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Abstract
An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses

adjoint (costate) variables to obtain derivatives of the cost fu
using an implicit formulation in which the turbulence model is
costate variables. The accuracy of the derivatives is demonstr

nction. The solution of the adjoint equations is obtained by
fully coupled with the flow equations when solving for the
ated by comparison with finite-difference gradients and a few

sample computations are shown. Recommendations on directions of further research into the Navier-Stokes design process

are made.

Introduction

Because of rapid advances in computer speeds, and improvements
flow-solver and grid-generation algorithms, a renewed emphasis hi
been placed on extending computational fluid dynamics (CFD) beyon
its traditional role as an analysis tool to design optimization. Among th
methodologies often employed are gradient-based techniques, in whicl
specified objective is minimized. In this framework, the gradients of th
objective function with respect to the design variables are used to upds
the design variables in a systematic manner to reduce the cost functi
and to arrive at a local minimum. Many techniques have been used
obtain the necessary derivatives, including finite differences, direct dit
ferentiation, and adjoint methods. Many of the methodologies and in
plementations are discussed in Refs. 1, 5, 8, 9, 12-14, 19-26, 31, 32 ¢
36.

Although most of the above mentioned references deal with invisci
flows, a few have addressed viscous computations of turbulent flows.
Ref. 20, Hou et al. used a direct differentiation approach in which the d
rivatives of the flow solver were obtained with ADIFGRIn Ref. 20,
the turbulence model used was the Baldwin-Lofrelgebraic model,
which was differentiated along with the flow equations. Jameson re
cently developed a design methodology for turbulent flows based on ¢
adjoint formulatior?® Here, the Baldwin-Lomax turbulence model was
also employed but was assumed constant and was therefore not differ
tiated. This same assumption was also recently used in the work of St
marwoto®

For unstructured grids, the work to date has been primarily focused «
inviscid computations in both two and three dimensfoiig:152930n
Ref. 1, the adjoint equations and boundary conditions were derived fi
the incompressible Navier-Stokes equations, and some design examg
were demonstrated. A discrete adjoint implementation for the compres
ible Navier-Stokes equations has subsequently been presented in Ref.
However, in Refs. 1 and 16, turbulence effects were not included. In tt
work of Mohammad?® two-dimensional Navier-Stokes results were
presented in which turbulence effects were included using & turbr
lence model in conjunction with wall functions. In this reference, auto
matic differentiation was used to differentiate the necessary componer
of the flow solver. In Ref. 2, a methodology for design using turbulen
Navier-Stokes is described using a 1-equation turbulence model that
integrated to the wall. However, in this reference, the effects of interic
mesh sensitivities were neglected which could cause failure of the op
mization, particularly on coarser meshes and for cases involving transl
tion/rotation of geometries.

The purpose of the present study is to further extend the work in Ref
1 and 2 to the compressible Navier-Stokes equations, including a ful
coupled field-equation turbulence model. A fully discrete adjoint ap-
proach is used which includes the effects of the interior mesh sensiti
ties in the formulation. The methodology is discussed, and the accura

of the derivatives is established. A few design examples are given to
demonstrate the technology

Nomenclature

A area of control volume
speed of sound
* constant used in Sutherland’s law for viscosity
c lift coefficient
c drag coefficient
Cp., Cp Cy constants used in Spalart-Allmaras turbulence
Y2 model
Cy.. Gy, Cy. CONstants used in Spalart-Allmaras turbulence
Wy Tyt FWg
model
D vector of design variables
D, component of design variable vector
d distance to nearest surface
E total energy per unit volume
= fluxes of mass, momentum, and energy
= inviscid contribution to fluxes
B, viscous contribution to fluxes
f.g components of inviscid fluxes
f. 0y components of viscous fluxes
f,.f, functions used in the turbulence model
1 2
fon Fro o functions used in the turbulence model
1 2
| augmented cost to be minimized
e cost to be minimized
K Karman constant
M, free-stream Mach number
N B-spline basis functions
A unit normal to boundary of control volume
Pr Prandtl number



Pr turbulent Prandtl number ized by free-stream density, speed of sound, temperature, viscosity,
t thermal conductivity, and a reference length) are given as

p pressure
Q vector of dependent variables A99 4 6F Mdi— 6F Chdl = 0 @)
PR
Oy O components of heat flux Q Q
R residual for a control volume wherefi is the outward-pointing normal to the control volume. The
Re Reynolds number vector of dependent variabl€s  and the flux veckors  Fand are
given as
S magnitude of vorticity
s parameterization variable for B-splines p
T temperature Q= pu )
t time pEv
U magnitude of velocity
u, v Cartesian components of velocity ou ov
rid-point locations N A a 2 N ¢
X onee Fi=fieg] = |PU*P|i+| PYU ] ®)
X,y Cartesian coordinates puv pv2 +p
y* wall coordinate (E+pu |(E+pVv
angle of attack and
00 boundary of control volume
ratio of specific heats 0 0
. . . N S 2 T 2 T 2
U laminar viscosity Fv=fi+g,j= TXX i+ Txy )]
H, turbulent viscosity x vy
UTyy + VT, — Oy UTyy + VT, =0y
v wp
g) 0/ p Here, F; andF, are the inviscid and viscous flux vectors respec-
! ! tively; the shear stress and heat conduction terms are given as
0 dependent variable for turbulence model
. M.,
P density T = (H+ H) R25(20-v,) ©)
o constant for turbulence model
Ty Ty T shear stress terms M2
oo Ty Yy Tyy = ('J + ut)ﬁéé(zvy_ ux) (6)
W costate variables
. Moo
Superscripts: Ty = Ty = (U + Ht)R—e(Uy +Vy) (7)
- dimensional quantity
g = __M°°_D£ + Et_@z (8)
~ variation % Re(y-1)tPr Prlox
Subscripts: g = — Mo . EEUEZ ©)
y Re(y-1)tPr  Prlay
o free-stream quantities

The equations are closed with the equation of state for a perfect gas
Governing Equations

p = (v-n[E-pH)] (10)

Flow equations 2

The governing equations are the time-dependent Reynolds-averac
Navier-Stokes equations. The equations are expressed as a systeranq the laminar viscosity is determined through Sutherland’s law:
conservation laws that relate the time rate of change of mass, mome
tum, and energy in a control volume of area A to the spatial fluxes ¢ . R A 32
these quantities through the volume. The equations (nondimensioni = B @+ C)(A/Tew)™"

“'oo

— 11
T/Te+C" (11)



whereC* = 198.6/ 460.0 is Sutherland’s constant divided by a free-where R represents the vector of discrete residuals, is the loca-

stream reference temperature, which is assumed 46Ge R. tion of the grid pointsD is the vector of design variables, #nd
are the Lagrange multipliers (also referred to as the costate or adjoint
Turbulence model variables). In Eq. (21)].(Q, D) represents the cost that is to be
For the current study, the turbulence model of Spalart-Allmaras iminimized. Examples of suitable cost functions include the differ-
used®” This is a one-equation turbulence model given as ence between the lift coefficient for the airfoil and a desired lift, the
drag coefficient, and the difference between the pressure distribution
Do M o o and a desired pressure distribution.
Dt - O_F\:ZE{ O0(v +(1+ ¢, )v)0u]—c, 0?0} (12) The variation of Eq. (21) is given by
M Co ot =~ . Re
—==l, £, ——2f HEL 4 g (1-f,)S0 + 25, AU? dle~ dlc~ 1R~ @R . OROX
Wy ' W 2't 0 t t =_° _c hah halhhadl
Rel™1 k2 Ty 1 2 M, "1 ol aQQJ'aDDJrqJ [aQQJr%erXOD J (22)
where . - - .
The terms involvingQ can be eliminated by regrouping terms
3 and requiring the coefficients @  to vanish; the costate variables
v = (13) are the solution of the following equations
1 X3 + C\:lal
- aR7" I, O
_ o 5o] (WH+gggo= o (23)
X=5 (14) 9Q PO
. M. § T_he remaining terms for the variation in the cost function are then
S=S+ R—eK—ZFZf"z (15) given by
and al = 9l , WTOR | OROX (24)
F]») 6D 0XaD
- X
sz =1- 1+xf, (16) After the costate variables are determined from Eq. (23), they are
1

used in Eq. (24) to obtain the sensitivity derivatives. Note that this
. . . . _ process requires the solution of both the flow equations and the cos-
In these equationsS  is the magnitude of the vorticity, dnd is thiate equations. However, the derivatives of the cost function with re-

distance to the nearest wall. The functign is given as spect to all design variables are obtained independently of the num-
ber of design variables.
L +cs }® By examining Egs. (5)-(9) along with Egs. (12)-(20), it is apparent
fo = gB6—3-I] 17) that the solution of the flow equations and the turbulent viscosity are
9°+ Cw,O0 highly dependent on one another. Therefore, the vector of residuals
that require linearization in Egs. (23) and (24) includes the contribu-
where tions from both the flow equations and the turbulence model. Like-
wise, the dependent variablegd, , include the conserved flow vari-

(18) ables as well a8  so that solving for the costate variables with Eq.
(23) requires the solution of a block 5x5 system of equations for
two-dimensional calculations and a 6x6 system in three-dimensions.

g = r+gq,(r°-r

and Many of the terms in Egs. (12)-(20) have a complex dependency
on the dependent variables, the design variables, and the distance to

M, 0 the wall; these terms must be accurately differentiated in order to ob-

r= Regk2g? (19) tain accurate derivatives. In the present work, the differentiation of

both the flow equations and the turbulence model is accomplished
. . o " by “hand differentiating” the code. Although this procedure is some-
The last term in Eq. (12) is used when specifying the transition quéwx;wat tedious, experim%nts in which the e%dy visrc):osity was assumed
tion. Although the flow solver includes this term, the computations iry e~ onstant (and, therefore, not differentiated) yielded very poor
the present paper are all assumed to be fully turbulent, so this term, .o a0y with many derivatives of incorrect sign when compared
not used. Therefore, the defl_mtlonsf%f dnd , which are associate, i gradients obtained with finite differences. The strong coupling
with th_ese terms, are not given. After Eq. (12) is solvedufor th‘of the flow equations and the turbulence model is in contrast to Refs.
eddy viscosity is computed as 23 and 36 where the constant viscosity assumption was used. How-
. ever, in those references, an algebraic turbulence model is used,
He = pu, = puf,, (20)  whereas here, a field equation is solved to obtain the eddy viscosity.

Solution Procedures
For the flow equations, the inviscid flux contributions are evalu-
ated by using an approximate Riemann sotveand the viscous
contributions are discretized with a central-difference approach. The
T solution is obtained by using an implicit solution methodology with
I[Q, D, ¥, X(D)] = 1,(Q, D) +¥ R[Q, D, X(D)] (21)  multigrid acceleration. Details may be found in Refs. 3, 4, and 11.
The adjoint equations are a linear system of equations that can be

Adjoint Equations
In the adjoint approach for design optimization, a cost function it
defined and augmented with the flow equations as constraints:



solved with a technique such as preconditioned GMEERwever,

in this work, a time derivative is added to the equations so that the N"(s) = S—S.1 NP~ Y(s) + 5i+n‘SN_n—1(S)

can be solved with a time-marching procedure. The motivation fo ! Sin_1—S_1 | Sin—S

adding the time term is that this approach often converges in situatio (25)
for which the preconditioned GMRES might otherwise fail. This fea- N°(s) = E 1,5_,1s<j5

ture is particularly useful when the turbulence model is fully couplec : 0o, else

because the turbulence production term tends to reduce diagonal do

inance. Because the adjoint equations represent a linear system ) ) ) o

equations, the matrix-vector products are currently formed by simp/wheren is the degree of the basis function. The minimum and the
passing the vector to the residual routine in place of the costate vamaximum values of the parameter appear times at the begin-
ables. By forming the matrix-vector products in this way, the largesning and the end of the knot sequence, respectively, so that the first
contribution to memory requirements is through the preconditioneand last control points correspond to the end points of the B-spline.
(incomplete lower/upper (LU) decomposition with no fill, ILU(0)), so A uniform parameterization is formed by setting the paraneeter
that the resulting scheme requires roughly the same amount of methat C_Orresponds to each input C(_)Ol‘dlnate equal to the number of the
ory as the flow solver. Note that this procedure essentially requires rcoordinate in the sequence, starting from zero:

computation of the linearization of the residual for each matrix-vecto

product. s =J,j0[0,M] (26)

Grid Generation and Mesh Movement ~ whereM’ is the number of input coordinates. The knot sequence is
The unstructured meshes used in this work are generated with tformed by uniform division of the parameter space. At each of the
front method that generates good quality grids for both inviscid anp' x M matrix.
viscous calculations. ) i Given the values of the basis functions at each input coordinate,
During the design process, the mesh is continuously updated as 1an overdetermined linear system is obtained:
shape of the geometry changes. This is accomplished using the te:
nique described in Ref. 1, which shifts nodes near viscous surfaces
interpolating the changes in the coordinates at the end points of tl % =
nearest surface edge. This technique is blended with a smoothing p !
cedure so that away from the highly stretched cells near the surface 1 !
mesh movement reverts to that of the smoothing/edge-swapping pr
cedure described in Ref. 40. The combined procedure has been fot
to work well for viscous grids with highly stretched triangles and very
close spacing normal to the wall. Further details can be found in Re
1. Also, the effects on the sensitivity derivatices due to the moveme
of the interior mesh points are taken into account by differentiating th
mesh movement process described above.

%iNj(s) (27)

M =

0

wherex; is thg-th input coordinate antfl  is the number of control
points. Thex; are the unknown control point coordinates, and the
X; are the input coordinates. The first and last control points are set
equal to the first and last input coordinates, and the corresponding
equations are removed from the system. The system is then solved in
the least-squares sense by using Householder transformations as de-
scribed in Ref. 18. After fitting each segment of a curve, the B-spline
Surface Representation segments are concatenated into a single B-spline by concatenating
In the current study, the geometries are modeled with B-splinethe knot sequences and merging the control point coordinates.
which offer great flexibility in the definition of the surfaces. By vary-
ing the polynomial degree and the number of control points, a wid Optimizer
range in the number of design variables and in surface fidelity can I The optimizer used in the current study is KSGPWhich uses a
obtained. On one hand, the design variables can be made to correspquasi-Newton method to determine the search directions and a poly-
to the individual grid points on the surface by choosing a linear polynomial line search technique to determine the step length in the de-
nomial and an appropriate number of control points. Conversely, a siscent direction. This code was chosen because it is capable of multi-
gle polynomial curve of degred  (known as a Bezier curve) can bpoint design and can handle both equality and inequality constraints.
used to describe the geometry by choosing the number of contrin addition, upper and lower bounds can be placed on design vari-
points to beM +1 . In addition, through the knot sequence associateables; this approach is currently used to enforce the geometric con-
with the spline, curves with sharp breaks in the surface, such as thestraints necessary to maintain a viable geometry throughout the de-
that occur in cove regions and blunt trailing edges, can still be reprisign cycle.
sented in a single curve.

Spline fitting of input coordinates Results

Rather than using a conventional cubic spline of the input coord
nates, a B-spline of specified order and with a specified number ¢
control points is matched to the input coordinates with a least-squar
procedure. The design variables are, then, the coordinates of the
spline control points, which can be considerably fewer in number an
are more geometrically meaningful than the original input coordinate:
The following is a description of the B-spline representation and th
least-squares procedure.

B-spline curves are described in detail in Ref. 17. They are define
as the sum of products of control-point coordinates and correspondii
basis functions. The basis functions depend on a knot sequgnce,
and are defined recursively as follows:

Accuracy of Derivatives

The accuracy of the derivatives is established by comparing re-
sults obtained by using the adjoint formulation with finite-difference
derivatives. The case considered here is a two-element airfoil at a
free-stream Mach number of 0.25, an angle of attack’of , and a
Reynolds number of 9 million, based on the chord of the airfoil. The
grid used is fairly coarse with only 4901 nodes and a spacing at the
wall of about1 x 104 . (See Fig. 1.) The spacing at the wall has
been chosen to be large enough so that a stretched mesh can be ob-
tained while allowing the surface of the airfoil to be perturbed with-
out necessarily moving the interior grid points. This is consistent
with the assumption that the interior mesh sensitivities are neglected
and will allow a direct comparison of various derivatives computed



with and without these terms. Although this grid is obviously inade-
guate for resolving the boundary layer accurately, it is sufficient fo
verifying the consistency of the derivatives obtained with the adjoin
formulation to those computed using finite-differences. When the gre
dients are computed with finite differences, a central-difference for
mula is used with a fixed step size for each design variable, and ¢
computations are converged to machine accuracy. For grids in whic
closer spacing at the wall is used, Hou éP&lave shown that obtain-
ing derivatives from finite differences can be highly sensitive to the
step size and to the level of convergence of the flow solver. With th
spacing at the wall used here, the flow solver is easily converged
machine zero, and numerical experiments indicate that the derivati
is not drastically effected by the choice of step size. For this grid unds

Finite- differences| Adjoint| % Diff.
Nose (main) 0.22753 0.22752  -0.004
Rear (main) -0.02530 -0.02531 0.04p
Nose (flap) 0.17795 0.1779%  0.00D
Rear (flap) 0.06521 0.06529  0.128

Table 3. Accuracy of derivatives for drag coefficient with
mesh sensitivities included.

these flow conditions, the maximum turbulent viscosity in the flow Finite-differences Adjoint % Diff
field is approximately 2600.

For this test, the geometry of each airfoil is described with a thirt | Nose (main) -0.69105 -0.69105  0.000
order B-spline. The derivatives of lift and drag coefficients with re- -
spect to the vertical position of four shape design variables are eval | Rear (main) -0.95156 -0.95060  -0.101
ated. Two of these design variables are located on the main airfoil ai Nose (flap) -0.072715 0072678  -0.050
two are located on the flap. For each element, one design variable ’ ’ i
located on the upper surface near the nose of the airfoil and one is | Rear (flap) -0.016764 -0.016788 0.143

cated near the rear. A comparison of derivatives of lift and drag coeff
cients with respect to these design variables is shown in tables 1-4.
table 1, the sensitivity of the lift coefficient is shown for the case ir
which the interior mesh sensitivities are included whereas table
shows the corresponding derivatives in which the mesh sensitivitie |n tables 5 and 6, sensitivity derivatives of the lift coefficient with
are neglected. A similar comparison for the drag coefficient is showrespect to x- and y-translation of the flap are given. In table 5, the
in tables 3 and 4. As seen, the derivatives obtained with the adjoint aderivative of the lift Computed with the adjoint approach is com-
proach are in very good agreement with the finite-difference derivepared with finite differences for the case when the mesh sensitivities
tives for all cases. Furthermore, it is seen that the derivatives computare included. The corresponding derivatives obtained by neglecting
by neglecting the interior mesh sensitivities differ significantly fromthe interior mesh sensitivities are shown in table 6. It is apparent in
those computed by including these terms. In particular, the sign of tthoth cases that the derivatives computed with the adjoint approach
derivatives near the nose of the main element are not of the same sare in excellent agreement with those computed with finite differ-
as when the mesh sensitivities are included. Since the interior of t|ences_ Furthermore’ if the influence of the mesh sensitivities are ne-
mesh is allowed to change during an actual design, failure to inclucglected, the sign of the derivative when the flap is translated in the y-
these terms could lead to a failure of the design. direction differs from the case where these terms are included. It has
been shown in Ref. 1 that for geometries with singularities such as

Table 4. Accuracy of derivatives for drag coefficient with
mesh sensitivities neglected.

. . .. . sharp trailing edges, the effects of the mesh sensitivities on the de-
Finite-differences|  Adjoint| % Diff. rivatives associated with translation are dependent on the manner in
- E which the mesh is moved in response to the changing position of the
Nose (main) -1.1046 -1.1046 0.00d airfoil. It is also demonstrated that this effect does not vanish as the
Rear (main) 0.48400 0.48428 0.058 mesh is refined so that for computing derivatives due to translation
of elements in a multielement configuration, these terms must be in-
Nose (flap) -2.2819 -2.2819  0.00¢ cluded.
Rear (flap) 0.74900 0.7486p -0.058
Table 1. Accuracy of derivatives for lift coefficient with mesh Finite-difference| Adjoint| % Diff.
sensitivities included. x-translation 0.35470 0.35481 0.03]
— — ) y-translation -7.1370 -7.1370  0.00d
Finite-differences| Adjoint| % Diff. — : —
_ Table 5. Accuracy of derivatives of lift coefficient for flap
Nose (main) 1.5960 15962  0.01B translation with mesh sensitivities included.
Rear (main) 9.6079 9.5976 -0.10/7
Nose (flap) -0.00105 -0.00109 3.809 Finite-difference| Adjoint| % Diff.
Rear (flap) 3.3796 3.3794  -0.00p x-translation 8.4127 8.4547  0.50(
Table 2. Accuracy of derivatives for lift coefficient with mesh y-translation 44.116 44.13¢ 0.045

sensitivities neglected.

Table 6. Accuracy of derivatives of lift coefficient for flap
translation with mesh sensitivities neglected.



Design Examples Summary and Concluding Remarks

Two Sample results are giVen below. The first case is a Computati( A two-dimensional design Optimization methodok)gy is de-
of the flow over an airfoil at a free-stream Mach number of 0.4, alscribed. This research is an extension of the work in Ref. 1 to in-
angle of attack o2" , and a Reynolds number of 5 million. The goal aclude a turbulence model for viscous flows. However, a discrete ad-
the computation is simply to obtain a specified pressure distributiorjoint approach is used instead of the continuous adjoint approach so
The grid used for this computation is shown in Fig. 2 and consists ¢hat the sensitivity derivatives are more consistent with the flow
approximately 5500 nodes with 128 nodes on the surface of the airfosplver. The turbulence model is strongly coupled with the flow equa-
The spacing at the wall isx 10 of the chord length yielding'a  tions, and the accuracy of the derivatives is demonstrated through a
of about 2. For this case, a single eighth-order Bezier curve is usedcomparison with derivatives obtained by finite differences. A few
parameterize the surface, and only three design variables are allowexamp|es are presented to demonstrate the methodology.
to change during the design process. The geometry is perturbed by ¢ |n this regard, several recommendations are offered. First, the
placing three of the control points in the initial B-spline definition, ands|ow convergence of the second test case, in which 43 design vari-
the solution over this geometry is used for the target pressures. Aftaples were used, shows that the quasi-Newton method is insufficient
10 design cycles, the cost function is reduced from approximatelfor problems with many design variables because a large number of
1.5x 10" to 3.0x 107, and the root mean square of the gradients idesign iterations is required before a good approximation of the Hes-
reduced froml.4 t05.8x 10 . The initial and final pressure distribu-sjan can be obtained. Even then, with many design variables, this
tions and geometries are shown in Figs. 3 and 4. As seen, the tarHessian may remain inaccurate because much of the information is
pressure distribution is obtained, and the geometry returns to that ghtained much earlier in the design process and may not represent
the airfoil in the perturbed position. - ‘the Hessian in the vicinity of the minimum. However, direct compu-

The objective of the next case is to reduce the drag coefficient whitation of the Hessian for turbulent Navier-Stokes design cases is not
maintaining a specified lift. The geometry is a 2-element airfoil de-currently very efficient or practical because it requires the solution
signed to operate at transonic speeds and is the precursor to modof g linear system of equations for each design variable as well as
supercritical airfoilé! The geometry and mesh for the initial configu- gne for the adjoint. (See e.g., Refs. 35, and 43.) Methods that ap-
ration are shown in Fig. 5. For this mesh, there are 18,905 nodes Wproximate the Hessian, such as described in Ref. 6, should be thor-
193 lying on the surface of the main element and 161 on the flap. Tloughly evaluated and extended to viscous flows. Other methods,
spacing normal to the wall .0x 10° . The free-stream Mach numsych as pseudo-time techniqgd&save been demonstrated for invis-
ber is 0.75, the initial angle of attackd<)’  , and the Reynolds numbid flow computation& and should be examined for applicability to
is 5 million. Under these condltlons,_the initial Ilft and drag CO‘?ff".viscous computations as well. In addition, the technique employed
cients are 1.039 and 0.0376 respectively. For this case, the objectiin Refs. 23, and 24 should also be further evaluated. This technique

function is defined as a linear combination of the lift and drag is essentially a time-marching technique in which the gradients are
smoothed at each step. For two-dimensional flows, this technique is
I = 25(‘§+(C|—1-0392 (28) similar in application to that of the preconditioning method de-

scribed in Ref. 6. However, for three dimensions, the technique in
Ref. 6 requires the solution of an extra field equation. Finally,
Ta'asan has shown in Ref. 39 that designing for the slopes of the ge-
ometry instead of the location of the surface presents a design that is
easier and faster to converge. The use of slopes and curvatures in-
stead of points as design variables should, therefore, be considered.

Here, the drag is weighted more heavily than the lift to provide mor
balance between the terms so that both contributions are appro:
mately equal. A better way to minimize the drag while maintaining ¢
specified lift may be to treat the lift as a constraint during the desig
process. This requires an additional solution of the adjoint equatior
but would eliminate the need for adjusting the weights in order to ok
tain the desired lift. For this case, there are 42 geometric design va
ables in addition to the angle of attack.

After 24 design cycles, the drag has been reduced from 0.0376
0.0209. Continuing to run the design further reduces the drag slight
to 0.0201 after 96 cycles. The slower convergence of the design pr
cess with the increase in the number of design variables is attributat
to the poor performance of quasi-Newton methods for aerodynam
design problems with many design variables directly describing th
geometnf The initial and final pressure distributions are shown in
Fig. 6. As seen, the initial pressure distribution exhibits a shock tc
wards the rear of the main element whereas in the final pressure dist
bution, this shock has been eliminated and the contribution to the li
due to the flap has noticeably increased. A comparison of the initi:
and final geometries is shown in Figs. 7 and 8. Figure 7 shows a n
ticeable change in the geometry of the main element on both the upy
and lower surfaces. A near-field view of the flap, shown in Fig. 8
shows that the flap has also been modified although to a lesser exte
Mach number contours for the initial geometry and the modified ge
ometry are shown in Figs. 9 and 10, respectively. As seen in Fig. 9, tl
solution for the initial geometry exhibits noticible thickening of the
boundary layer aft of the shock on the upper surface and is accomg
nied by a small region of separation. Mach contours for the modifie
geometry further demonstrate that the shock has been eliminated.
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Figure 3. Initial and final pressure distributions for case 1.

Figure 1. Grid used for studying accuracy of derivatives.
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Figure 4. Initial and final geometries for case 1.

Figure 2. Grid used for first test case.
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Figure 5. Initial grid for slotted airfoil.
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Figure 6. Pressure distributions for slotted airfoil.
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Figure 7. Initial and modified geometries for slotted airfoil.
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Figure 8. Near view of flap for slotted airfoil.

Figure 9. Mach number contours for initial slotted airfoil.

Figure 10. Mach number contours for modified slotted airfoil.



