
‘plane’ (S) (Default: 0.0, 0.0, 0.0)
plane_normal X,y,z components of a unit vector to the plane (sign is immaterial), for

type_of_geometry = ‘plane’ (S) (Default: 0.0, 0.0, 0.0)

box_lower_corner X,y,z coordinates of the lower corner of the box, for type_of_geometry =
‘box’ (S) (Default: 0.0,0.0,0.0)

box_upper_corner X,y,z coordinates of the upper corner of the box, for type_of_geometry =
‘box’ (S) (Default: 0.0, 0.0, 0.0)

sphere_center x,y,z coordinates of the center of the sphere, for type_of geometry =
‘sphere’ (S) (Default: 0.0,0.0,0.0)

sphere_radius Radius of the sphere, for type_of_geometry = ‘sphere’ (S) (Default: 0.0)

circle_center x,y,z coordinates of the center of the circle, for type_of_geometry =
‘circle’ (S) (Default: 0.0, 0.0, 0.0)
circle_normal X,y,z components of a unit vector to the circle(sign is immaterial), for
type_of_geometry = ‘circle’ (S) (Default: 0.0, 0.0, 0.0)
circle_radius Radius of the circle, for type of geometry = 'circle' (S) (Default:
0.0)
cornerl x,y,z coordinates of the 1st corner of the quad, for type_of_geometry =
‘quad’; corners proceed clockwise (S) (Default: 0.0, 0.0, 0.0)
corner2 x,y,z coordinates of the 2nd corner of the quad, for type_of_geometry =
‘quad’; corners proceed clockwise (S) (Default: 0.0, 0.0, 0.0)
corner3 X,y .z coordinates of the 3rd corner of the quad, for type_of_geometry =
‘quad’; corners proceed clockwise (S) (Default: 0.0, 0.0, 0.0)
corner4 x,y,z coordinates of the 4th corner of the quad, for type_of_geometry =

‘quad’; corners proceed clockwise (S) (Default: 0.0, 0.0, 0.0)

number_of_points Number of points to be sampled to be output for geometries
boundary_points or volume_points (S) (Default: 0)

points x,y,z coordinates of the points (S) (Default: 0.0,0.0, 0.0)

http://fun3d.larc .nasa.gov/chapter-6.html

64/77

6/5/2014

number_of_rows
number_of_columns
window_height
window_width

window_center

schlieren_aspect

blanking_list_count

blanking list

isosurf_variable

isosurf_value
crinkle
print_boundary_data

snap_output_xyz

dist_tolerance

plot

FUN3D Manual :: Chapter 6: Analysis

Number of pixels in window height (S) (Default: 0)
Number of pixels in window width (S) (Default: 0)
Height of schlieren window (S) (Default: 0.0)
Width of schlieren window (S) (Default: 0.0)

x,y,z coordinates of the center of the schlieren window (S) (Default:
0.0.0.)

Window normal vector alignment, either y or z axes. (S) (Default: none
[blank])

Number of boundaries to search to blank schlieren image (S) (Default: 0)

List of boundaries to search to blank schlieren image (S) (Default: none
[blank])

Flowfield variable used to visualize the iso-surface. (S) (Default: none
[blank])

Value of the flowfield variable to be visualized. (S) (Default: 0)
Plot output surface(s) as crinkle surface (G) (Default: .false. [smooth])
Print data (for debugging?) (G) (Default: O [don’t print])

When snap_output_xyz is true, the coordinates of the points output are
snapped to the boundary. When snap_output_xyz is false, the coordinates
of the points output come from the namelist input. (G) (Default: .true.)

Distance, in mesh units, allowed to search for requested boundary point
data. (G) (Default: 1.0e-3)

Choice of TECPLOT or Fieldview output (S) (Default: ‘tecplot’; alternate:

‘fieldview’ or ‘serial_history’)

In the example below, two planes of data are output;

&sampling parameters
number_of geometries = 2,

type_of_ geometry(
plane_center(1,1)

plane center(2,1) =

plane_center(3,1)
plane_normal(1l,1)

plane_normal(2,1) =

plane_normal(3,1)

type_of_ geometry(2)='p

plane center(1l,2)
plane_center(2,2)
plane_center(3,2)
plane_normal(1,2)
plane_normal(2,2)
plane_normal(3,2)

l1)="'plane', ! start plane 1 data
= 3.5 ! x 2nd index is geom #
= 0.0 !y
= 0.0 !z
=1.0 ! xXn
= 0.0 ! yn
= 0.0 ! zn
'plane’
= 0.0 ! start plane 2 data
= 10.8333333333333
= 0.0
= 0.0
=1.0
= 0.0

In the next example, a range of geometries are output; this example also depicts a slightly more
compact means of specifying the namelist data.

&sampling parameters
number_of_geometries = 10
!-applies only to boundary_ point sampling--
snap_output_xyz = .true.
dist_tolerance = 0.1

type_of geometry(l)='plane',
sampling frequency(1l) = -1
plane_ center(:,1)=4.0,0.0,0.
plane _normal(:,1)=1.0,0.0,0.
type_of geometry(2)='quad',
sampling frequency(2) = 1
cornerl(:,2)=-2.0,-5.0, 6.0,
corner2(:,2)=-2.0,-5.0,-6.0,
corner3(:,2)=-2.0 ,5.0,-6.0,
corner4(:,2)=-2.0, 5.0, 6.0,

type_of geometry(3)='circle',

sampling frequency(3) = 5
circle_center(:,3) = 0.0, 0.0, 0.0,
circle_normal(:,3) = 1.0, 0.0, 0.0,
circle_radius(3) = 5.0,

type_of geometry(4) ='box'
sampling frequency(4) = 0

http://fun3d.larc .nasa.gov/chapter-6.html

65/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

box_ lower_corner(:,4) = -5.1, -5.1, -5.1,
box_upper_corner(:,4) 5.1, 5.1, 5.1,

type_of_ geometry(5) = 'sphere'’
sampling_frequency(5) = -1
sphere center(:,5) = 1.0, 1.0, 1.0
sphere_radius(5) = 5.0

type_of geometry(6) 'boundary_points'
sampling frequency(6) = -1
number_of_points(6) =2
points(:,6,1) 0.036,0.1,1.0
points(:,6,2) = 0.0123226,0.0325125,0.998785

type_of geometry(9) 'boundary_points'

sampling frequency(9) =1
variable 1list(9) = 'p'
number_of_points(9) =1
plot(9) = 'serial_history'

points(:,9,1) = 0.0123226,0.0325125,0.998785

type_of geometry(7) ='schlieren'
sampling frequency(7) = 10
number_of_ rows(7) = 100
number_of_columns(7) = 100
window _height(7) = 5.00
window _width(7) = 5.00
window_center(:,7) = 0.0,2.5,0.0
blanking list count(7) =1
blanking_list(7) = '1'
schlieren_aspect(7) = 'z'
1
type_of geometry(8) = 'isosurface'
sampling frequency(8) = -1
isosurf_variable(8) = 'u'
isosurf_value(8) = 0.1
1
type_of_geometry(10) = 'volume_points'

-1
'lelzlrholulp’cp'

sampling frequency(10)
variable 1list(10)
number_ of points(10) 3
points(:,10,1) =-0.080,0.035,1.0
points(:,10,2) =-0.080,0.230, 1.0
points(:,10,3) =-0.080,0.42,1.0

- VoLumeTric Data Output

Volumetric output (output for every point in the domain) is activated via the command-line option -~
volume_animation_freq N,where N=+/-123... A”+” (or no) sign for N will cause the output
to be generated every Nth time step/iteration. A - sign with any (non-zero) value of N will cause
output to be written only at the end of a run. The behavior of the +/- sign is the same whether the case
is time accurate or steady, but typically one would use - for steady-state (where only the final data
is usually of interest) and ”+” for unsteady flows.

Caution: volumetric data is not concatenated into a single global image for tecplot, as is done for
boundary and sampling-surface data. Every processor writes its own file, for each timestep for which
output is requested. Thus, a very large number of files may be generated for N > 0. Fieldview (fv)
and CGNS (cgns) are written as a single image.

&volume_output_variables
export_to = 'tecplot' ! 'fv' and 'cgns' are other options
/

To alter the default variable output (x, y, z, tho, u, v, w, p), the undesired variables must be turned off
and the desired variables turned on in the svolume output variables namelist in the
namelist.input file (fun3d.nml for releases 10.9.0 and later). The example below illustrates the
use of the namelist input to output the three components of vorticity, rather than the primitive
variables, at each point in the field:

&volume_output_variables

primitive_variables = .false.
vort_x = .true.

vort_y = .true.

vort_z = .true.

/

http://fun3d.larc .nasa.gov/chapter-6.html 66/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

Note that these variable selections in the svolume_output_variables namelist apply ONLY to
volumetric output. Other output (e.g. boundary data) will still contain default variables unless similar
choices are made in the appropriate namelist.

The resulting volume-data files will have the following naming convention:

[project] partP_tec_volume_timestepT.dat (or .plt) if N > 0
[project]_PartP_tec_volume.dat (or .plt) 1if N < O

where P = 1,2,...nproc (number of processors) and T is the time step or iteration number. Within the
files, a single zone is written, with the zone identified as, for example:

zone T "time 0.0000000E+00 processor 32"

where the time value is the integer iteration number for steady-state cases, and the current
(nondimensional) time for time-dependent cases. See the note near the bottom of the boundary data
output section for parsing by time level for animation of unsteady flows.

. ‘SLicep’ BounpARY DATA OuTpPuT

A limited ability to take slices through boundary surfaces is available from within the flow solver.
For example, spanwise cuts along a wing may be taken, and then the resulting pressure and skin
friction data may be plotted at each station. This capability largely parallels that of the box5/box6
utility codes, with the added ability to handle unsteady flows in a simple fashion. This slicing
capability is also essential for (and in fact developed for) use in rotorcraft solutions where the flow
solver is coupled to an external Computational Structural Dynamics (CSD) code, such as CAMRAD.

Slices can only be taken at constant-coordinate positions (e.g. x=constant); for moving-body cases,
the slices may be taken at constant-coordinate positions in a body-fixed coordinate system, in which
case the slices will not generally be in constant coordinate planes in inertial space.

The sliced data is written to an ASCII formatted TECPLOT file with the naming convention:
{project}_slice.tec

The variables output to this file are: X, y, z, cp, cfx, cfy, cfz at each output time step. Note that unlike
the solver-output options described in the previous sections, the output variables from boundary-
surface slicing are not customizable by the user.

Slicing occurs in the inertial frame unless an alternate reference frame is specified. For stationary
geometries, the inertial frame is the only option. For moving body cases, either the frame of one of the
moving bodies (see Defining Moving Bodies) or an observer frame (see Specifying Observer
Motion) may be more appropriate.

Surface data slicing is enabled within the flow solver with the command line option: --slice_freq
1NT where INT is the (integer) frequency at which the boundary data is sliced. The --slice_freq
option operates exactly as --animation_freq

In addition to this command line option, specific instructions on where to take the slices must be
provided through the namelist sslice_data, which in Version 11.1 and higher is input via
fun3d.nml (in earlier versions of the code, this namelist was set via a file called

slice global bndry.input)

An (S) following a variable description implies that the data may be specified for each slice; a (G)
implies the data applies to all slices

&slice_data namelist

nslices Number of slices to create (G) (Default: 0); if negative, then data for
only one slice station need be input, along with a spacing increment,
and all the data specified for the first station will be applied to
subsequent stations, with the exception of the slice location, which will
be set using the spacing increment

slice_increment Increment in slice location between consecutive slice stations (G)
(Default: 0.0); to be utilized with ns1ices <0, in which case the value
should be explicitly set, as the default increment will place all slices at
the same location as the first slice; if ns1ices > 0, the value of
slice increment is unused
tecplot_slice_output Output the sliced data (coordinates, Cp, Cf, etc) to a (formatted)

http://fun3d.larc .nasa.gov/chapter-6.html 67/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Tecplot file, [project]_slice.dat, for animation. Caution: for unsteady
flows with frequently written data at many slice locations, this file can
become very large. (G) (Default: .true.)

output_sectional_forces Output detailed force and moment data for each slice to a (formatted)

slice_frame

replicate_all_bodies

slice_x

slice_y

slice_z

slice_location

n_bndrys_to_slice

bndrys_to_slice

slice_group

te_def

le_def

corner_angle

http://fun3d.larc .nasa.gov/chapter-6.html

file, [project].sectional_forces; this file contains F/M data like that in
the [project].forces file, only for each and every slice. In addition, it
contains geometrical data for each slice (le/te coordinates, moment
center, etc.) Caution: for unsteady flows with frequently written data
at many slice locations, this file can become very large. On the other
hand, the data in the file, especially the geometry data, can be useful to
assess whether the slicing is working as expected (G) (Default: .true.)

Name of the reference frame in which slice is to be taken (S) (Default:
»* [indicates inertial frame]); for moving geometries, to specify the
observer frame, use ‘observer’; to specify the frame of a particular
body, use ‘body_name’, where body_name is that specified in the
&body_definitions namelist

An “easy button” to set similar slice stations on multiple bodies with
minimal input beyond that required for slicing the first body.
Particularly useful for rotorcraft applications where multiple blades are
to be sliced. This variable duplicates the input slice info for all moving
bodies, with the exception of slice_frame and the
bndrys_to_slice data (G) (Default: .false.)

Slice to be taken normal to x-direction (i.e. at x=constant) in the
specified reference frame (S) (Default: .false.)

Slice to be taken normal to y-direction (i.e. at y=constant) in the
specified reference frame (S) (Default: .true.)

Slice to be taken normal to z-direction (i.e. at z=constant) in the
specified reference frame (S) (Default: .false.)

Coordinate value at which slice is taken (S) (Default: 0.0)

Number of candidate boundaries to search while computing slice-
plane intersections (S) (Default: all solid boundaries). Specifying
which boundaries are candidates for slicing may speed up the slicing
process; may also be used to filter out unwanted intersections or to
slice non-solid boundaries

List of n_bndrys_to_slice boundaries that will be searched to compute
the slice-plane intersection (S) (Default: all solid boundaries)

Assign this slice to a particular group number; within a group, slice
locations are expected to be given in ascending order; multiple slice
groups can be used to circumvent this (S) (Default: 1)

number of points or line segments to consider when defining the
“trailing edge” of the slice; a) a value of +1 defines the TE as the aft-
most point — best for sharp trailing edges; b) a positive number > 1
initiates a search, over the aft-most te_def segments for “corners”, after
which the TE is taken as the average coordinate over all the detected
corners — 2 corners are assumed to be the desired number and
warnings are output if only 1 or more than 2 are found. Note that the
value of te_def must be chosen judiciously — large enough to allow
both corners to be found, but not so large as to cause excessive
searching or for any non-trailing edge corners to be found - this option
is best for and recommended only for squared-off trailing edges; c) a
negative number indicates a parabolic fit of the aft-most abs(te_def)
points — best for rounded/blunted trailing edges (S) (Default: +1 —
declare the aft-most point as the trailing edge)

number of points to consider when defining the “leading edge” of the
slice; a) a value of +1 defines the TE as the forward-most point — use if
nothing else works or for special cases; b) a positive number indicates
a search over the forward-most le_def points for the one that has the
maximum distance from the previously-determined trailing edge —
generally the best choice provided the trailing edge can be accurately
located; c) a negative number indicates a parabolic fit over the
forward-most abs(le_def) points (S) (Default: +30 — search the 30
forward-most points to find the one that has the maximum distance
from the previously-determined trailing edge)

used in conjunction with te_def > 1; angles between adjacent sliced
segments that are less than the corner_angle value will be considered
as indicative of a corner between the two segments. For squared-off
trailing edges, two and only two corners should be detected. (Default:

68/77

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

120 — angles less than 120 degrees are considered corners)
chord_dir Direction of local chord relative to the direction from leading edge to
trailing edge; +1 indicates local chord in direction le -> te; -1 indicates
local chord in direction te -> le (S) (Default: +1)
use_local_chord Use the computed local (sectional) chord, based on the computed LE
and TE locations, to normalize the sectional force and moment data;
otherwise the input value of Cref will be used. (G) (Default: .true.)

slice_xmc x-coordinate of the moment center in the specified reference frame (S)
(Default: computed “quarter chord” of the slice)

slice_ymc y-coordinate of the moment center in the specified reference frame (S)
(Default: computed “quarter chord” of the slice)

slice_zmc z-coordinate of the moment center in the specified reference frame (S)
(Default: computed “quarter chord” of the slice)

xx_box_min Minimum x-coordinate used to define a bounding box to constrain the

slicing. (S) (Default: negative huge number — i.e. no bounding)
Specifying bounding box surfaces can aid in filtering out unwanted
intersections

xx_box_max Maximum x-coordinate used to define a bounding box to constrain the
slicing. (S) (Default: positive huge number — i.e. no bounding)

yy_box_min Minimum y-coordinate used to define a bounding box to constrain the
slicing. (S) (Default: negative huge number — i.e. no bounding)

yy_box_max Maximum y-coordinate used to define a bounding box to constrain the
slicing. (S) (Default: positive huge number — i.e. no bounding)

zz_box_min Minimum z-coordinate used to define a bounding box to constrain the
slicing. (S) (Default: negative huge number — i.e. no bounding)

zz_box_max Maximum z-coordinate used to define a bounding box to constrain the
slicing. (S) (Default: positive huge number — i.e. no bounding)

When slicing boundary surfaces, a file called s1ice. info is output that echos much of the above
input data in more-or-less plain English; assuming the first pass through the slicing routines is
successful, the file will also contain information about the number of points in the slice, etc.

Important Considerations for Determination of Leading And Trailing Edges

This is especially important for rotorcraft applications where airloads are usually examined (and
provided to a CSD code, if applicable), in a section-aligned coordinate system.

The leading and trailing edge points determine the orientation of a section-aligned coordinate system;
when slicing boundary data, the computed forces are computed in both the selected frame of
reference, and in a section-aligned system. If the data in the section-aligned system is irrelevant to
you, then you do not need to worry about choosing the detection parameters carefully — the default
values should do something semi-reasonable, without complaint, in most situations.

However, if resolution of forces and moments into a section-aligned system is important to you then
there are a number of things to consider:

1) Make sure the chord direction (chord_dir) is correct; the default is that going from the LE to the TE
is the same as traveling in the positive “chordwise” coordinate direction. For most applications this us
the usual situation, however for rotorcraft applications this will generally not be the case (see
component_blade_orientation) and you will want to set chord_dir = -1

2) Since the best option for determining the LE uses the TE location (le_def > +1), then care should
be taken to get the TE correct. For sharp trailing edges, this is very simple since the default of te_def
= +1 (i.e. use the aft-most point) is the best option. However, smoothly blunted or squared-off trailing
edges are more finicky. Note that when the boundary surface of an unstructured mesh is sliced, the
resulting section will be comprised of line segments determined by the intersection of the specified
plane and the edges of the surface triangles. These segments and the points that make up the segments
will not usually be the same as the surface points - typically there are more, as illustrated in the
following two figures. Bear this in mind when setting te_def and le_def values. You will need
enough segments to ensure that both corners are detected, bit not so many that other, non trailing-
edge comers (if present) are detected. Another parameter that may be of use to aid in the detection of
corners is the corner_angle; the default is 120 degrees (so an angle between segments < 120 degrees
indicates a corner), and this seems quite reasonable for all cases considered so far, but unusual
situations may require a different value.

http://fun3d.larc .nasa.gov/chapter-6.html 69/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Above: View looking upstream from the trailing edge of a rotor blade mesh; the light-colored region
is the squared-off trailing edge; the red line shows the location where an x=const slice will be taken;
black circles indicate surface grid points that sit on the trailing edge.

1.7 |
 Trailing Edge Determined Via Te_Dei = 1 | I,
169 _____.---"”"f.t
= |
1,68 F___‘_p-____..—-"’
i ____...-r""
1,67 |.Tra|lmg_' Edge Determined Via Te_Def = 20 |
1.66 1 1
ol | 1 L Ll 1
2.62 2.61 2.6 -2,.69 2.58 2.57

Above: The resulting sliced section, zoomed in to the trailing edge region; the aft-most 8 segments (of
the approx. 30 segments in this view) are shown in red. The computed trailing edge locations using
two different te_def values are shown. The minimum te_def value at this particular station to pick up
both corners would be 8, but a value of 20 was used to be safe and to allow for any station-to-station
variations. Note that if the blade was pitched downward rather than upward, then the point chosen by
te_def = 1 would be the lower corner, rather than the upper. Thus, when pitching up and down,
te_def = 1 with squared-off trailing edges can lead to jumps in the trailing edge position as the section
transitions from pitch up to pitch down. Depending on the thickness of the trailing edge, this can lead
to jumps in the geometric pitch angle of a few tenths of a degree.

3) Smoothly-blunted (rounded) trailing edges should be done with either te_def = 1 (aft-most point)
or via a parabolic fit of the aft-most abs(te_def) points; the latter option is probably better in general
but will require some experimentation for the particular case at hand to choose the optimal number of
points over which to fit the parabola.

4) The leading edge is typically easier to determine, again assuming a good trailing edge position has
already been found. The default value of le_def = +30 (search the 30 forward-most points for the one
furthest from the trailing edge) should do a decent job for most cases.

http://fun3d.larc .nasa.gov/chapter-6.html

70/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

0.46 —

0.44

Leading Edge Determined Via Le_Def = 30 |

0.42 [/ t

04l !
N -

0.38 ~ \

Leading Edge De1ermm9q ViaLe_Del=1|

0.36 /
0.34 /

Above: A sliced section, zoomed in to the leading edge region; the forward-most 20 segments (of the
approx. 30 segments in this view) are shown in red. The computed leading edge locations using two
different le_def values are shown. In this case, both results are fairly close but le_def = 30 has picked
out the true leading edge (as judged from the LE geometry at zero pitch angle).

5) Given that the leading edge and trailing edge detection schemes can be somewhat finicky, for
cases that rely on accurate resolution of forces and moments into section-aligned coordinates (e.g.
rotorcraft), then it is wise to spend some time up front to make sure that things are coming out as
expected. To do this, inspect the [project].sectional_forces file for a particular slice station; at each
station the computed leading and trailing edge coordinates will be output. Plot the corresponding
station from the [project]_slice.dat, as done above, and make sure the computed coordinates are the
correct ones. If many stations are sliced, it is impractical to inspect all of them in this manner, but it is
good practice to spot check at least a few stations. For moving-geometry cases, try first running the
case with—body_motion_only. That will allow output of the [project].sectional_forces and
[project]_slice.dat files without the expense of a flow solve or mesh deformation; for spot checking
you may want to have the slicing done infrequently, and perhaps with fewer stations than ultimately
desired, as these output files can be huge.

6) While the [project].sectional_forces can be useful for spot checking, the data in the file is not in a
format that is amenable to plotting. The FUN3D/utils/Rotorcraft directory contains a utility code that
will read in the [project].sectional_forces and slice.info files and output TECPLOT files, for each
slice group, containing force/moment data in the section-aligned coordinate system, as well as
geometry data (LE, TE, and quarter-chord coordinates, and pitch angle).

7) After making sure that the LE and TE positions are being computed correctly, you may want to
turn off one or both of the [project].sectional_forces and [project]_slice.dat files unless needed. For
instance, in rotorcraft applications with coupling to external CSD codes, although the blade boundary
surfaces must be sliced to generate the aerodynamic loads data for the CSD code, this information is
actually passed to the CSD code by another file; the [project].sectional_forces and [project]_slice.dat
files are not used.

8) Although the slicing process will work for multi-element airfoils, at this time the computation of
the LE and TE is only done for the entire section, not each element individually.

This section describes how to obtain force and moment history files of groups of boundaries.
This capability is available in Version 11.4 and higher.

This capability is not currently available for the Generic Gas Option.

Beginning with Version 11.4, all of the options below may be used with the
scomponent_parameters namelist within the fun3d.nm1 file. This will allow generation of

individual tracking of groups of boundaries and is activated with the command line option of --
track _group_forces..

General Information
Namelist Format

http://fun3d.larc .nasa.gov/chapter-6.html

71/77

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

- GENERAL INFORMATION

The individual component forces contain the three forces and moments and forces for each grouping

of boundaries in addition to massflow, average velocity and pressure when requested.

The resulting component history files will have the following naming convention:

[project] [component name]_ component.dat

and are written to every iteration the same as the [project]_hist.dat file. The files are in TECPLOT
format.

By default, the variables that are output are

Iteration [iteration number]
C_x [axial force]
C_y [lateral force]
C_z [normal force]

C_{M, x}
C_{M,y}
C_{M, z}

For flow-through boundaries,

Mass flow

<greek>r</greek> [average
u [average
p/p₀ [average
T [average

p_t/p₀ [average

T_t
Mach

[average
[average

[moment around x-axis]
[moment around y-axis]
[moment around z-axis]

[mass flow through the boundary]

density]

velocity]

normalized pressure]
temperature]

normalized total pressure]
total temperature]

Mach number]

are also calculated and written to the component history file. All flow-through quantities are area-
weighted averages.

- NameLisT FORMAT

number_of_component

component_count

component_input

Number of groupings of boundaries to be output (G) (Default: 0)
Number of boundaries to be grouped.(S) (Default: 0)
String containing the boundary numbers for the group (S) (Default:

none [blank string])

component_name

Name of component grouping (S) (Default: none [blank string])
allow_flow_through_faces Allows calculation of flow-through quantities. (G) (Default: .false.)

NOTE: Flow through boundaries, including but not limited to 7011 (subsonic_inflow_pt), 5051

(back_pressure), 5052 (subsonic_outflow_mach), 7031 (massflow_out), 7036 (massflow_in) require
allow_flow_through_forces to be set to .true. if mass flow and other average flow quantities are

to be calculated..

In the example below, data are gathered for four groupings of boundaries;

http://fun3d.larc .nasa.gov/chapter-6.html

&component_parameters

number_of_ components=4
component_count(1)=9

component_input(1)='1,2,3,4,5,6,7,8,9"'

component_name(l)='airplane'

component_count(2)=2
component_input(2)='2,3"
component_name(2)='wing'

component_count(3)=3
component_input(3)='4,5,6"
component_name(3)='enginel'

component_count (4)=3
component_input(4)='7,8,9"'
component_name(4)='engine2'
allow_flow_through_ forces = .true.

72177

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

Occasionally the situation arises in which a grid is in hand, but the orientation of the grid is
inappropriate for the desired simulation. In such a situation, a static-grid transform may be applied to
the grid before the flow solution is started. The original grid file is nof changed by this transform — the
same input/command line options for transformation must be applied for any subsequent restarts.

To invoke a static transform, the command line option --grid_transform must be specified. In

addition, details of the transform must be prescribed in the fun3d.nml file via the grid_transform
namelist.

&grid_transform namelist

ds Displacement magnitude for translation (Default: 0.0)

sx X-component of unit vector along translation axis (Default: 1.0)
sy Y -component of unit vector along translation axis (Default: 0.0)
sz Z-component of unit vector along translation axis (Default: 0.0)

theta Rotation angle (degrees) (Default: 0.0)

tx X-component of unit vector along rotation axis (Default: 1.0)
ty Y -component of unit vector along rotation axis (Default: 0.0)
tz Z-component of unit vector along rotation axis (Default: 0.0)

scale Scale factor applied to grid (Default: 1.0)

transform 4x4 transform matrix as a means to specify more general transforms than can be
accommodated by the parameters listed above; specification of a transform matrix
(except for an identity matrix) supersedes all other variables in the namelist (Default:
identity matrix)

The transform matrix is described on pp 6-7 in the paper Recent Enhancements To The FUN3D
Flow Solver For Moving-Mesh Applications The 4th row of the matrix should always be (0,0,0,1).

Rotations direction follows the right-hand rule along the rotation axis.

When specifying a static grid transform, the user should be cognizant of potential boundary condition
issues, particularly with regard to symmetry conditions. If symmetry conditions are used, possible
rotations are limited. For example, if a standard wing grid with a y=constant symmetry plane at the
wing root (with BC 6662) is pitched about the y-axis, the symmetry condition is unchanged.
However, if that same grid is rotated about the x-axis, by say, 30 degrees, then what was a y-constant
plane is no longer on a constant-coordinate plane, and the code will fail. However, if the rotation was
instead 90 degrees, then the y=constant plane would become a z=constant plane, for which the
appropriate BC is 6663. In such a situation, where one type of constant-coordinate symmetry plane
becomes another constant-coordinate symmetry plane, the flow solver will automatically swap the
BCs. These situations require that precise +/- 90 degree rotations be specified.

A static transform may also be combined with the mirroring options to obviate some types of
symmetry-plane issues. Mirroring is applied first (removing the symmetry plane), after which the
mirrored grid is transformed.

For example, the 30 degree roll case described above could be accommodated with --
grid_transform --mirror_y and the appropriate namelist data.

Original grid

http://fun3d.larc .nasa.gov/chapter-6.html 73/77

http://fun3d.larc.nasa.gov/papers/biedron_orlando_09.pdf

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

Red: Symmetry
Black: WinE_Surface
i

Blue: Far

eld

After mirroring and rotation using either

&grid_transform
theta = 30.0
tx = 1.0
ty = 0.0
tz = 0.0

/

or, directly specifying the transform matrix

http://fun3d.larc .nasa.gov/chapter-6.html

&grid_transform
transform(1l,1)
transform(1l,2)
transform(1,3)
transform(1,4)
transform(2,1)
transform(2,2)
transform(2,3)
transform(2,4)
transform(3,1)
transform(3,2)
transform(3,3)
transform(3,4)
transform(4,1)
transform(4,2)
transform(4,3)
transform(4,4)

H OOOOOOOODODODOOO O

OO OO0 WUIOOUIO OO OO

6602540E+00

6602540E+00

74177

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

Y ‘ at ' \'c ‘"w k"lﬂ
..ﬂ\\};gﬁn\\w‘ig \ﬁn N 3\?& VA‘ N
M\\V X Q\O NP m?: W\VA
= SAVNAN < 4 |9 3,
\E,. mﬁm (};1\11‘4;,3,‘{ i‘{é
Vk\‘m DRy ‘m 'I-wmzf;,:;ff >

o
ﬁt‘ 7 f 2

FUNB3D can perform simulations in noninertial reference frame rotating at a constant rate. In addition
to the constant rotation rate, the problem to be simulated must be one in which the freestream velocity
is either 1) zero or 2) parallel to the axis of rotation. Within these constraints, the simulation in the
noninertial reference frame can be run as a steady state problem. In contrast, using the standard,
inertial reference frame would require the same problem to be run as an unsteady simulation, with the
associated larger computational cost. The constraints mean use of the noninertial reference frame is
fairly limited in scope. Typical uses would be the simulation of an isolated rotor in either hover or
ascending/descending flight (no forward motion), or an aircraft performing a constant-rate roll about
the wind axis.

Note that when using a noninertial reference frame, one must often specify an alternate freestream
condition

RunniNg A NoniNERTIAL ReEFerence FrRame SoLuTion IN FUN3D

To perform a simulation in a rotating noninertial reference frame, one or more command-line options
are required. The optional command-line input specifies (up to) three components for the rotation
vector, and (up to) three coordinates for the center of rotation. The default values for any
component/coordinate not specified is zero.

The rotation vector may be specified using one or more of the following command-line options:

--xrotrate_ni xvalue (x-component of the rotation vector; default: 0.0)
--yrotrate_ni yvalue (y-component of the rotation vector; default: 0.0)
--zrotrate_ni zvalue (z-component of the rotation vector; default: 0.0)

The square root of xrotrate_nj2" tYrotrate_nigA 4 zrotrate niZ gives the nondimensional rotation rate
(ignoring the RedCloth formatting nonsense, this should read as the sum of squares). The sense of the
rotation follows the right-hand rule.

Note: for the noninertial reference frame to be utilized, at least one of the rotation vector
components must be specified as nonzero.

The nondimensional rotation rate can be determined by following the information near the bottom of
p. 24 in April 2010 Training Workshop notes on Time-Dependent and Dynamic-Mesh Simulations

http://fun3d.larc .nasa.gov/chapter-6.html 75177

http://fun3d.larc.nasa.gov/session9.pdf

6/5/2014

FUN3D Manual :: Chapter 6: Analysis

The rotation vector passes through an origin whose coordinates are specified using one of more of the
following command-line options:

--xrotcen_ni xvalue (x-coordinate of the rotation vector; default: 0.0)
--yrotcen_ni yvalue (y-coordinate of the rotation vector; default: 0.0)
--zrotcen_ni zvalue (z-coordinate of the rotation vector; default: 0.0)

These values are specified in terms of grid coordinates.

As an example, suppose you have a rotor in hover, rotating about the z-axis, with a nondimensional
rotation rate of 0.00272. Then all that is required to specify the noninertial rotation is the command-
line:

--zrotrate_ni 0.00272

This minimal input takes advantage of the zero defaults for all noninertial data that is not explicitly
specified.

If the same rotation vector was desired, but with the rotation centered about a point x=0.25 y=0.75 in
the x-y plane, use the command line:

--zrotrate_ni 0.00272 --xrotcen_ni 0.25 --yrotcen_ni 0.75

(the center of rotation in the z direction is immaterial for rotations about an axis parallel to the z-axis,
so the implied default O is used)

If the solution from a noninertial case is output for viewing, the relative velocities in the noninertial
frame are output to the file (assuming you choose to output the velocity components). Thus, the
output velocity will be zero on solid surfaces, and on farfield boundary surfaces will have an opposite
sense to the direction of rotation in inertial space, as illustrated below on an outflow plane for a rotor
with a counterclockwise rotation about the z-axis when viewed from above.

| SPECIFYING AN ALTERNATE FREESTREAM CONDITION

In FUN3D, by default the freestream conditions (velocity components) for compressible flow are set
by the Mach number, angle of attack, and yaw angles specified in the fun3d.nml file. For
compressible flows, an input Mach number of 0 will quickly lead to numerical disaster, since the
viscous terms scale inversely with Mach number (for incompressible flow, scaling does not depend
on the Mach number). Likewise, the unit Reynolds number should correspond to the velocity
associated with the input Mach number.

Consider a rotor in hover. In this case the freestream velocity is zero, but if we are running a
compressible simulation, we cannot have an input Mach number of zero. In addition, the
corresponding unit Reynolds number should not be based on zero velocity.

The solution is to base the input Mach number on a more sensible velocity, say the rotor tip speed
(and base the unit Reynolds number on this same reference speed). Since we still need zero velocity
in the freestream, the --alternate_freestream command line option is used to override the
freestream velocity corresponding to the input Mach number:

--alternate_freestream 0.0

http://fun3d.larc .nasa.gov/chapter-6.html

76/77

http://fun3d.larc.nasa.gov/chapter-5.html
http://fun3d.larc.nasa.gov/index.html
http://fun3d.larc.nasa.gov/chapter-7.html

6/5/2014 FUN3D Manual :: Chapter 6: Analysis

Today's NASA Official: Mike Park, a member of The FUN3D Development Team
Contact: FUN3D-support@lists.nasa.gov
NASA Privacy Statement

This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.

http://fun3d.larc .nasa.gov/chapter-6.html 77177

http://fun3d.larc.nasa.gov/chapter-9.html#team_members
mailto:FUN3D-support@lists.nasa.gov
http://www.nasa.gov/about/highlights/HP_Privacy.html

