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8. DESIGN

8.1. GETTING STARTED

The set of FUN3D design tools has been under heavy development since 1995. A gradient-based
approach to the design methodology has been taken, as the cost of computing high number of
functions for other techniques is typically prohibitive for CFD simulation-based design. Work within
the FUN3D research group has been aimed primarily at robust and efficient analysis and sensitivity
analysis capabilities, rather than the optimization schemes themselves. However, others at Langley
have done numerous optimization studies using FUN3D as the simulation package.

At this point, all design work must be done on fully tetrahedral grids; mixed element capabilities have
not yet been propagated through all of the design tools. It is assumed that the user has a very good
knowledge of using FUN3D for analysis purposes; beginners should get plenty of experience
running the flow solver as a stand-alone tool before jumping into design work. Moreover, please
read this documentation before contacting the FUN3D Software Development Team.

One last note before we get started—don’t even think about trying optimization without a fair number
of high-end processors available for 24/7 use. The algorithms are very efficient, but a typical
optimization will still usually cost you O(10) flow solves.

SETTING UP THE DIRECTORY STRUCTURE

The FUN3D design tools rely on a specific directory structure that must be present exactly as
described here. The optimization driver can set this tree up for you if you want. Simply execute the
following command from the Design directory of your build location (this assumes your repository
resides on the filesystem where you will be running):

 ./opt_driver --setup_design 1

The “1” argument specifies that you wish to only do a single-point design. If you want to set things
up for multi-point design, change the “1” to the number of design points you’ll be running.

The program will prompt you for the absolute directory name in which your FUN3D source code
resides. Enter it in this format, with no trailing slash, and with the single quotation marks:

 '/path/to/my/FUN3D/installation'

The program will also prompt you for the absolute directory name in which your FUN3D build
resides (executables). Enter it in this format, with no trailing slash, and with the single quotation
marks:

 '/path/to/my/FUN3D/installation/build_directory'

Finally, the code will ask you for the directory in which you wish to set up your design run. This
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directory must exist, must also be an absolute path with no trailing slash, and don’t forget the single
quotation marks.

 '/path/to/my/design/case'

After entering the information, the code will populate the latter directory with the structure of files
required to do a FUN3D-based design optimization. As the code terminates, it will print to the screen
the remaining steps necessary to set up your design case. Pay close attention to this information: It
serves as a very helpful reminder and will specify exactly which files need to be where and what
parameters to set ahead of time! I still use it to help me on every case I run.

The design directory structure is primarily divided into three parts. The first of the three is called
description.1. This directory contains the baseline files for the model, none of which are modified
during the course of the design. It is simply a safe place where the code always knows that the
original model resides. Prior to executing the design, the user will set up the baseline files in this
directory. During execution, the optimization driver will pull files as needed. The trailing 1 on the
directory name is used as a design point ID. If you requested more than one design point to be
established when you set up the directory structure as described above, you will have additional
description.n directories, where the files describing other design points will be located. During
setup, templates of the required input decks will be placed in the description.n directories.

The second directory created in the location you provided will be called model.1. The CFD codes
will perform all of their work in these subdirectories during the design. Beneath the model.1
directory, you will also see subdirectories called Adjoint, Flow, and Rubberize. These directories
are populated during the initialization phase with softlinks to each of the executables in the FUN3D
installation on your machine. Details of each of the components are given on subsequent pages of this
manual. Again, if you requested more than one design point during the setup step, you will also see
other model.n directories, each of which will be used to perform the CFD steps for each design
point.

The third directory created will be called ammo. This directory will contain files related to the
optimization procedure itself.

Note that you should not have to change anything in the model.n directories prior to a design run.
Everything you need to set up is in the description.n and ammo directories.

SETTING UP THE FILES REQUIRED TO DO DESIGN

The user must provide a set of files in the description.n directory to begin the design. These files
are related to the CFD model, the geometric parameterization, the optimization, and the environment
in which you are running. The files described below must be present, unless noted otherwise. Again,
follow the steps shown at the end of running opt_driver --setup_design 1 as outlined above.

CFD GRID FILES

The user must provide the baseline grid (and associated boundary condition files) to be used for the
optimization. This can be in any of the grid formats currently supported by FUN3D.

SOLVER INPUT DECK(S)

The user must provide the baseline input deck fun3d.nml for the flow solve. It is strongly
recommended that you manually run a flow solve and an adjoint solve (details on how to execute the
adjoint solver as a standalone execution will come later) on your baseline configuration first, prior to
doing any design, to get a feel for how the stopping tolerance, number of timesteps, and so forth
should be set. Note the desired values may be different for the flow solve versus the adjoint solve; I
typically place the flow solve values in fun3d.nml and override them via command-line options for
the adjoint solver. More details on how to provide command line options will come below.

Depending on the input options you need to perform a solution, you may also need to provide
optional files such as moving_body.input, etc. If any of these files are present in the
description.n directory, the optimization procedure will use them when running FUN3D on that
design point.
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SOURCE CODE ACTIVITY

Subversion Commits

GEOMETRY PARAMETERIZATION FILES

If doing shape optimization, the user must provide a MASSOUD, bandaids, or Sculptor
parameterization for each body in the mesh to be modified. Currently, the set of desired bodies must
be entirely parameterized with a single one of the packages, but not combinations. (Future versions of
the codes will hopefully allow arbitrary combinations.) The documentation here is pretty sparse; it is
assumed that the user has obtained MASSOUD or the bandaids package from Jamshid Samareh or
Sculptor  and has already become familiar with their inputs and outputs.

For MASSOUD parameterizations, the MASSOUD parameter files should be named design.gp.1,
design.gp.i, ..., design.gp.n for each of the n bodies to be designed. The files specifying the raw
MASSOUD variables should be called design.1, design.i, ..., design.n for each of the n bodies
to be designed. Note, however, that in the current implementation, you must use the custom design
variable linking feature of MASSOUD. If you wish to use the raw MASSOUD variables as is,
simply define the linking matrix as the identity matrix. These files specifying the design variable
linking for each body should be named design.usd.1, design.usd.i, ..., design.usd.n.

Finally, if running MASSOUD, the MASSOUD input file specifies the names of the files described
above and must be provided as massoud.1, massoud.i, ..., massoud.n. The files listed in the
MASSOUD input file must reflect the names given in the above paragraph. In addition, the first
line of these files must have a positive integer in them equal to the number of user-custom design
variables. If you just want to use the raw MASSOUD variables and have specified the identity matrix
in the linking file, this number is simply the number of raw MASSOUD variables for that body. For
the in/out-of-core parameter, just use in-core (0). The filename for Tecplot output viewing must be
named model.tec.i for the ith body. The remaining FAST output filename can be named to
anything the user wishes; the FUN3D tools do not use this file. A massoud.i file should look like:

 #MASSOUD INPUT FILE
 # runOption 0-analysis, >0-sd users dvs, -1-sd massouds    dvs
 52
 # core 0-incore solution, 1-out of core solution
 0
 # input parameterized file
 design.gp.1
 # design variable input file
 design.1
 # input sensitivity file - used for runOption > 0
 design.usd.1
 # output file grid file
 newframe.fast.1
 # output tecplot file for viewing
 model.tec.1
 # file containing the design variables group
 designVariableGroups.1
 # user design variable file
 customDV.1

Also for MASSOUD, if you are using body transforms to reorient the MASSOUD parameterization
into a more suitable reference frame for a body (such as rotating a rotor blade or vertical tail
parameterization into position), the file describing the transform for the i-th body should be included
as transforms.i. The format of a typical transforms.i file is as follows:

ROTATE 0.0 0.0 1.0 -120.0

This would rotate the MASSOUD parameterization for the i-th body by -120 degrees about a unit
vector in the +z direction. Get in touch for how to use other transforms available, such as
TRANSLATE and SCALE. More on specifying body transforms later when we get to the
optimization input deck.

For bandAids parameterizations, the .bandaid files created by Jamshid’s bandAids tool should be
renamed bandaid.data.1, bandaid.data.i, ..., bandaid.data.n. Because bandaids are linear,
these files are all that is required; no executable is needed. (FUN3D performs everything internally.)

For Sculptor parameterizations, the user must provide [project].mdf, [project].sd1,
[project].vol, [project].vsp, [project].stu, and [project].def files. See Sculptor
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documentation for more details on these files.

MACHINE FILE

This file named machinefile is optional, and provides a list of machines to run the MPI applications
across. If you are running in a queue environment where the machines are chosen for you at runtime,
you do not need this file.

BODY GROUPING INPUT

The file body_grouping.data is optional, and provides body grouping information. For example, if
you are optimizing the Figure of Merit of a 3-bladed rotor, then you would want to associate the 3
blades (each typically specified as a separate parameterized body in MASSOUD files and
rubber.data) into one group, so that your sensitivity derivatives would reflect a composite
d(thrust)/d(DV) for all three blades. This capability requires that the bodies to be associated all have
the exact same parameterization (same number of DVs on each body, etc). The format of this
body_grouping.data file is as follows:

Number of groups to create
1
Number of bodies in group, list of bodies
3
1 2 3

DESIGN CONTROL FILE

The design is ultimately controlled by the data contained in a file called rubber.data. See the
section below describing this file for information on its details.

COMMAND LINE OPTIONS FILE

This file specifies the command line options to be used with each code in the suite, as well as with
mpirun. A template is provided in the Design directory of the source code distribution. The first line
of the file specifies the number of codes for which you are specifying command line options. The
subsequent line must contain an integer followed by a keyword. The integer specifies how many
command line options you are providing for the code identified by the keyword. The valid keywords
are flow, adjoint, party, and mpirun. This line is followed by a line for each of the command line
options you wish to provide for the code identified by the keyword. Each command line option
should appear in single quotation marks on its own line.

The optimization driver will append each of the options for the relevant code to the command line it
uses to invoke the code. Note that this mechanism is also used for mpirun (or mpiexec, etc, described
later), so that options such as -nolocal and -machinefile can be specified. If a host file is required
of your MPI installation, you should add it as the file machinefile in the description.i directory.
If present, the optimization driver will automatically use it, and the argument specified for mpirun (or
mpiexec, etc) should be -machinefile ../machinefile. If you are running in a queue
environment where the number of processors is set according to your queuing script and the specific
machines are chosen for you at runtime, then you need not provide any command line options for
mpirun (mpiexec, etc).

TARGET PRESSURE DATA FILES

FUN3D does have an inverse design capability where the cost function is composed of target
pressures. But the implementation/execution is sort of messy, so it is not described at length here. The
files are optional and need only be present for target pressure designs. The files must be named
cpstar.data.1, cpstar.data.i, ..., cpstar.data.n. Contact FUN3D Support if you really want
to pursue inverse design (target pressures). It’s a bit of a pain.

INPUT DATA FILE SUMMARY

mailto:FUN3D-support@lists.nasa.gov
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In summary, you should have a set of files in your description.1 directory similar to:
[project].fgrid FAST CFD grid file (could also be VGRID, etc)
[project].mapbc FAST CFD boundary conditions file (could also be VGRID, etc)
fun3d.nml Solver input deck
namelist.input Optional solver input deck (obsolete in 10.9.0 and later)
moving_body.input Optional solver input deck
bandaid.data.i Bandaid parameterization for ith body (optional)
design.gp.i MASSOUD parameterization for ith body (optional)
design.i MASSOUD raw variables file for ith body (optional)
design.usd.i MASSOUD linking matrix file for ith body (optional)
massoud.i MASSOUD filenames file for ith body (optional)
transforms.i Spatial transform input file for ith body (optional)
body_grouping.data Body grouping information (optional)
[project].mdf Sculptor project file (optional)
[project].sd1 Baseline surface info from --write_massoud_file (optional)
[project].vol Sculptor project file (optional)
[project].vsp Sculptor project file (optional)
[project].stu Sculptor project file (optional)
[project].def Sculptor project file (optional)
machinefile List of cluster nodes on which to run the codes (optional)
rubber.data Main control file for the design

command_line.options
The set of command line parameters to be used for every code, as well as
mpirun

cpstar.data.i Target pressure distribution for slice i (optional)

OPTIMIZER INPUT: AMMO.INPUT

Now that the description.1 directory has been populated and all of the necessary parameters have
been set (except for rubber.data, described below), head over to the ammo subdirectory. You will
need to specify the parameters in the ammo.input file. This will control the actual optimization
procedure. For the optimization package, use either a 1 (DOT/BIGDOT), a 3 (KSOPT), a 4 (PORT),
a 5 (NPSOL), or a 6 (SNOPT). Note you may only use optimization packages which you have
installed and configured FUN3D to use (such as—with-PORT=/path/to/PORT). If you choose an
unavailable package, the code will quit and tell you so. Specify the base directory for the optimization
case using an absolute path in single quotation marks on the next line—no trailing slash. This should
be identical to the path you specified earlier that pointed to where you wanted to run the design. Next,
put the number of design points you plan on running. The next input is the weight to be applied when
combining the design points if using a simple linear combination of functions. Otherwise, these inputs
don’t matter, but you must specify as many values as you have design points.

On the next line, you can choose the operation to perform. Simply putting a 1 here will just do an
analysis on your configuration, i.e., place the surface grid according to the current design variables,
move the mesh into place, then run a flow solve. Setting this parameter to a 2 will perform an analysis
as just described, followed by a sensitivity analysis. Finally, setting this value to a 3 will perform the
actual optimization. It is often useful to perform just an analysis first to see if you have that set up
right, then do a sensitivity analysis to see if all of that is ready to go, then attempting the actual
optimization last, if the analysis and sensitivity analysis worked correctly.

The following line allows for restarting the optimization from the last design point. If this is a 0, the
optimization will be started fresh and use the baseline model files from the description.1 directory.
If this is a 1, the driver will just forge ahead with a new optimization, using the most recent set of data
files that have been placed throughout the model.1 directory by a previous execution. The
appropriate files should have already been placed in the description.1 directory as described
above. For the diagnostics flag, just leave this as a 0. For the max low-fidelity functions input, this
should be set to the maximum number of flow solves that you are willing to execute. The max
number of low-fidelity iterations should be set to the maximum number of design cycles you are
willing to execute. Next, set the relative convergence criterion. This is basically a convergence criteria
for the design procedure. The next input is the absolute feasibility tolerance for constraint violations.
This is only relevant when using explicit constraints and represents the violation you are willing to
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tolerate on your constraint functions specified in rubber.data. For the number of bodies with spatial
transforms, this is the number of bodies for which you have provided a transforms.i file, followed
by a list of the bodies themselves. If you enter 0 bodies with transforms, then the line containing the
list of bodies should not be present. The next line states whether or not you will be performing body
grouping (for which you need to provide a body_grouping.data input file). The next input tells the
optimization driver how to initiate MPI processes. This is usually either mpirun or mpiexec,
depending on your MPI flavor. After that, you need to tell FUN3D how many processors to use for
the adjoint solver. In most cases, this is the same number of processors you request for your job;
however, in the event one is doing design on overset grids, there may be a node reserved for
SUGGAR++ in the flow solver, in which case the adjoint solver must also use one less processor,
even though SUGGAR++ is not required for the adjoint solver. The final input is the optimization
method to be used if DOT/BIGDOT is being used for the optimization. FUN3D interfaces with
DOT/BIGDOT through the general ALLDOT API; see the ALLDOT documentation for valid
values of this parameter.

Having fun yet? That should do it for the majority of the problem setup. We still need to deal with
rubber.data and discuss some command line options for each code that you may want to list in
command_line.options. Read on for more information on how to get your design up and
running…

8.2. SETTING UP RUBBER.DATA

This section describes how to set up each section of the main design control file, rubber.data. A
template is provided in the Adjoint directory of the source code distribution.

CODE STATUS SECTION

This section of the file is currently not in use and should not be altered by the user. (This block of
data has been eliminated as of v11.5.)

DESIGN VARIABLE INFORMATION

This section of rubber.data lays out the design variables for the computation. The section is divided
into global variables such as Mach number and angle of attack, as well as shape optimization
variables. Each design variable appears on its own row in the file, and has several attributes that must
be set by the user. The first column is just a dummy index and is merely to assist the user in quickly
navigating through the file. The second column is a toggle to activate the design variable. If this value
is a 1, the variable will be allowed to change during the design. If the value is assigned a 0, this
variable will be held constant at the value specified. The third column is the initial value for the
current design variable. Columns four and five specify the upper and lower bounds for the current
design variable. Be very careful in choosing upper and lower bounds for shape variables. The
optimizers tend to do the most drastic changes possible during the design run and you can wind up
with some very infeasible shapes (or shapes the mesh movement/solvers cannot handle robustly) if
you are not careful. Err on the side of conservatism – you can always restart a design later with larger
bound constraints.

GLOBAL DESIGN VARIABLES

The freestream Mach number and angle of attack are available for use as design variables. Mach
number is in the first row; alpha is in the second. The angle of attack is in degrees. Both the Mach
number and alpha specified here will override whatever is present in the initial fun3d.nml file
provided by the user. The freestream Mach number may not be activated for incompressible design
calculations.

SHAPE VARIABLES

The first row following the Mach number and angle of attack entries specifies the number of bodies
that the user has parameterized separately using MASSOUD, or alternatively, the number of bandaids
present in the problem. If using Sculptor, the number of bodies must be one, but the Sculptor project
may internally include parameterizations of multiple bodies.
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Following the number of bodies, there should be two sections of inputs for each body. The bodies
present in the computation may be listed in any order, but the order of their appearance in this
control file must match the integer suffix on their parameterization files that you provide in the
description.1 directory, as well as files such as body_grouping.data, transforms.i, etc. The
first section for the current body concerns design variables governing rigid mesh motion and is only
applicable for time-dependent problems (but must be present for steady cases too). The variables
correspond to the rigid motion parameters used to specify body motion in the optional
moving_body.input file. If active, the optimizer will compute their sensitivities and change them
appropriately, just like any other design variable. The next line specifies the number of parameterized
variables on the current body, and the subsequent lines lay out the design variable information for that
body. A row of data must be provided for every variable in the parameterizations, whether you are
using them or not. If you have 25 variables parameterized in a bandaid, then 25 rows must appear in
the corresponding data block of rubber.data, even if only a subset is active. The same applies to
design variables for MASSOUD or Sculptor. And if you have used the design variable linking
feature in MASSOUD to create additional variables, they will also appear here. (Basically the
number of rows has to equal the number of derived variables in the design.usd.i MASSOUD file
for that body.)

COST FUNCTION/CONSTRAINT SPECIFICATION

The first line following the design variable sections specifies the number of functions and constraints
to be used for the current design point. For a single unconstrained cost function, this value should be
1. For a single-objective, single-constraint problem, this value should be a 2. And so forth.

Following the value specifying the total number of functions and constraints, each function and/or
constraint will have a block of data associated with it. The cost functions and constraints may be
specified in any order.

The first line in the block specifies whether the current function block is an objective function or
constraint function. The next line specifies the lower and upper bounds (in that order) for the
function, if it is a constraint. If it is not a constraint, these 2 values do not matter. The CFD codes
themselves do not care if a function is an objective or a constraint—they will provide values and
derivatives for them regardless. The optimization driver is the only thing that cares for what the
function is actually being used.

The next line states how many components compose the current function/constraint. The current form
of these functions takes the form

f = SUM [ omega x (C - Cstar) ̂ power ]

Here, f is the current cost (or constraint), omega is a weighting factor that may be assigned any value
the user desires, C is a generic variable representing an aerodynamic quantity (to be described below),
Cstar is the target value for the aero quantity, and power is an exponent to be applied to the difference
C-Cstar. The summation indicated by SUM is taken over the number of components.

Following the number of components, for unsteady flows, the user must specify the physical timestep
interval over which the function applies. For steady flows, these two inputs can be anything.

Following the timestep interval, each component has a line in the file containing several pieces of
data. The first column is the boundary condition ID over which to apply the current component.
These correspond directly to the boundary conditions in your baseline grid. If you wish to apply a
component over the whole grid (total drag, for example), simply put a 0 in this column. Alternatively,
if you know you have a strong shock sitting on a flap in a drag minimization problem, you might
specify your cost function as the pressure drag acting on just that boundary group, as opposed to the
entire vehicle, so that the optimizer will really hone in on the flap. The next column is the keyword
for the aero quantity to be used for the current function component. For a list of available keywords,
see the module header of the file forces.f90 in the LibF90 directory. Several of the quantities have
not been differentiated (pretty much the more obscure ones). The adjoint solver will check your input
to make sure the components you’ve requested are available. Contact FUN3D Support if a
component you need is not available or if you’re not sure. The next column contains the current value
of the current function component. This is an output and need not be set by the user. The final three
columns in the row correspond to the weight, target value, and power shown in the summation
function above.

mailto:FUN3D-support@lists.nasa.gov
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The next line in the file lists the current value of the composite function built up of its components.
This is an output and need not be set by the user.

The remaining lines in the current function block contain the sensitivity derivatives with respect to all
of the design variables listed in the top half of the file. These are outputs that need not be set by the
user, however, the user must provide a line for each design variable in each function block. The
values do not matter, but the codes will need positions to place the latest values. Note that this section
is divided into derivatives with respect to the global design variables, the rigid motion variables, as
well as the design variables on each of the bodies laid out in the top of the file.

8.3. GEOMETRY PARAMETERIZATIONS

The FUN3D suite is currently set up to interface directly with geometry parameterizations processed
by MASSOUD, bandaids, or Sculptor. MASSOUD and bandaids are capabilities developed by
Jamshid Samareh of NASA Langley. Users are encouraged to contact him for copies of the software
and detailed instructions on how to use them. His packages allow the user to parameterize completely
arbitrary shapes using a free-form deformation technique. The packages are extremely efficient and
robust, and also provide analytic derivatives for the parameterizations, necessary for FUN3D-based
design. Sculptor is a popular commercial package developed by Optimal Solutions . FUN3D v11.5
and higher can utilize Sculptor parameterizations for design optimization.

To parameterize your surface grids using any of these tools, you will need to extract them to Tecplot
files in a pre-established format. The easiest way to do this is to run a single iteration of the flow
solver with the --write_massoud_file command line option. You will need to include a
&massoud_output namelist in your fun3d.nml file that groups all of the required boundary patches for
a body you wish to parameterize into a single body (note the boundary indices here must reflect any
patch lumping that may have been requested in the solver):

This will generate a [project]_massoud_bodyN.dat file for each of the N body groups present. These
files contain the information necessary to parameterize the surface grid(s)—see the documentation for
the specific parameterization packages for further instructions on how to proceed from here.

DETAILS FOR MASSOUD

If you use MASSOUD for your parameterizations, the MASSOUD executable must be visible in
your environment’s path, and must be named massoud. The optimization driver supplied with
FUN3D will attempt to call this executable if MASSOUD parameterizations are present. If you feel
the optimization driver is not seeing the MASSOUD executable in your path, try placing a copy of
the executable in the model.1/Rubberize subdirectory. This is where MASSOUD is ultimately
executed by the driver.

DETAILS FOR BANDAIDS

If you are using bandaids, no additional executables need be supplied— all parameterization
manipulations are handled internally by the FUN3D optimization driver. (All of the relationships for
bandaids are linear, so that the initial sensitivities remain constant and need only be read in to
determine new coordinates for the surfaces.)

DETAILS FOR SCULPTOR

If you use Sculptor for your parameterizations, the Sculptor executable must be visible in your
environment’s path, and must be named sculptor. The optimization driver supplied with FUN3D
will attempt to call this executable if Sculptor parameterizations are present. If you feel the

&massoud_output
  n_bodies = 2                 ! wish to parameterize 2 bodies: a wing and a tail
  nbndry(1) = 6                ! number of boundaries that comprise the wing
  boundary_list(1) = '3-8'     ! wing group boundaries (account for lumping!)
  nbndry(2) = 3                ! number of boundaries that comprise the tail
  boundary_list(2) = '9 10 12' ! tail group boundaries (account for lumping!)
/

mailto:Jamshid.A.Samareh@nasa.gov
http://www.gosculptor.com/
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optimization driver is not seeing the Sculptor executable in your path, try placing a copy of the
executable in the model.1/Rubberize subdirectory. This is where Sculptor is ultimately executed by
the driver.

If you choose to use Sculptor to parameterize your surface grid(s), the parameterization of all bodies
must be bookkept within a single set of Sculptor input files. I.e., in our wing-tail example above, both
bodies must be contained in a single instance of Sculptor files. Therefore, your &massoud_output
namelist described above should group ALL of the desired boundaries necessary to describe the
geometry(s) of interest into a SINGLE body (i.e., all of the boundaries contained in the wing and tail
should be used to define a single body in the &massoud_output namelist):

You can work independently on each of the desired bodies (wing, tail) within Sculptor, but they must
appear as a single body to FUN3D. Finally, when setting up the design variables in rubber.data for
FUN3D, the variables for all three bodies will appear in a single concatenated list as a single body.

After you have parameterized your model using Sculptor and you are setting up all of the files
required for FUN3D-based design, you will need to place a copy of the original file that resulted from
your --write_massoud_file command in the description.i directory, but it must be renamed
[project].sd1. Sculptor requires this baseline file during the optimization.

Sculptor usage: Note that before performing design, the [project].sd1 file must be first read into
Sculptor in GUI mode as “Import Mesh/CFD as Tecplot Point FE”. Following this, the Sculptor
volumes need to be imported onto the [project].sd1 file, and then the model needs to be saved
again. Once this is done, then the command “export model.tec.1” within a .def batch script generates
a model.tec.1.sd1 file as needed for FUN3D optimization.

During the course of a design optimization, FUN3D will invoke Sculptor in batch (non-GUI) mode.
However, current versions of Sculptor will still attempt to communicate with an X server, even when
run in this fashion. If your system does not run an X server (such as compute nodes on a cluster), then
a fake X server such as Xvfb  is recommended. You will then need to execute the fake server prior
to running the design optimization. For example, a run script may have the following lines present:

.

.

.
Xvfb :1 &
setenv DISPLAY :1.0
.
.
.
<execute FUN3D design command>
.
.
.

The syntax here may vary; if this does not allow you to run Sculptor in batch mode on your target
system, it is suggested to get in touch with Sculptor support for assistance.

USING OTHER PARAMETERIZATION SCHEMES

Although the packages described above are the predominant choices to use, the interface to the
parameterization scheme has been coded in a modular fashion, and the user may choose to use his or
her own package. See the Customization section for additional details.

8.4. THE ADJOINT SOLVER

This section describes how to execute the adjoint solver manually. Normally this is handled for the

&massoud_output
  n_bodies = 1                 ! wing and tail grouped into one body
  nbndry(1) = 9                ! number of boundaries that comprise the wing, tail
  boundary_list(1) = '3-10, 12'! wing, tail boundaries (account for lumping!)
/

http://en.wikipedia.org/wiki/Xvfb
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user by the perform_sensitivity_analysis wrapper, however, it is highly recommended that the user
perform an adjoint solution on the baseline configuration to get a feel for input parameters, kick-out
strategies, and so forth, to use during the actual design optimization.

RUNNING AN ADJOINT SOLUTION

To perform an adjoint solution, the user must first perform a flow solution in the model.1/Flow
directory. Once the flow solve is complete, a copy of the desired rubber.data file must be placed in
the main model.1 directory (one level above where the flow solve was run). The adjoint solver will
read rubber.data to get objective/constraint function information for its right-hand side. The file
fun3d.nml (moving_body.input, etc) must reside in the Flow directory, right where it was for the
flow solution.

To execute the adjoint solver, change over to the model.1/Adjoint directory and enter the following
command (mpirun arguments may be modified for your environment):

 mpirun -np ## -nolocal -machinefile ../machinefile ./dual_mpi

This will run simultaneous adjoint solutions for each objective/constraint outlined in rubber.data for
the current flow field. Note that additional command line options may be needed for your case, such
as unsteady flows, noninertial, etc. When complete, you should see a set of [project]_adj.i files
in the model.1/Adjoint directory. These are the adjoint solutions on each partition of the grid, and
may be repartitioned and/or post-processed using party, in the same manner as regular flow solution
files. Another file that will come out of the adjoint solver will be [project]_hist.dat, a file similar
to that of the same name that comes out of the flow solver. This file is a Tecplot file that contains the
residual convergence histories for the adjoint solution. You will want to keep track of how far you
wish to converge the density adjoint residual—loosely speaking, your sensitivities will converge at
the same rate as your functions (i.e., flow solution), but maybe you don’t need your derivatives to be
super-accurate for optimization purposes. In this case, you may want to specify a looser RMSTOL for
the adjoint solver by providing a command-line override for the adjoint solver. Because the
magnitudes of the adjoint residuals scale with the cost function/constraint definitions, you will
probably want to specify a different RMSTOL for the adjoint solution anyway.

Another thing to be aware of, particularly for turbulent flows, is the degree to which you converge
your flow solutions. You may find that your forces converge relatively quickly during the flow solve,
at which point you may be tempted to terminate the flow solution and fire up an adjoint. However, if
the flow field has not reached a sufficiently steady-state, the subsequent adjoint solution may diverge.
This is the single most important reason for running an adjoint solution by hand a priori—to get a feel
for the convergence levels you need in the flow field to obtain a stable adjoint solution. This is not a
major stumbling block for inviscid or laminar flows, but this can be troublesome for RANS problems.
This a burden on the user, and we’re working on automated ways to detect stability requirements.

8.5. RUNNING THE OPTIMIZATION

When you have finished populating all of the necessary files and setting all of the various input
parameters, you are ready to run the design case. When you are running on a cluster system with a
remote filesystem, I have found that it is most robust to execute from the first node in the cluster,
rather than a “head” node which controls the worker nodes. I have found that the rapid execution of
the various codes causes the filesystem to have a hard time keeping up. By running on the first node,
it seems to allow the filesystem to keep up. This is just my experience, you may have to fiddle with
things, depending on how your hardware is set up. To execute the optimization, go into the ammo
directory and enter the following command:

 ./opt_driver --sleep_delay 30 > screen.output &

The—sleep_delay option will force a sleep of 30 seconds in between code executions in an attempt to
allow the file system to keep up. The default (if you do not specify it as above) is 120 seconds, which
is probably more than you need.

Redirecting the output into a file will provide a record of what flies by on the screen from each code
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as the design progresses. It also lets one see the latest info if you are logged in remotely (from home
in the middle of the night, etc). I would highly suggest watching the output during the first
design cycle and from time-to-time during the run. This file is also very useful in the event you
need to contact us and we need to help you debug your run.

Once the run completes, you should have some sort of design history stored in
model.i/dot.history and dot.output (if running DOT/BIGDOT), model.i/port.output (if
running PORT), npsol.printfile and npsol.summaryfile (if running NPSOL), or
ksopt.output (if running KSOPT). Another file that may be of interest is movie.tec in the
model.1/Flow directory. This file is a Tecplot file that is appended with the latest grid and flow solve
information after each function evaluation. By using Tecplot’s “Animate Zones” option, you can
animate the design and see what the grid was doing, how solution contours changed, and so on.
Finally, the final set of design variables determined by the optimizer will be available in
model.1/rubber.data.

8.6. CUSTOMIZATION

HOOKING IN YOUR OWN OPTIMIZER

In the design context, the term “function” for CFD computations includes a mesh movement (both
surface and volume), a flow solution, and an evaluation of the cost function (and possibly any
constraints) at a given set of design variables. For those interested in using the tools at a high-level
and do not necessarily need to know what’s “under the hood”, a wrapper has been provided in the
LibF90 directory of the distribution named analysis.f90. This module contains a subroutine called
perform_analysis which will perform the above operations.

To obtain sensitivities, the FUN3D package relies on a discrete adjoint formulation. This approach
yields discretely consistent sensitivity derivatives at the same cost as the baseline analysis described
above. A call to the perform_sensitivity_analysis routine in the sensitivity.f90 module
will perform an adjoint solution for the flow field, an adjoint solution for the mesh movement scheme,
and obtain the final sensitivity derivatives that are requested.

Using the two wrappers provided, users should hopefully be able to hook up to their optimization
package of choice with little trouble. Feel free to get in touch for guidance in hooking the wrappers
up to your framework.

USING YOUR OWN PARAMETERIZATION SCHEME

Users may use their own parameterization schemes, as long as the file formats match those of
FUN3D. Contact FUN3D Support for details on hooking in your own parameterization package.
You will need to be able to provide xyz-coordinates for the bodies of interest as well as derivatives of
these coordinates with respect to the parameterization variables.

IMPLEMENTING NEW COST FUNCTIONS / CONSTRAINTS

Implementing new cost functions or constraints will obviously require some low-level coding.
Although the codes are continuously being refactored for modularity and ease of maintenance, there
is still a pretty steep learning curve for adding new capabilities. The user should be well versed in
F95/2003, unstructured grids, programming in a domain-decomposed environment, and CFD in
general. The user will need to provide a basic routine to evaluate the function, and routines to
evaluate the linearizations of the function with respect to both the flow-field variables (for the
flowfield adjoint solver) and with respect to the grid (for mesh adjoint). Users wanting to venture
down this path should probably get in touch with FUN3D support ahead of time to get advice on
implementation issues they may end up facing. To check your work, we will highly recommend that
you verify your linearizations against the complex-variable form of FUN3D—see the accompanying
section on this topic.

OTHER CUSTOMIZATIONS

Feel free to get in touch for advice on implementing any other modifications. Our team are more
CFDers than optimization or aircraft design gurus, so we are interested in hearing what outside
groups actually need in order to get the job done. If your application is of mutual interest we will try

mailto:FUN3D-support@lists.nasa.gov
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to support a joint effort.

8.7. FORWARD-MODE DIFFERENTIATION

Although a reverse, or adjoint, mode of differentiation is primarily used for design with FUN3D, a
forward-mode of differentiation is also provided. This capability is useful for design problems
containing few design variables and many cost functions or constraints. It is also useful for aero-
structural optimization, where derivatives of the dependent variables may be needed at every grid
point on the surface. Finally, it is invaluable during code development of new linearizations. For a
description of the complex-variable “trick” (it’s super easy), see some of the FUN3D publications.

To generate a complex-variable formulation of FUN3D, configure your FUN3D installation with the
—enable-complex option and compile. You will get complex versions of the flow solver and mesh
movement codes in the Complex/ subdirectory of your configuration.

The complex flow solver will read the usual real-valued grid files and can compute derivatives of
every variable with respect to Mach number, angle of attack, non-inertial rotation rates, or the x, y, or
z coordinate of a single grid point. This choice is controlled by the file perturb.dat, a template of
which is provided in the FUN3D_90 directory. This file also specifies the step size to be used for the
complex perturbation—a value of 1.e-30 or smaller is recommended. The smallest perturbation size
supported by most machines/compilers is on the order of 1.e-308.

To compute derivatives with respect to a parameterized variable (i.e., MASSOUD or band-aid
variables), a complex-valued grid must first be generated. Given a set of sensitivities for the surface
mesh, the complex mesh movement code will propagate the sensitivity information out into the field,
and dump out a complex-variable form of the grid partition files. At this point, the user can then run
the complex flow solver to obtain derivatives of flow-field quantities with respect to the original
design variable for which sensitivities were provided. For more help in executing the complex form
of the codes, contact FUN3D Support.
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