
Ongoing Research Into Numerical
Simulation of Fluid Flows Utilizing
Software Development Practices

FUN3D Software Development Team
NASA, Hampton, Virginia

ACDL Seminar

by mikePark@MIT.Edu Mike.Park@NASA.Gov

24 September 2004

FUN3D

Originated by Kyle Anderson, Eric Nielsen, and others

Extended by High Energy Flow Solver Synthesis (HEFSS) effort

An element of the Fast Adaptive AeroSpace Tools (FAAST)
project

Detailed in Breakthroughs in large-scale computational
simulation and design (NASA/TM 2002-211747)

Unstructured-grid analysis and design across speed range:
Incompressible, compressible, hyper sonic reacting gas

FUN3D unstructured-grid, incompressible/compressible

LAURA structured-grid, external hypersonics

VULCAN structured-grid, internal hypersonics

1

Why?

Multidisciplinary problems require multiple discipline
experts, a large infrastructure, and standard interfaces

Reduce time from concept to application for vehicles and
algorithms

Mobility to respond to unforeseen challenges and increase
software lifespan

Research capabilities in a “production” code

Infrastructure to evaluate algorithms on large problems

Flexibility for implementing research algorithms

Stability to suit time-sensitive application needs and to
release to outside customers

Avoid being encumbered by high-ceremony software
development process

2

Software Versioning System (Control)

Often overlooked or under emphasized

Zeroth principle of software engineering

Learning to work with it and not against it is key to team

programming (glue)

Safety net

Large impact on “Truck Number”

Convenient for accounts on multiple machines

Required for automated testing

Not just for software anymore

homework, presentations, configuration files, home

accounts

CVS - https://www.cvshome.org/

Subversion - http://subversion.tigris.org/

3

Software development practices

�
�
�
�
�
��

T
T

T
T

T
TT

Ad hoc

AgilePlan-driven
“Kleb Triangle”

Ad hoc

“Code and Fix”

Plan-driven

Predictive, “Big up front design”

Delivering to the original contract

Capability Maturity Model (CMM), CMMI

Agile

Adaptive, “Evolutionary design”

Recognizes software development an empirical process

that can not always be defined

Extreme Programming

4

The Agile Manifesto values

individuals and interactions

over processes and tools

working software

over comprehensive documentation

responding to change

over following a plan

customer collaboration

over contract negotiation

5

Extreme Programming values

communication

simplicity

feedback

courage

6

Extreme Programming Practices

Sustainable pace productivity does not increase with hours worked.

Metaphor guide all development with a simple shared story of how the

whole system works.

Coding standard write all code in accordance with rules emphasizing

communication through the code.

Collective ownership anyone can change any code anywhere in the

system at any time.

Continuous integration integrate and build the system many times a day.

Small releases release new versions on a very short cycle.

7

Extreme Programming Practices (concluded)

Test-driven development any program feature without an automated

test simply does not exist.

Refactoring restructure the system without changing its behavior.

Simple design system should be designed as simply as possible at any

given moment.

Pair programming two programmers work together at one computer on

the same task.

On-site customer include a real, live user on the team.

Planning game combine business priorities and technical estimates to

determine scope of next release.

8

FUN3D Development

Sustainable pace work ∼40 hour weeks.

Metaphor engineering and scientific vocabulary (ρ, u, v, w).

Coding standard published to aid portability, automated parsing, and

collective ownership.

Collective ownership routinely fix minor bugs or extend methods created

by other people. Anyone is allowed to modify any file at anytime

through CVS.

Continuous integration very slow: Linux builds every 2-3 hours, SGI

builds every 8-9 hours.

Small releases application members of the team use (CVS), formally 2-3

times a year

9

FUN3D Development (concluded)

Test-driven development limited use in flow solver, extensive use in

scripting and grid adaptation.

Refactoring done only when necessary, extremely difficult, painful, and

nerve-racking without unit tests.

Simple design born as a result of refactoring and pair programming.

Pair programming limited to mostly debugging, knowledge transfer;

impeded by scheduling conflicts.

On-site customer research: we are our own customers?

Planning game comes more naturally in pair programming scheduling.

10

Communication

Collocation

Email list

WikiWikiWeb – http://c2.com/cgi/wiki?WelcomeVisitors

Scrum status meetings

What they did since last meeting

What they will do by next meeting

What got in the way (impediments)

Quick and efficient meeting style

Reduces the worst management sin (wasting people’s time)

The impediments is the often the hardest to express, but

the most important.

11

Software Testing
All of these can (and should) be automated!

Programmer’s I want a function that adds vectors, does
f([1,2], [3,4]) return [4,6]? (unit tests)

Integration Does my whole system compile and work
together?

Regression My code gave answer x yesterday, does it give
answer x today?

Verification My code is supposed to be second-order accurate
in space. What happens when I change the element size?

Validation Does my code give the same answer as a wind
tunnel or fight test measurement?

12

Unit Testing Frameworks

Goals

Interface must allow for the easy creation and

management of tests

Minimal additional effort over writing the actual code

(benefit–cost)

Enable programmers to experience the benefits of

test-first programming as soon as possible

Legible as documentation

Flavors

http://c2.com/cgi/wiki?TestingFramework

Full featured (scripting languages)

Minimalistic (four lines of code)

Wrap code to utilize scripting language framework

“Roll your own”

13

Unit Testing and Test First Programming

Seems trivial at first

Hard to imagine benefit until the first major refactoring or

code simplification is experienced

Gains power as the number of tests and their coverage

increases

Your own custom debugger

Provides a clear completion to an implementation task

Code with a failing test is much easier to fix or extend

Inventing the tests required is generally harder

Code that is easy to test is often simpler and easier to read,

understand, and extend

Creating tests brings the design to the forefront; design is

difficult, but it is easiest in small increments

14

Discretization error is a major problem

AIAA Drag Prediction Workshop

A large number of people applied a large number of
codes to a single transport configuration

Large spread in results (largest may be programming
errors)

Grid converged answers where not demonstrated even
for large grids (asymptotic range)

Discretization error explicitly identified in reports

Multi element high lift and sonic boom calculations

Preventing the characterization of modeling errors
(turbulence models)

It is often combated by specifying local grid resolutions by
hand (requires expert with past experience with similar
problems)

Local error estimates have been useful for adaptation but
often fail for problems that are strongly nonlinear or when
transported error overcomes the solution

15

Adjoint solution

Linearized flow residual and output quantity at a flow state

Efficient method for computing derivatives and design

Existing NASA Langley technology for 3D turbulent design

problems

Shows the linearized impact of a equation source term

(error) on an output function

Indicates the global impact of local errors when combined

with local error estimates

16

Error Estimation and Adaptation

Improve function calculation by predicting and correcting

error

Combining flow and adjoint problems

Adapt discretization to improve (not reduce) correction

Error estimate can be computed to high accuracy, but it

is a linear correction

Based on the 2-dimensional (2D) work of

Venditti and Darmofal (MIT)

Müller and Giles

Intended to avoid manually specifying grid resolution to

enable design

Requested metric is a Mach Hessian scaled by the adjoint

error estimate uncertainty

17

Venditti and Darmofal Mach 3.0 Biplane

18

Mach 1.26 Double Cone Shock Propagation

Wind tunnel data from 1965 Technical note NASA TN D-3103

Cost is the integral of pressure on a cylinder with 6 body
length radius

19

Double Cone Shock Propagation Mach 1.26

20

Double Cone Shock Propagation Mach 1.26 Adjoint Variable

21

Double Cone Shock Propagation Pressure at 6 Body Lengths

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

A
dj

us
te

d
P

re
ss

ur
e

Adjusted X Mike.Park@NASA.Gov

FUN3D Output-Based (Adjoint) Adaptation (upper and lower shock)
Wind Tunnel NASA TN D-3106 (1965)

Near-Field Theory NASA TN D-3106 (1965)

22

Drag Prediction Workshop DLR F-6 (Beth Lee-Rausch)

23

Adaptation Mechanics

Limiting process for combining design and output based

adaptation

Needs to align grid with strongly anisotropic regions in the

solution

Improved robustness may result in never needing to look at

the grid

Compatible with flow solver grid quality requirements

Should work seamlessly with the flow solver and error

estimation process

24

Anisotropic Adaptation Mechanics – “refine”
Library

Written in C, wrapped with Ruby scripting language

Test-first development (unit tests)

GNU Autotools

Focus on building reusable infrastructure

Refinement and coarsening

Edge/face swapping

Node smoothing and untangling

Global grid movement

Projection to CAD (CAPRI)

Parallelized and coupled to the FUN3D (load balancing)

Focus of current research

25

ONERA M-6 Wing Inviscid Drag Adaptation Mach 0.84

Original

Final

26

ONERA M-6 Wing Inviscid Drag Adaptation Mach 0.84

Original

Final

27

Software development Practices

Software version control

Agile software development practices

Types of software testing

Discretization Error

Major issue

Estimation and control by adaptation

Adaptation Mechanics

Limiting factor on applying output based adaptation to

design and turbulent analysis

28

