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Introduction
Because of rapid advances in computer speeds, and improvements in

flow-solver and grid-generation algorithms, a renewed emphasis has
been placed on extending computational fluid dynamics (CFD) beyond
its traditional role as an analysis tool to design optimization. Among the
methodologies often employed are gradient-based techniques, in which a
specified objective is minimized. In this framework, the gradients of the
objective function with respect to the design variables are used to update
the design variables in a systematic manner to reduce the cost function
and to arrive at a local minimum. Many techniques have been used to
obtain the necessary derivatives, including finite differences, direct dif-
ferentiation, and adjoint methods. Many of the methodologies and im-
plementations are discussed in Refs. 1, 5, 8, 9, 12-14, 19-26, 31, 32 and
36.

Although most of the above mentioned references deal with inviscid
flows, a few have addressed viscous computations of turbulent flows. In
Ref. 20, Hou et al. used a direct differentiation approach in which the de-
rivatives of the flow solver were obtained with ADIFOR.10 In Ref. 20,
the turbulence model used was the Baldwin-Lomax7 algebraic model,
which was differentiated along with the flow equations. Jameson re-
cently developed a design methodology for turbulent flows based on an
adjoint formulation.23 Here, the Baldwin-Lomax turbulence model was
also employed but was assumed constant and was therefore not differen-
tiated. This same assumption was also recently used in the work of Soe-
marwoto.36

For unstructured grids, the work to date has been primarily focused on
inviscid computations in both two and three dimensions.1,9,14,15,29,30 In
Ref. 1, the adjoint equations and boundary conditions were derived for
the incompressible Navier-Stokes equations, and some design examples
were demonstrated. A discrete adjoint implementation for the compress-
ible Navier-Stokes equations has subsequently been presented in Ref.16.
However, in Refs. 1 and 16, turbulence effects were not included. In the
work of Mohammadi,28 two-dimensional Navier-Stokes results were
presented in which turbulence effects were included using a  turbu-
lence model in conjunction with wall functions. In this reference, auto-
matic differentiation was used to differentiate the necessary components
of the flow solver. In Ref. 2, a methodology for design using turbulent
Navier-Stokes is described using a 1-equation turbulence model that is
integrated to the wall. However, in this reference, the effects of interior
mesh sensitivities were neglected which could cause failure of the opti-
mization, particularly on coarser meshes and for cases involving transla-
tion/rotation of geometries.

The purpose of the present study is to further extend the work in Refs.
1 and 2 to the compressible Navier-Stokes equations, including a fully
coupled field-equation turbulence model. A fully discrete adjoint ap-
proach is used which includes the effects of the interior mesh sensitivi-
ties in the formulation. The methodology is discussed, and the accuracy
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of the derivatives is established. A few design examples are given to
demonstrate the technology
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Abstract
An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses

adjoint (costate) variables to obtain derivatives of the cost function. The solution of the adjoint equations is obtained by
using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the
costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few
sample computations are shown. Recommendations on directions of further research into the Navier-Stokes design process
are made.
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Superscripts:

     Subscripts:

Governing Equations

Flow equations
The governing equations are the time-dependent Reynolds-averaged

Navier-Stokes equations. The equations are expressed as a system of
conservation laws that relate the time rate of change of mass, momen-
tum, and energy in a control volume of area A to the spatial fluxes of
these quantities through the volume. The equations (nondimensional-
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ized by free-stream density, speed of sound, temperature, viscosity,
thermal conductivity, and a reference length) are given as

(1)

where  is the outward-pointing normal to the control volume. The
vector of dependent variables  and the flux vectors  and  are
given as

(2)

(3)

and

(4)

Here,  and  are the inviscid and viscous flux vectors respec-
tively; the shear stress and heat conduction terms are given as

(5)

(6)

(7)

(8)

(9)

The equations are closed with the equation of state for a perfect gas

(10)

and the laminar viscosity is determined through Sutherland’s law:

(11)

A
t∂

∂Q
Fi n̂⋅ dl Fv n̂⋅ dl

Ω∂
∫°–

Ω∂
∫°+ 0=

n̂
Q Fi Fv

Q

ρ
ρu

ρv

E

=

Fi f î g ĵ+
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î

0

τxy

τyy

uτyx vτyy qy–+
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where  is Sutherland’s constant divided by a free-
stream reference temperature, which is assumed to be  R.

Turbulence model
For the current study, the turbulence model of Spalart-Allmaras is

used.37 This is a one-equation turbulence model given as

(12)

where

(13)

(14)

(15)

and

(16)

In these equations,  is the magnitude of the vorticity, and  is the
distance to the nearest wall. The function  is given as

(17)

where

(18)

and

(19)

The last term in Eq. (12) is used when specifying the transition loca-
tion. Although the flow solver includes this term, the computations in
the present paper are all assumed to be fully turbulent, so this term is
not used. Therefore, the definitions of  and , which are associated
with these terms, are not given. After Eq. (12) is solved for , the
eddy viscosity is computed as

(20)

Adjoint Equations
In the adjoint approach for design optimization, a cost function is

defined and augmented with the flow equations as constraints:

(21)
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where  represents the vector of discrete residuals,  is the loca-
tion of the grid points,  is the vector of design variables, and
are the Lagrange multipliers (also referred to as the costate or adjoint
variables). In Eq. (21),  represents the cost that is to be
minimized. Examples of suitable cost functions include the differ-
ence between the lift coefficient for the airfoil and a desired lift, the
drag coefficient, and the difference between the pressure distribution
and a desired pressure distribution.

The variation of Eq. (21) is given by

(22)

The terms involving  can be eliminated by regrouping terms
and requiring the coefficients of  to vanish; the costate variables
are the solution of the following equations

(23)

The remaining terms for the variation in the cost function are then
given by

(24)

After the costate variables are determined from Eq. (23), they are
used in Eq. (24) to obtain the sensitivity derivatives. Note that this
process requires the solution of both the flow equations and the cos-
tate equations. However, the derivatives of the cost function with re-
spect to all design variables are obtained independently of the num-
ber of design variables.

By examining Eqs. (5)-(9) along with Eqs. (12)-(20), it is apparent
that the solution of the flow equations and the turbulent viscosity are
highly dependent on one another. Therefore, the vector of residuals
that require linearization in Eqs. (23) and (24) includes the contribu-
tions from both the flow equations and the turbulence model. Like-
wise, the dependent variables, , include the conserved flow vari-
ables as well as  so that solving for the costate variables with Eq.
(23) requires the solution of a block 5x5 system of equations for
two-dimensional calculations and a 6x6 system in three-dimensions.

Many of the terms in Eqs. (12)-(20) have a complex dependency
on the dependent variables, the design variables, and the distance to
the wall; these terms must be accurately differentiated in order to ob-
tain accurate derivatives. In the present work, the differentiation of
both the flow equations and the turbulence model is accomplished
by “hand differentiating” the code. Although this procedure is some-
what tedious, experiments in which the eddy viscosity was assumed
to be constant (and, therefore, not differentiated) yielded very poor
accuracy with many derivatives of incorrect sign when compared
with gradients obtained with finite differences. The strong coupling
of the flow equations and the turbulence model is in contrast to Refs.
23 and 36 where the constant viscosity assumption was used. How-
ever, in those references, an algebraic turbulence model is used,
whereas here, a field equation is solved to obtain the eddy viscosity.

Solution Procedures
For the flow equations, the inviscid flux contributions are evalu-

ated by using an approximate Riemann solver,33 and the viscous
contributions are discretized with a central-difference approach. The
solution is obtained by using an implicit solution methodology with
multigrid acceleration. Details may be found in Refs. 3, 4, and 11.
The adjoint equations are a linear system of equations that can be

R X
D Ψ

I c Q D,( )

Iδ
Q∂

∂I c Q̃
D∂

∂I c D̃ ΨT

Q∂
∂R

Q̃
D∂

∂R
X∂

∂R
D∂

∂X
+ 

 D̃++ +=

Q̃
Q̃

Q∂
∂R T

Ψ{ }
Q∂

∂I c

 
 
 

+ 0=

Iδ
D∂

∂I c ΨT

D∂
∂R

X∂
∂R

D∂
∂X

+ 
 + 

 D̃=

Q
υ̃



4

solved with a technique such as preconditioned GMRES.34 However,
in this work, a time derivative is added to the equations so that they
can be solved with a time-marching procedure. The motivation for
adding the time term is that this approach often converges in situations
for which the preconditioned GMRES might otherwise fail. This fea-
ture is particularly useful when the turbulence model is fully coupled
because the turbulence production term tends to reduce diagonal dom-
inance. Because the adjoint equations represent a linear system of
equations, the matrix-vector products are currently formed by simply
passing the vector to the residual routine in place of the costate vari-
ables. By forming the matrix-vector products in this way, the largest
contribution to memory requirements is through the preconditioner
(incomplete lower/upper (LU) decomposition with no fill, ILU(0)), so
that the resulting scheme requires roughly the same amount of mem-
ory as the flow solver. Note that this procedure essentially requires re-
computation of the linearization of the residual for each matrix-vector
product.

Grid Generation and Mesh Movement
The unstructured meshes used in this work are generated with the

software package described in Ref. 27. This employs an advancing
front method that generates good quality grids for both inviscid and
viscous calculations.

During the design process, the mesh is continuously updated as the
shape of the geometry changes. This is accomplished using the tech-
nique described in Ref. 1, which shifts nodes near viscous surfaces by
interpolating the changes in the coordinates at the end points of the
nearest surface edge. This technique is blended with a smoothing pro-
cedure so that away from the highly stretched cells near the surface the
mesh movement reverts to that of the smoothing/edge-swapping pro-
cedure described in Ref. 40. The combined procedure has been found
to work well for viscous grids with highly stretched triangles and very
close spacing normal to the wall. Further details can be found in Ref.
1. Also, the effects on the sensitivity derivatices due to the movement
of the interior mesh points are taken into account by differentiating the
mesh movement process  described above.

Surface Representation
In the current study, the geometries are modeled with B-splines,

which offer great flexibility in the definition of the surfaces. By vary-
ing the polynomial degree and the number of control points, a wide
range in the number of design variables and in surface fidelity can be
obtained. On one hand, the design variables can be made to correspond
to the individual grid points on the surface by choosing a linear poly-
nomial and an appropriate number of control points. Conversely, a sin-
gle polynomial curve of degree  (known as a Bezier curve) can be
used to describe the geometry by choosing the number of control
points to be . In addition, through the knot sequence associated
with the spline, curves with sharp breaks in the surface, such as those
that occur in cove regions and blunt trailing edges, can still be repre-
sented in a single curve.

Spline fitting of input coordinates
Rather than using a conventional cubic spline of the input coordi-

nates, a B-spline of specified order and with a specified number of
control points is matched to the input coordinates with a least-squares
procedure. The design variables are, then, the coordinates of the B-
spline control points, which can be considerably fewer in number and
are more geometrically meaningful than the original input coordinates.
The following is a description of the B-spline representation and the
least-squares procedure.

B-spline curves are described in detail in Ref. 17. They are defined
as the sum of products of control-point coordinates and corresponding
basis functions. The basis functions depend on a knot sequence, ,
and are defined recursively as follows:

M

M 1+

si

(25)

where  is the degree of the basis function. The minimum and the
maximum values of the parameter  appear  times at the begin-
ning and the end of the knot sequence, respectively, so that the first
and last control points correspond to the end points of the B-spline.

A uniform parameterization is formed by setting the parameter
that corresponds to each input coordinate equal to the number of the
coordinate in the sequence, starting from zero:

(26)

where  is the number of input coordinates. The knot sequence is
formed by uniform division of the parameter space. At each of the

, each of the  basis functions  is computed, which forms an
 matrix.

Given the values of the basis functions at each input coordinate,
an overdetermined linear system is obtained:

(27)

where  is thej-th input coordinate and  is the number of control
points. The are the unknown control point coordinates, and the

are the input coordinates. The first and last control points are set
equal to the first and last input coordinates, and the corresponding
equations are removed from the system. The system is then solved in
the least-squares sense by using Householder transformations as de-
scribed in Ref. 18. After fitting each segment of a curve, the B-spline
segments are concatenated into a single B-spline by concatenating
the knot sequences and merging the control point coordinates.

Optimizer
The optimizer used in the current study is KSOPT,42 which uses a

quasi-Newton method to determine the search directions and a poly-
nomial line search technique to determine the step length in the de-
scent direction. This code was chosen because it is capable of multi-
point design and can handle both equality and inequality constraints.
In addition, upper and lower bounds can be placed on design vari-
ables; this approach is currently used to enforce the geometric con-
straints necessary to maintain a viable geometry throughout the de-
sign cycle.

Results

Accuracy of Derivatives
The accuracy of the derivatives is established by comparing re-

sults obtained by using the adjoint formulation with finite-difference
derivatives. The case considered here is a two-element airfoil at a
free-stream Mach number of 0.25, an angle of attack of , and a
Reynolds number of 9 million, based on the chord of the airfoil. The
grid used is fairly coarse with only 4901 nodes and a spacing at the
wall of about . (See Fig. 1.) The spacing at the wall has
been chosen to be large enough so that a stretched mesh can be ob-
tained while allowing the surface of the airfoil to be perturbed with-
out necessarily moving the interior grid points. This is consistent
with the assumption that the interior mesh sensitivities are neglected
and will allow a direct comparison of various derivatives computed
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with and without these terms. Although this grid is obviously inade-
quate for resolving the boundary layer accurately, it is sufficient for
verifying the consistency of the derivatives obtained with the adjoint
formulation to those computed using finite-differences. When the gra-
dients are computed with finite differences, a central-difference for-
mula is used with a fixed step size for each design variable, and all
computations are converged to machine accuracy. For grids in which
closer spacing at the wall is used, Hou et al.20 have shown that obtain-
ing derivatives from finite differences can be highly sensitive to the
step size and to the level of convergence of the flow solver. With the
spacing at the wall used here, the flow solver is easily converged to
machine zero, and numerical experiments indicate that the derivative
is not drastically effected by the choice of step size. For this grid under
these flow conditions, the maximum turbulent viscosity in the flow
field is approximately 2600.

For this test, the geometry of each airfoil is described with a third
order B-spline. The derivatives of lift and drag coefficients with re-
spect to the vertical position of four shape design variables are evalu-
ated. Two of these design variables are located on the main airfoil and
two are located on the flap. For each element, one design variable is
located on the upper surface near the nose of the airfoil and one is lo-
cated near the rear. A comparison of derivatives of lift and drag coeffi-
cients with respect to these design variables is shown in tables 1-4. In
table 1, the sensitivity of the lift coefficient is shown for the case in
which the interior mesh sensitivities are included whereas table 2
shows the corresponding derivatives in which the mesh sensitivities
are neglected. A similar comparison for the drag coefficient is shown
in tables 3 and 4. As seen, the derivatives obtained with the adjoint ap-
proach are in very good agreement with the finite-difference deriva-
tives for all cases. Furthermore, it is seen that the derivatives computed
by neglecting the interior mesh sensitivities differ significantly from
those computed by including these terms. In particular, the sign of the
derivatives near the nose of the main element are not of the same sign
as when the mesh sensitivities are included. Since the interior of the
mesh is allowed to change during an actual design, failure to include
these terms could lead to a failure of the design.

Finite-differences Adjoint % Diff.

Nose (main) -1.1046 -1.1046 0.000

Rear (main) 0.48400 0.48428 0.058

Nose (flap) -2.2819 -2.2819 0.000

Rear (flap) 0.74900 0.74860 -0.053

Table 1. Accuracy of derivatives for lift coefficient with mesh
sensitivities included.

Finite-differences Adjoint % Diff.

Nose (main) 1.5960 1.5962 0.013

Rear (main) 9.6079 9.5976 -0.107

Nose (flap) -0.00105 -0.00109 3.809

Rear (flap) 3.3796 3.3794 -0.006

Table 2. Accuracy of derivatives for lift coefficient with mesh
sensitivities neglected.

In tables 5 and 6, sensitivity derivatives of the lift coefficient with
respect to x- and y-translation of the flap are given. In table 5, the
derivative of the lift computed with the adjoint approach is com-
pared with finite differences for the case when the mesh sensitivities
are included. The corresponding derivatives obtained by neglecting
the interior mesh sensitivities are shown in table 6. It is apparent in
both cases that the derivatives computed with the adjoint approach
are in excellent agreement with those computed with finite differ-
ences. Furthermore, if the influence of the mesh sensitivities are ne-
glected, the sign of the derivative when the flap is translated in the y-
direction differs from the case where these terms are included. It has
been shown in Ref. 1 that for geometries with singularities such as
sharp trailing edges, the effects of the mesh sensitivities on the de-
rivatives associated with translation are dependent on the manner in
which the mesh is moved in response to the changing position of the
airfoil. It is also demonstrated that this effect does not vanish as the
mesh is refined so that for computing derivatives due to translation
of elements in a multielement configuration, these terms must be in-
cluded.

Finite- differences Adjoint % Diff.

Nose (main) 0.22753 0.22752 -0.004

Rear (main) -0.02530 -0.02531 0.040

Nose (flap) 0.17795 0.17795 0.000

Rear (flap) 0.06521 0.06529 0.123

Table 3. Accuracy of derivatives for drag coefficient with
mesh sensitivities included.

Finite-differences Adjoint % Diff

Nose (main) -0.69105 -0.69105 0.000

Rear (main) -0.95156 -0.95060 -0.101

Nose (flap) -0.072715 0.072679 -0.050

Rear (flap) -0.016764 -0.016788 0.143

Table 4. Accuracy of derivatives for drag coefficient with
mesh sensitivities neglected.

Finite-difference Adjoint % Diff.

x-translation 0.35470 0.35481 0.031

y-translation -7.1370 -7.1370 0.000

Table 5. Accuracy of derivatives of lift coefficient for flap
translation with mesh sensitivities included.

Finite-difference Adjoint % Diff.

x-translation 8.4127 8.4547 0.500

y-translation 44.116 44.136 0.045

Table 6. Accuracy of derivatives of lift coefficient for flap
translation with mesh sensitivities neglected.
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Design Examples
Two sample results are given below. The first case is a computation

of the flow over an airfoil at a free-stream Mach number of 0.4, an
angle of attack of , and a Reynolds number of 5 million. The goal of
the computation is simply to obtain a specified pressure distribution.
The grid used for this computation is shown in Fig. 2 and consists of
approximately 5500 nodes with 128 nodes on the surface of the airfoil.
The spacing at the wall is  of the chord length yielding a
of about 2. For this case, a single eighth-order Bezier curve is used to
parameterize the surface, and only three design variables are allowed
to change during the design process. The geometry is perturbed by dis-
placing three of the control points in the initial B-spline definition, and
the solution over this geometry is used for the target pressures. After
10 design cycles, the cost function is reduced from approximately

 to , and the root mean square of the gradients is
reduced from  to . The initial and final pressure distribu-
tions and geometries are shown in Figs. 3 and 4. As seen, the target
pressure distribution is obtained, and the geometry returns to that of
the airfoil in the perturbed position.

The objective of the next case is to reduce the drag coefficient while
maintaining a specified lift. The geometry is a 2-element airfoil de-
signed to operate at transonic speeds and is the precursor to modern
supercritical airfoils.41 The geometry and mesh for the initial configu-
ration are shown in Fig. 5. For this mesh, there are 18,905 nodes with
193 lying on the surface of the main element and 161 on the flap. The
spacing normal to the wall is . The free-stream Mach num-
ber is 0.75, the initial angle of attack is , and the Reynolds number
is 5 million. Under these conditions, the initial lift and drag coeffi-
cients are 1.039 and 0.0376 respectively. For this case, the objective
function is defined as a linear combination of the lift and drag

(28)

Here, the drag is weighted more heavily than the lift to provide more
balance between the terms so that both contributions are approxi-
mately equal. A better way to minimize the drag while maintaining a
specified lift may be to treat the lift as a constraint during the design
process. This requires an additional solution of the adjoint equations
but would eliminate the need for adjusting the weights in order to ob-
tain the desired lift. For this case, there are 42 geometric design vari-
ables in addition to the angle of attack.

 After 24 design cycles, the drag has been reduced from 0.0376 to
0.0209. Continuing to run the design further reduces the drag slightly
to 0.0201 after 96 cycles. The slower convergence of the design pro-
cess with the increase in the number of design variables is attributable
to the poor performance of quasi-Newton methods for aerodynamic
design problems with many design variables directly describing the
geometry.6 The initial and final pressure distributions are shown in
Fig. 6. As seen, the initial pressure distribution exhibits a shock to-
wards the rear of the main element whereas in the final pressure distri-
bution, this shock has been eliminated and the contribution to the lift
due to the flap has noticeably increased. A comparison of the initial
and final geometries is shown in Figs. 7 and 8. Figure 7 shows a no-
ticeable change in the geometry of the main element on both the upper
and lower surfaces. A near-field view of the flap, shown in Fig. 8,
shows that the flap has also been modified although to a lesser extent.
Mach number contours for the initial geometry and the modified ge-
ometry are shown in Figs. 9 and 10, respectively. As seen in Fig. 9, the
solution for the initial geometry exhibits noticible thickening of the
boundary layer aft of the shock on the upper surface and is accompa-
nied by a small region of separation. Mach contours for the modified
geometry further demonstrate that the shock has been eliminated.
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Summary and Concluding Remarks
A two-dimensional design optimization methodology is de-

scribed. This research is an extension of the work in Ref. 1 to in-
clude a turbulence model for viscous flows. However, a discrete ad-
joint approach is used instead of the continuous adjoint approach so
that the sensitivity derivatives are more consistent with the flow
solver. The turbulence model is strongly coupled with the flow equa-
tions, and the accuracy of the derivatives is demonstrated through a
comparison with derivatives obtained by finite differences. A few
examples are presented to demonstrate the methodology.

In this regard, several recommendations are offered. First, the
slow convergence of the second test case, in which 43 design vari-
ables were used, shows that the quasi-Newton method is insufficient
for problems with many design variables because a large number of
design iterations is required before a good approximation of the Hes-
sian can be obtained. Even then, with many design variables, this
Hessian may remain inaccurate because much of the information is
obtained much earlier in the design process and may not represent
the Hessian in the vicinity of the minimum. However, direct compu-
tation of the Hessian for turbulent Navier-Stokes design cases is not
currently very efficient or practical because it requires the solution
of a linear system of equations for each design variable as well as
one for the adjoint. (See e.g., Refs. 35, and 43.) Methods that ap-
proximate the Hessian, such as described in Ref. 6, should be thor-
oughly evaluated and extended to viscous flows. Other methods,
such as pseudo-time techniques,38 have been demonstrated for invis-
cid flow computations21 and should be examined for applicability to
viscous computations as well. In addition, the technique employed
in Refs. 23, and 24 should also be further evaluated. This technique
is essentially a time-marching technique in which the gradients are
smoothed at each step. For two-dimensional flows, this technique is
similar in application to that of the preconditioning method de-
scribed in Ref. 6. However, for three dimensions, the technique in
Ref. 6 requires the solution of an extra field equation. Finally,
Ta’asan has shown in Ref. 39 that designing for the slopes of the ge-
ometry instead of the location of the surface presents a design that is
easier and faster to converge. The use of slopes and curvatures in-
stead of points as design variables should, therefore, be considered.
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Figures

Figure 1. Grid used for studying accuracy of derivatives.

Figure 2. Grid used for first test case.

Figure 3. Initial and final pressure distributions for case 1.

Figure 4. Initial and final geometries for case 1.



9

Figure 5. Initial grid for slotted airfoil.

Figure 6. Pressure distributions for slotted airfoil.

Figure 7. Initial and modified geometries for slotted airfoil.

Figure 8. Near view of flap for slotted airfoil.

Figure 9. Mach number contours for initial  slotted airfoil.

Figure 10. Mach number contours for modified slotted airfoil.


