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Astreamlined upwindPetrov–Galerkin (SUPG)–stabilized finite-element discretization has been implemented as a

library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given,

details of the implementation are provided, and the discretization for the interior scheme is verified for linear and

quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing

shocks, and simulation results are comparedwith the finite-volume formulation that is currently the primarymethod

employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate

than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-

volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has beenmade to date to

optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of

computer time to reach convergence.

I. Introduction

F UN3D is a finite-volume code developed at the NASA Langley
Research Center for solving fluid-dynamic problems associated

with the analysis and design of aerospace vehicles [1–6]. The code is
widely distributed and used for aerospace and nonaerospace

applications by hundreds of users throughout the government,
industry, and academia. The underlying technology comprises a
finite-volume spatial discretization using Roe’s approximate

Riemann solver [7] with the unknowns located at the vertices of the
mesh, where the solution is advanced at each time step using an
implicit scheme based on backward-Euler time differencing and a
simple Gauss–Seidel iteration scheme. Although this code has been

quite successful for many applications, there are several drawbacks
where improvement is needed. First, although the extent of the stencil
is fixed, data are required from two layers of nearby neighbors,

thereby increasing the difficulty in obtaining, maintaining, and
extending an exact linearization of the residual. This capability is
important for obtaining sensitivity derivatives for simulation-based
design, which is a unique capability of the code. The difficulties

associatedwith linearizing the residual also raise the burden for using
strong solvers often needed to achieve iterative convergence of the
analysis problems, which can also be critical for achieving converged

adjoint solutions. Second, with the current technology, there is no
immediatemeans for extension to higher-order accuracy that does not
also further extend the stencil, thereby exacerbating the problem

previously discussed. Finally, experience has demonstrated that,
although accurate results can be obtained on tetrahedral meshes,
more elements are typically required when compared with
hexahedral or even mixed-element meshes (see, e.g., [8]). As

demonstrated later, in some cases, particularly when the tetrahedrons

have strong uniform directional bias, the results on tetrahedral
meshes can be quite poor [9–11]. To address these issues, the purpose
of the current work is to eliminate the requirement for the large
stencil, provide a clear path for higher-order schemes, and to improve
the accuracy for tetrahedral elements.
Because finite-element methods can achieve arbitrary-order

discretization accuracy using only nearest-neighbor data structures,
these methods immediately offer a clear solution to the first two
problems. In this context, the discontinuous-Galerkin method has
received significant attention and has been aggressively developed in
recent years [12–19]. The stabilized finite-element methods, which
include the streamlined upwind Petrov–Galerkin (SUPG) scheme
[20,21], Galerkin least squares [22], and variational multiscale
methods [23], provide alternate discretizations that offer advantages in
many common scenarios. Specifically, for moderate orders of
accuracy, stabilized finite-element methods require many fewer
degrees of freedom than discontinuous-Galerkin methods for
computations on the same mesh [24,25]. Similarly, for implicit time-
advancement algorithms under the same assumptions, the
discontinuous-Galerkin scheme requires substantially more nonzero
entries in the linearization matrix [24,25]. As a specific example,
because there are approximately six times as many elements in a
tetrahedral mesh as there are nodes for linear tetrahedral elements, the
discontinuous-Galerkin scheme requires approximately 24 timesmore
degrees of freedom on a given mesh when compared with the Petrov–
Galerkinmethod. Similarly, for implicit time-advancement algorithms
under the same assumptions, experience has demonstrated that the
discontinuous-Galerkin scheme requires as much as 20 times more
nonzero entries in the linearization matrix [25]. Although some of the
associated extrawork canbemitigated by using hexahedral elements, a
discontinuous-Galerkin formulation on these elements using
Lagrangian or hierarchical basis function still requires almost eight
times as many degrees of freedom as a continuous-Galerkin approach
for trilinear elements, and almost three times as many for quadratic
elements [25]. Similar relationships hold for prismatic elements, with
over 11 times asmany degrees of freedom for linear elements, and four
times as many for quadratic elements.
Because of the increased degrees of freedom associated with the

discontinuous-Galerkin scheme, one would expect that increased
accuracy would also be realized when compared with the continuous-
Galerkin approach for computations on the samemesh. This assertion
has been verified in [24] for Maxwell’s equations, which are exactly
analogous to the linearized Euler equations. This reference
demonstrates that, on the same mesh, the discontinuous-Galerkin
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and a SUPG Petrov–Galerkin method yield almost identical error
levels when measured in the L1 norm, whereas in the L2 norm the
errors from the discontinuous-Galerkin method are approximately
30% lower for both linear and quadratic elements. However, for the
two-dimensional calculations considered in that section of [24], the
discontinuous-Galerkin method requires six times more degrees of
freedom for linear elements, and approximately three times as many
degrees of freedom for quadratic elements, thereby not justifying the
extra expense required for the moderate gain in accuracy. In three
dimensions, the same reference reports that experiments with the
discontinuous-Galerkin schemearemore expensive by a factor of 27 in
comparison to the SUPG continuous-Galerkin method, whereas for
quadratic elements, the discontinuous-Galerkin scheme is 12 times
more expensive; these results agree well with estimates based simply
on counting degrees of freedom. Subsequently, direct comparisons for
turbulent Navier–Stokes simulations [26–29] have also demonstrated
that, although very similar results can be obtained using either
methodology, a compelling rationale for favoring the discontinuous-
Galerkin method over SUPG-stabilized finite elements has not
emerged using the moderate discretization orders considered.
Despite the advantages offered by the stabilized finite-element

method for moderate orders of accuracy, discontinuous-Galerkin
schemes remain far more popular for aerospace engineering
simulations. In fact, an informal survey of research results [25]
presented atAIAAconferences between 2009 and 2013 has indicated
that research in discontinuous-Galerkin methods is reported more
than 10 times that of stabilized finite elements. Although the
stabilized finite-element community is comparatively small, notable
progress in the development and application of software based on this
technology has been made [9,30–37].
From the above discussions, the stabilized finite-element approach

appears to offer a favorable remedy to the first two problems
associated with the finite-volume scheme; that is, the larger stencil
and the lack of a viablemeans for extensions to higher order. In regard
to the final criteria of increased accuracy, it remains to be
demonstrated that the stabilized finite-element approach indeed
meets these requirements.
To address this issue, two examples are cited to demonstrate that

incorporating a SUPG-stabilized finite-element method into FUN3D
will likely provide thedesired benefits.The first example is drawn from
[8], which reports on results obtained as part of aworkshop to examine
accuracy of various discretization methods. These results, repeated in
Fig. 1, show velocity profiles 10 chord lengths downstream of an
NACA 0012 airfoil at a freestream Mach number of 0.15, an angle of
attack of 10°, and aReynolds number, based on the chord of the airfoil,
of 6.0 × 106. For comparison purposes, a benchmark solution had
previouslybeen established using the finite-volumescheme inFUN3D
on a quadrilateral mesh with over 14million nodes. Profiles, extracted
along the line depicted in Fig. 1a, are obtained using the FUNSAFE

[8,24,29,38]–stabilized finite-element scheme with linear basis
functions on a mesh with only 230 thousand degrees of freedom. The
profiles are plotted against the finite-volume solution, a discontinuous-
Galerkin solution [16,39], and an independently developed stabilized
finite-element method [30], with all solutions obtained on the same
mesh. The Riemann solver for the convective terms in the
discontinuous-Galerkin formulation is a Roe-type method that
accounts for the convective coupling of the Reynolds-averaged
Navier–Stokes equations and the turbulence model, whereas the
viscous interface fluxes are formed using a symmetric interior penalty
method [16]. With the exception of the reference solution, the other
computations have all been performed on the same mesh, and that on
thismesh, the discontinuous-Galerkin solution contains over 1million
degrees of freedom, whereas the other solutions contain only about
230,000. As seen in Fig. 1b, the SUPG solutions demonstrate
significantly better accuracy than those obtained using the finite-
volume scheme, with the discontinuous-Galerkin results laying
approximately midway between the two. The SUPG results obtained
using linear elements, which have the same nominal order of accuracy
as the finite-volume scheme, exhibit much less smearing of the profile
and are able to capture the wake deficit with many fewer points. The
fact that the stabilized finite-element results are quite good, despite
being computed on triangular elements, gives credence to the claim
that the SUPG scheme provides improved accuracy over the finite-
volume scheme for this element type.
A second case is presented in Fig. 2 for the NACA 0012 airfoil,

computed on the same series of meshes originally developed for the
workshop previously mentioned. The freestream conditions for this
case correspond to transonic flow, as evidenced by the shock wave
located at approximately 60% chord on the upper surface of the airfoil.
Here, a reference solution is again obtained using the finite-volume
schemewith quadrilateral elements and comparisons aremadewith the
finite-volume and finite-element schemes computed on triangular
meshes. Specifically, the coarse-, medium-, and fine-mesh triangular
grids contain 14,576; 57,824; and 230,336 nodes, respectively,
whereas the reference quadrilateral mesh contains 919,428 nodes. As
seen, the stabilized finite-element scheme again exhibits much less
sensitivity to themeshwhen comparedwith the finite-volume scheme,
achieving mesh-independent shock positions with only 14,576 nodes.
The SUPG-stabilized finite-element scheme can apparently address

all three issues identified with the finite-volume discretization in
FUN3D, and therefore this scheme has been implemented as a library
that can be compiled and linkedwith the main body of the flow solver.
This work is ongoing and preliminary results have previously been
reported in [9]. Note that interest in the SUPG scheme among FUN3D
developers dates back to the 1998 Ph.D. thesis of Bonhaus [40]. In that
reference, two- and three-dimensional high-order results are obtained
for inviscid flows, and laminar simulations are presented for two-
dimensional flows. In the remaining sections of the paper, detailed
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Fig. 1 Profiles of u-component of velocity behind an NACA 0012 airfoil.M∞ � 0.15, α � 10.0°, Re � 6.0 × 106.
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descriptions of the new implementation for turbulent flow are
provided, with results included to illustrate and evaluate the accuracy
and performance of the scheme.

II. Governing Equations

Thegoverning equations are the compressible, Reynolds-averaged
Navier–Stokes equations augmented with the one-equation Spalart–
Allmaras (SA) turbulencemodel [41] that has beenmodified from the
original model [42] to allow for negative values of the turbulence
model working variable and will subsequently be denoted as the
negative SA turbulence model. The equations can be expressed in the
following conservative form:

∂Q�x; t�
∂t

� ∇ ⋅ �Fe�Q� − Fv�Q;∇Q�� � S�Q;∇Q� in Ω (1)

where Ω is a bounded domain. The vector of conservative flow
variables Q and the inviscid and viscous Cartesian flux vectors, Fe

and Fv, are defined by

Q �

2
66666666664

ρ

ρu

ρv

ρw

ρE

ρ~ν

3
77777777775
; Fx

e �

2
66666666664

ρu

ρu2 � p

ρuv

ρuw

�ρE� p�u
ρu~ν

3
77777777775
; Fy

e �

2
66666666664

ρv

ρuv

ρv2 � p

ρvw

�ρE� p�v
ρv~ν

3
77777777775
;

Fz
e �

2
66666666664

ρw

ρuw

ρvw

ρw2 � p

�ρE� p�w
ρw~ν

3
77777777775

Fx
v �

2
66666666664

0

τxx

τxy

τxz

uτxx � vτxy � wτxz � κ ∂T
∂x

1
σ ρ�ν� ~νfn� ∂ ~ν∂x

3
77777777775
;

Fy
v �

2
666666666664

0

τxy

τyy

τyz

uτxy � vτyy � wτyz � κ ∂T
∂y

1
σ ρ�ν� ~νfn� ∂ ~ν∂y

3
777777777775

(2)

Fz
v �

2
6666664

0

τxz
τyz
τzz

uτxz � vτyz � wτzz � κ ∂T
∂z

1
σ ρ�ν� ~νfn� ∂ ~ν∂z

3
7777775

(3)

Here, ρ, p, and E denote the fluid density, pressure, and specific

total energy per unit mass, respectively, u � �u; v;w� represents the
Cartesian velocity vector, and ~ν represents the turbulence working

variable in the negative SA model. The pressure p is determined by

the equation of state for an ideal gas:

p � �γ − 1�
�
ρE −

1

2
ρ�u2 � v2 � w2�

�
(4)

where γ is the ratio of specific heats, which is 1.4 for air. The

subscripts on τ represent the components of the viscous stress tensor,

which is defined for a Newtonian fluid as

τij � �μ� μT�
�
∂ui
∂xj

� ∂uj
∂xi

−
2

3

∂uk
∂xk

δij

�
(5)

where δij is the Kronecker delta and subscripts i, j, k refer to the

Cartesian coordinate components for x � �x; y; z�. μ refers to the

fluid dynamic viscosity and is obtained via Sutherland’s law [43]. In

Eq. (5), μT denotes the turbulence eddy viscosity, which is obtained

from the negative SA model by

μT �
�
ρ ~νfv1 if ~ν ≥ 0

0 if ~ν < 0
(6)

The source term S in Eq. (1) is given by S � �0; 0; 0; 0; 0; St�T,
where the components for the continuity, momentum, and energy

equations are zero. The source term corresponding to the turbulence

model equation takes the following form [41]:

St � P −D� 1

σ
cb2ρ∇~ν ⋅ ∇~ν −

1

σ
�ν� ~νfn�∇ρ ⋅ ∇~ν (7)

where the production term is given as

P �
�
cb1ρ�1 − ft2� ~S ~ν if ~ν ≥ 0

cb1ρ�1 − ct3�S~ν if ~ν < 0
(8)

and the destruction term is defined as

x/c
0 0.2 0.4 0.6 0.8 1
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0
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Medium (Triangles)
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Reference (Quadralaterals)

Coarse (Triangles)
Medium (Triangles)
Fine (Triangles)
Reference (Quadralaterals)

a) Finite-volume solutions
x/c

c pc p
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1

1.5

b) Finite-element solutions
Fig. 2 Pressure distributions for NACA 0012 airfoil.M∞ � 0.798, α � 1.44°, Re � 3.0 × 106.
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D �
8<
:
ρ
�
cw1fw − cb1

κ2t
ft2

��
~ν
d

�
2

if ~ν ≥ 0

−ρcw1

�
~ν
d

�
2

if ~ν < 0
(9)

In Eqs. (7–9), ν denotes kinematic viscosity, which is the ratio of
dynamic viscosity to density, μ∕ρ. Additional definitions associated
with the production and destruction terms are given as [41]

~S �
8<
:

S� Ŝ if Ŝ ≥ −cv2S

S� S�c2v2�cv3 Ŝ�
�cv3−2cv2�S−Ŝ

if Ŝ < −cv2S
(10)

S � ������������
ω ⋅ω

p
; Ŝ � ~ν

κ2t d
2
fv2; fv1 �

χ3

χ3 � c3v1
;

fv2 � 1 −
χ

1� χfv1
; ft2 � ct3e

−ct4χ2 (11)

and

χ � ~ν

ν
; r � min

�
~ν

~Sκ2t d
2
rlim

�
; g � r� cw2�r6 − r�;

fw � g

�
1� c6w3
g6 � c6w3

�
1∕6

(12)

where the vorticity vector is given byω � ∇ × u and d represents the
distance to the nearest wall.
The constants in the negative SAmodel are given as cb1 � 0.1355,

σ � 2∕3, cb2 � 0.622, ct3 � 1.2, ct4 � 0.5, κt � 0.41,
cw1 � cb1∕κ2t � �1� cb2�∕σ, cw2 � 0.3, cw3 � 2, cv1 � 7.1,
cv2 � 0.7, and cv3 � 0.9. κ and T denote the thermal conductivity
and temperature, respectively, and are related to the total energy and
velocity as

κT � γ

�
μ

Pr

� μT
PrT

��
E −

1

2
�u2 � v2 �w2�

�
(13)

where Pr and PrT are the Prandtl and turbulent Prandtl number that
are set to 0.72 and 0.9, respectively. In the case of laminar flow, the
governing equations reduce to the compressible Navier–Stokes
equations, where the turbulence model equation is deactivated and
the turbulence eddy viscosity μT in the fluid viscous stress tensor and
the thermal conduction term vanishes. The Cartesian viscous fluxes
are rewritten in the following equivalent form:

Fx
v � G1j

∂Q
∂xj

; Fy
v � G2j

∂Q
∂xj

; Fz
v � G3j

∂Q
∂xj

(14)

where the matrices Gij�Q� are determined by Gij � ∂Fxi
v ∕

∂�∂Q∕∂xj� for i; j � 1; 2; 3.

III. SUPG-Stabilized Finite-Element Formulation

In the streamline upwind/Petrov–Galerkin method, the discretized
system of equations is written as the following weighted residual
formulation:

Z
Ω
ϕ

�
∂Qh

∂t
� ∇ ⋅ �Fe�Qh� − Fv�Qh;∇Qh�� − S�Qh;∇Qh�

	
dΩk

�
X
k

Z
Ωk

�
∂ϕ
∂xi

�Ai�
	
�τ�
�
∂Qh

∂t
� ∇ ⋅ �Fe�Qh� − Fv�Qh;∇Qh��

− S�Qh;∇Qh�
	
dΩk

�N Γ�ϕ;Qb;∇hQh� �
Z
Ω
�νs∇hϕ ⋅ ∇hQ� dΩk � 0 (15)

where ϕ is a continuous weighting function defined over the domain
using the same basis functions used in determining the solution
variables within the element, and �Ai� represents the inviscid flux
Jacobians, defined as �A1� � �∂Fx

e∕∂Qh�, �A2� � �∂Fy
e∕∂Qh�, and

�A3� � �∂Fz
e∕∂Qh�, respectively. The first integral in Eq. (15)

corresponds to a standard Galerkin discretization, the second row
provides dissipation for stability, and the contributions on the last row
are penalty terms used to enforce boundary conditions and for
capturing shocks. These terms will be discussed in greater detail in
subsequent sections. The stabilizationmatrix �τ� is used to compensate
for lackof dissipation in the stream-wise direction [20] and, for inviscid
flows, is obtained using the following definitions [44]:

�τ�−1 �
XM
j�1





 ∂ϕj

∂xi
�Ai�





 (16)





 ∂ϕj

∂xi
�Ai�





 � �T�jΛj�T�−1 (17)

Here, M corresponds to the number of basis functions within the
element and the repeated index i implies summation over all the values
of i (i � 1; 2; 3). ϕj denotes the polynomial basis function associated
with each node and is the same as the weighting function. �T� and �Λ�
denote, respectively, the matrix of right eigenvectors and the diagonal
matrix of eigenvalues of the left-hand-side matrix in Eq. (17). The
inverse of the stabilization matrix is evaluated at each Gaussian
quadrature point for volume integrations and �τ� is then obtained by
means of local matrix inversion. To maintain design order of accuracy
for viscous flows, additional terms are required when the Reynolds
number is decreased and viscous terms dominate [21]. Specifically, the
stabilization matrix in this case is appended with a viscous
contribution, given as

�τ�−1 �
XM
j�1

�



 ∂ϕj

∂xi
�Ai�





� ∂ϕj

∂xi
�Gik�

∂ϕj

∂xk

�
(18)

where the summation in the second term is taken over the repeated
indices i and k (i, k � 1; 2; 3), and the definitions of �Gik� correspond
to those given in Eq. (14).
Integrating the volume integral on the first line of Eq. (15) by parts

results in both volume and surface integral contributions, and so the
resulting system of equations to be discretized can be written as

Z
Ωk

�
ϕ
∂Qh

∂t
−∇ϕ ⋅ �Fe�Qh�−Fv�Qh;∇Qh��−ϕS�Qh;∇Qh�

	
dΩk

�
X
k

Z
Ωk

�
∂ϕ
∂xi

�Ai�
	
�τ�
�
∂Uh

∂t
�∇ ⋅ �Fe�Qh�−Fv�Qh;∇Qh��

−S�Qh;∇Qh�
i
dΩk

�
Z
∂Ωk∩∂Ω

ϕ
�
Fe�Qb�−Fv�Qb;∇Qh�

�
⋅ndS

�N Γ�ϕ;Qb;∇hQh��
Z
Ω
�νs∇hϕ ⋅ ∇hQ�dΩk � 0 (19)

Note that the last row now includes the same terms as in Eq. (15) in
addition to the surface integral resulting from the integration by parts.
The first and second terms on the last row are used in implementing
the boundary conditions.
On solid walls, either strong or weak enforcement of the boundary

conditions can be used. For strong enforcement, N Γ is not used,
while the velocity components are initialized to zero. Tomaintain no-
slip velocity at the wall during the iterative process, the appropriate
residual values are set to zero and the linearization matrix is modified
so that unity on the diagonal is the only term surviving on the row. For
the energy equation, a similar treatment is used when a constant
temperature wall is desired, while the normal gradient of the
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temperature is set to zero for an adiabatic wall. By following this
procedure with strong boundary conditions, the computation of
viscous fluxes at the wall is unnecessary and the effects are
automatically accounted for through the matrix [1].
In the results presented in this paper, weak boundary conditions are

used, which are adopted from techniques originally developed for
discontinuous-Galerkin schemes [45] and taken directly from [29].
As reported in [46] and submitted to the 4thHigh-OrderWorkshop by
the current authors, using these boundary conditions enabled super
convergence with SUPG-stabilized finite elements for a laminar
Joukowski airfoil case. Ahrabi et al. [47] also demonstrated that weak
boundary conditions, with appropriately defined cost functions,
provide adjoint solutions that vary smoothly near solid walls.
Although not used in this work, an alternate approach that is
demonstrated to yield smooth adjoint solutions is that of [48].
Asmentioned previously,N Γ in Eq. (19) represents penalty terms,

which are given as

N Γ � −
Z
∂Ωk∩∂Ω

�
Gi1�Qh�

∂ϕ
∂xi

;Gi2�Qh�
∂ϕ
∂xi

;Gi3�Qh�
∂ϕ
∂xi

�

⋅ �Qh −Qb�n dS

�
Z
∂Ωk∩∂Ω

ηpG�Qh��Qh −Qb�n ⋅ ϕn dS (20)

In Eq. (20), ϕ represents the basis functions associated with the
element immediately adjacent to the boundary evaluated at the wall.
The variable Qb represents a boundary state that reflects the state
quantities desired at the wall, and Qh represents the dependent
variables evaluated at the wall obtained from the adjacent element.
The gradients are also evaluated from the element adjacent to the
wall. The penalty parameter η is given by

ηp � �P� 1��P�D��S�k �
�2D��V�

k �
(21)

where P is the order of the basis functions, D represents the space
dimensions, and V�

k and S�k represent the volume and surface area,
respectively, of the element adjacent to the boundary.
In the far field, Roe’s approximate Riemann solver [7] is used to

evaluate the inviscid terms in the first integral on the last row of
Eq. (19) and viscous stresses are assumed negligible. Because
Dirichlet boundary conditions are not used on these boundaries, the
penalty term N Γ is not required.

IV. Time Advancement

To advance the solution toward a steady state, the density, velocity
components, temperature, and the turbulence-model working
variable are tightly coupled and updated using a Newton-type
algorithm. Although there are differences between the current
approach and those used in [49,50], there are many similarities and
elements are borrowed from both approaches.
Here, an initial update to the flow variables is computed using a

locally varying time-step parameter that is multiplied by the current
CFLnumber,which is adjusted during the iterative process to provide
global convergence. Using the full update of the variables, the L2

norm of the unsteady residual is compared with its value at the
beginning of the iteration. If the L2 norm after the update is less than
one half of the original value, the steady residual is then computed
and the CFL number is doubled if the steady residual does not
increase by more than 20%; otherwise, the CFL number is left
unchanged. If theL2 norm reduction target is not met, a line search is
conducted to determine an appropriate relaxation factor. Before
conducting the line search, however, the solution after applying the
full update is examined, and the maximum value for the line-search
parameter is limited if either density or temperature is being driven
negative. If the maximum value for the relaxation factor is less than a
predetermined small value (currently 0.02), the update is rejected and
the CFL number is reduced by a factor of 10. Otherwise, theL2 norm

of the residual is determined at four locations along the search
direction between zero and the maximum update limit determined
from realizability conditions described above. Using the four L2

norm values of the residual, the optimal relaxation factor is
determined by locating the minimum of a cubic polynomial curve fit
through the samples. The solution is then updated using the
relaxation factor and the CFL number is neither increased nor
decreased.
Unlike in [49], during the process of determining whether to

increase or decrease the time step, the result from the linear solver is
not explicitly considered. At each nonlinear iteration, the linear
system is approximately solved using the generalized minimal
residual (GMRES) algorithm [51] with a preconditioner based on an
incomplete lower upper (LU) decomposition with two levels of fill
[52] and a Krylov subspace dimension of 200. Using GMRES, the
residual norm for the linear system is guaranteed to be reduced with
each additional search direction. Whether or not predetermined
tolerances for the linear system are met, the updated flow variables
are used during the line search. If the linear system is poorly solved,
the nonlinear residual based on the flow equations can often still be
reduced. In situations where this is not the case, the next update is
inevitably rejected during the line search.
Note that the solution variables used for the finite-element

discretization (ρ,u, v,w,T, ~ν) differ from those normally stored in the
FUN3D finite-volume discretization, which solves for nondimen-
sional conserved variables (ρ, ρu, ρv, ρw, ρE, ρ~ν). The choice in
solving for temperature directly in the finite-element discretization
has been made to facilitate computations of real-gas flows where the
equation of state is invariably given directly in terms of density and
temperature. This choice is also made because when these variables
are expressed using linear elements, their second derivatives are zero,
and hence the only contribution to the viscous terms on the second
line of Eq. (19) is through variations in the viscosity.
In the currentwork, the density, velocity components, temperature,

and turbulence working variable are nondimensionalized by
freestream density, speed of sound, temperature, and laminar
viscosity, respectively. Because the residual for all the equations are
cumulatively used in forming the L2 norm of the residual, which is
subsequently used in the line search, the choice of variables for
nondimensionalization can conceivably have a large effect on the
overall convergence history. With the choice of variables used in the
present work, the initial residuals for the continuity, momentum, and
energy equations are comparable in magnitude, and experience
indicates that their convergence histories are very similar in nature.
The convergence of turbulence model, on the other hand, often
exhibits a different character in that it often remains flat, or increases
several orders of magnitude, over a substantial number of iterations
before eventually converging. The effect is that, in the initial stages,
theL2 normof the residual can be controlled largely by the turbulence
model, which adversely affects the ability of the time-stepping
algorithm to increase the CFL number. However, ignoring the
contribution from the turbulence model altogether can be detrimental
to robustness. To gain better control over the contribution to the L2

norm of the residual from the turbulence model, the turbulence
working variable is re-expressed in terms of an alternate variable, η,
which is scaled by a constant and replaces ~ν as the dependent variable:

~ν � Cη (22)

Because the line search targets the reduction in the L2 norm of all
the variables, scaling to adjust the relative size of the turbulence-
modeling residual with respect to the other equations may be
beneficial. Essentially, the importance of the turbulencemodel can be
either increased or decreased to effect the nonlinear convergence
path. As with [53], which uses a similar scaling procedure although
for different reasons, and demonstrated in Fig. 3 for the ONERAM6
case presented later, using scale factors can have substantial effects
on the convergence history. One should also note that, with scaling,
the initial level of the residual for the turbulence model is adjusted
proportionally, with a corresponding adjustment in the final level of
convergence.
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Although rescaling serves to rebalance the relative importance of the
turbulencemodel in driving the convergence of the nonlinear systemof
equations, it also has an interesting effect on the linear system that does
not correspond to simply scaling the entire row. To explain, consider
first a block 6 × 6 entry in the global matrix taken from a row
corresponding to an arbitrary point in a viscous flow simulation, and
assuming a scale factor of 1000. Before scaling, as seen in Table 1, the
last row has elements for the first five columns that are as much as 150
times larger than the sixth column, which is the linearization of the
turbulence model with respect to ~ν. Also observe that, in the first five
rows, the entries in the sixth column are small relative to the other
entries on their respective rows. The scaled variable η, which is 1000
times less than ~ν, replaces ~ν as the working variable for the turbulence
model and thereby changes the entries in the block. In computing the
last row in Table 2, the first five columns after scaling use the same
linearization as before except that η assumes the role previously
occupied by ~ν. Because η is 1000 times smaller than ~ν, the effect is that
the magnitudes of these entries are reduced by a corresponding
amount. However, the sixth column on the same row remains exactly
the same as before the scaling. For similar reasons, the sixth column of
the first five rows are correspondingly increased, but their relative
magnitudes, even after scaling, remain small compared with the other
entries on these rows.The effect of this procedure is that the couplingof
the flow variables in the turbulence model equation is substantially
weakened. This suggests that benefitsmay be attained for an algorithm
that loosely couples the turbulence model and the flow equations by
applying the scaling and updating the turbulence model before
updating the flow equations, where the terms from the turbulence

model appear only on the right-hand side. This procedure may also be
beneficial to iterative methods or preconditioners that do not include

pivoting strategies. Note that although the magnitudes of the entries in
the sixth column of the first five rows are larger after scaling, their

magnitudes remain far below that of the other entries in the row and are
not expected to significantly impact diagonal dominancewhen solving
these equations.

V. Blending Functions

During implementation, there are numerous nondifferentiable
functions, such as max�x; y� and min�x; y�, that could potentially
impede convergence. For example, in the turbulencemodel, the result

of a minimization comparison is used to limit the size of r in Eq. (12)
to avoid floating-point overflow when it is subsequently raised to the

sixth power. To provide similar but differentiable functionality, a
smooth approximation is used for this term given by

min�x; y� ≈ 1

2
�x� y − hx − yi� (23)

Here, hϕi designates a smoothed approximation to the absolute
value and is given by

hϕi �
( jϕj if jϕj ≥ ϵ

0.5�ϕ2

ϵ � ϵ� if jϕj < ϵ
(24)
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Fig. 3 Effect of scaling turbulence model on convergence: ONERAM6 wing on medium mesh.M∞ � 0.84, α � 3.06°, Re � 11.72 × 106.

Table 1 Example entries in residual linearizations before scaling

Residual ∂��∕∂ρ ∂��∕∂u ∂��∕∂v ∂��∕∂w ∂��∕∂T ∂��∕∂~ν
Density 0.6497E − 01 0.3101E − 01 −0.9070E� 00 0.1031E� 00 0.4628E − 01 0.3098E − 10
x-momentum 0.4524E − 01 0.2656E − 01 −0.2156E� 00 0.2420E − 01 0.3972E − 01 −0.2309E − 10
y-momentum −0.6567E� 00 0.3689E − 01 0.8747E − 01 0.1068E� 00 −0.6489E� 00 0.2256E − 10
z-momentum 0.7791E − 01 −0.4528E − 02 0.1049E� 00 0.1854E − 01 0.7698E − 01 −0.1963E − 11
Energy 0.1591E� 00 0.8348E − 01 −0.2285E� 01 0.2598E� 00 0.1564E� 00 0.6663E − 10
Turbulence 0.1967E� 00 0.3885E� 00 −0.2744E� 01 0.3233E� 00 0.1403E� 00 0.1778E − 01

Table 2 Example entries in residual linearizations after scaling

Residual ∂��∕∂ρ ∂��∕∂u ∂��∕∂v ∂��∕∂w ∂��∕∂T ∂��∕∂η
Density 0.6497E − 01 0.3101E − 01 −0.9070E� 00 0.1031E� 00 0.4628E − 01 0.3098E − 07
x-momentum 0.4524E − 01 0.2656E − 01 −0.2156E� 00 0.2420E − 01 0.3972E − 01 −0.2309E − 07
y-momentum −0.6567E� 00 0.3689E − 01 0.8747E − 01 0.1068E� 00 −0.6489E� 00 0.2256E − 07
z-momentum 0.7791E − 01 −0.4528E − 02 0.1049E� 00 0.1854E − 01 0.7698E − 01 −0.1963E − 08
Energy 0.1591E� 00 0.8348E − 01 −0.2285E� 01 0.2598E� 00 0.1564E� 00 0.6663E − 07
Turbulence 0.1967E − 03 0.3885E − 03 −0.2744E − 02 0.3233E − 03 0.1403E − 03 0.1778E − 01
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Although not discussed further, other functions, such as the
Kreisselmeier–Steinhauser function [54], have also been used in
place of Eq. (23) with good success. Note that in using these types of
approximations, care needs to be given to the choice of ϵ to account
for the relative scale of the variables being compared, and so the
results are independent of the physical scale of the mesh.
Another function that is used in multiple capacities is a smooth

ramp that is zero until an initial threshold, xs, is reached. The function
then smoothly increases to unity when a terminating threshold, xe, is
achieved. Here, a simple trigonometric function is used and is given
as

ψ�x: xs; xe� �
8<
:

0 if x < xs
1
2
�sin�θ� � 1� if xs ≤ x ≤ xe

1 if x > xe

(25)

where

θ � π

2

�
2x − �xs � xe�

xe − xs

�

VI. Shock Capturing

Without additional dissipation, the stabilized finite-element
method would not contain suitable levels of dissipation for capturing
strong gradients on meshes lacking proper resolution. One
mechanism to achieve this goal is to augment the physical viscosity
so that the width of the shock can be resolved by the local mesh size
(see, e.g., [55,56]). The approach relies on the observation that the
width of a shock hs, the jump in velocity across the shockΔu, and the
viscosity at the sonic point ν∗ are related by the following
approximate expression [57]:

hsΔu
ν∗

≈ 1 (26)

The general procedure is to simply augment the local physical
viscosity in the Navier–Stokes equations so that the thickness of the
shock spans a single mesh cell, or perhaps a subcell, for higher-order
methods [56]. Although straightforward implementation of this
technique has been examined in the course of the current work, a
slight modification of this approach, which appears to bemore robust
in numerical experiments, is to simply add a penalty term to theweak
formulation as given by the last term in Eq. (19). This is largely
equivalent to adding extra viscosity to the diagonal elements of the
Gij�Q� terms in Eq. (14) but also adds viscosity to the continuity
equation. In the current implementation, the velocity jump across
shocks is approximated by simply using the local convective speed,
and the desired shock width is specified to be the local cell width,
which is computed as the volumeof the element divided by its surface
area. Use of the simplified shock-capturing term instead of
augmenting the physical viscosity guarantees that the additional
dissipation is affected through a symmetric positive-definite matrix,
and numerical experiments have indicated that a somewhat more
robust algorithm results.
Using the simplifying assumptions regarding the shock width and

the velocity jumps, the form of the viscosity is given as

ν �
� �����������������������������

u2 � v2 � w2
p

� c
�
hsψ�ξ� (27)

The functionψ�ξ� is a switching function that attempts to smoothly
activate the additional dissipation only in local regions as needed. For
this, the blending function given by Eq. (25) is used with the lower
bound of 0.05 determined through numerical experiments such that
the switch is inactive for smooth flows. Similarly, an upper threshold
of 0.1 has been determined as a conservative choice so that once the
switch is initiated, it reaches a maximum value of unity relatively
quickly. These values are used for all the computations shown in the
present work.Without the capability to delay the presence of nonzero

switch values, the switch would be nonzero throughout much of the
field, thereby rendering the entire scheme to be only first-order
accurate, independent of the polynomial degree of the basis
functions.
The argument for the switching function is based on the shock-

detection switch devised by Larsson [58]:

ξ �
�

0 if ∇ ⋅ V > 0
−∇⋅V

max�1.5S;�0.05c∕hs�� if ∇ ⋅ V < 0
(28)

Two modifications have been made to the Larsson switch to make
it differentiable. First, the shock sensor is intended to be used only
when the divergence of the velocity is negative, thereby activating
only in compressive regions of the flow; however, a binary switch that
tests the sign of the divergence of the velocity is not differentiable.
Instead, the divergence is multiplied by a “squashing” function that
maps the product of the divergence and the element length scale to a
smooth function that is zero for positive values, and smoothly
increases to unity over a small range of negative values, currently set
to (0.0, −0.001). Note that the multiplication with the length scale is
required so that the results do not depend on arbitrary scaling of the
mesh that would result if using the divergence. To achieve this
objective, a ramping function similar to that given in Eq. (25) is used.
A second modification concerns the determination of the

maximum value of the two variables in the denominator, which are
intended to turn off the shock switch inside boundary layers. Once
again, to promote differentiability, a smooth maximum function,
similar to that given by Eq. (23), is used. As with the divergence, to
avoid results that depend on scaling of the mesh, this function should
be applied using ωhs and c as arguments, and dividing by the length
scale afterward.

VII. Results

A. Manufactured Solutions

The method of manufactured solutions [59] is used to verify the
correctness and establish the order of accuracy of the stabilized finite-
element discretization as implemented in FUN3D. Because FUN3D
does not currently support general partitioning for higher-order
elements, the routines from FUN3D have been adapted to the testing
environment provided by FUNSAFE [8,24,29,38], which is a suite of
finite-element codes originally developed by professors and research
professors while at the Chattanooga campus of the University of
Tennessee, and subsequently extended by numerous graduate
students for further development in fluid dynamics [60–62],
electromagnetics [63–66], and acoustic metamaterials [67].
Although the routines in FUN3D are newly developed, the essential
data structures for both codes remainvery similar, thereby facilitating
incorporation of the FUN3D residual routines into the FUNSAFE
infrastructure.
The forcing functions are derived from the following trigonometric

functions:

ρ� ρ0�1� cos2�πx�cos2�πy�cos2�πz��
u� u0�1� sin�κπx� cos�κπx� sin�κπy�cos�κπy� sin�κπz� cos�κπz��
v� v0�1� cos2�κπx�cos2�κπy�cos2�κπz��
w� w0�1� sin2�κπx�cos2�κπy�sin2�κπz��
T � T0�1� sin2�κπx�sin2�κπy�sin2�κπz��
~ν� ~ν0�sin�πx� cos�πx�cos2�πy� sin�πz�cos�πz�� (29)

Here, ρ0, u0, v0, w0, T0, and ~ν0 are chosen to be 1.0, 0.5, 0.5, 0.1,
1.0, and 0.2, respectively, and the distance to the wall is set to 1.0
throughout the domain, and the Reynolds number is 1.0 × 106. The
function used for ~ν is specifically selected to ensure both positive and
negative values to exercise the alternate flow paths within the
negative SA turbulence model. For all element types, a series of
sequentially refined meshes is used. For tetrahedral elements,
individual meshes have been created, whereas the meshes for the
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other element types are generated from an initial hexahedral mesh,
with random perturbations applied to the interior nodes to impose
nonuniform spacing between the points. Note that for the pyramidal
element, additional nodes are required to establish valid connectivity
across the domain. The observed order of accuracy between two
meshes may be evaluated as

order � log�ϵ1∕ϵ2�
log�h1∕h2�

(30)

where ϵ1∕2 represents the error on the coarse/fine mesh, respectively,
computed using either the L1 or L2 norm. The mesh spacing is
estimated as h � �1∕N�1∕3 for three-dimensional elements, whereN
is the total number of nodes in the field. Note that in the above
evaluation for the observed order, the coefficient in the discretization
error is assumed to be independent of the mesh size, which is true
once in the asymptotic range.
For numerical integration, when the dependent variable is

represented by a polynomial basis of order P, volume integrals are
evaluated using quadrature formulas that exactly integrate
polynomials of order 2P. In some applications, customized
quadrature rules or specialized formulas are sometimes used for
certain element geometries. The use of these rules in some cases can
reduce the number of sampling points required to obtain rank-
sufficient matrices or for avoiding numerical difficulties such as
locking in structural elements. Use of these rules, aswell as the effects
on convergence, should be carefully investigated before
implementation. To this end, customized quadrature rules are not
used in the current work.
The achieved order of accuracy for linear (second-order) and

quadratic (third-order) tetrahedral, hexahedral, pentahedral, and
pyramidal elements is shown in Tables 3–6. As seen, all elements
achieve their design order of accuracy. Numerical integration for
tetrahedral, pentahedral, and hexahedral elements uses standard
Gauss quadrature points and weights readily available in the

literature. The basis functions for pyramidal elements are derivable
from hexahedral elements and, as such, the quadrature rules for
hexahedral elements are used for numerical integration. Standard
2 × 2 × 2 and 3 × 3 × 3 product rules are used for the linear and
quadratic pyramidal elements, respectively.

B. 3D Swept Bump

To demonstrate the increased accuracy of the SUPG scheme over
the finite-volume scheme on tetrahedral meshes, a simulation,
initially reported in [9], is repeated and results are shown in Figs. 4–6.
Repeating the simulations here is for completeness to illustrate some
important points regarding the relative accuracy of the SUPG scheme
and the finite-volume scheme. The geometry, depicted in Fig. 4, is a
swept three-dimensional bump in a channel, which is a verification
case described on the NASATurbulence Modeling Resource (TMR)
web site [68]. A tetrahedral mesh shown in Fig. 4a is used to illustrate
the geometry, whereas nominal contours of pressure coefficient are
shown in Fig. 4b to illustrate the problem. Profiles of the
v-component of velocity, obtained from simulations with linear
elements, are shown in Fig. 5. A reference solution, obtained using
the finite-volume scheme on a hexahedral mesh with 59 million
nodes, is also included as a datum for comparison. Finite-element and
finite-volume results obtained on tetrahedral meshes that have been
derived from the hexahedral meshes are also shown. Note that
division of the hexahedrons has been done so that all elements are cut
in the same direction to introduce bias into the mesh because
difficulties associated with uniform biasing of the elements are
known to be somewhat problematic for the finite-volume scheme as
reported in [9–11]. As seen in Fig. 5a, the finite-volume solution on
the tetrahedral mesh is quite poor, evenwith almost amillion nodes in
the mesh. As such, results on coarser meshes will not be shown as
they simply degrade further. Instead, finite-volume solutions
computed on hexahedral meshes are used to provide comparisons
with the finite-element scheme on tetrahedral meshes. Velocity

Table 3 Achieved order of accuracy for tetrahedral
elements

Linear Quadratic

Nodes in mesh Q L1 L2 L1 L2

2,930/18,676 ρ: 2.4123 2.4454 3.2241 3.2802
2,930/18,676 u: 2.3004 2.3095 3.1406 3.1765
2,930/18,676 v: 2.2918 2.2400 3.1407 3.1540
2,930/18,676 w: 2.2032 2.1754 3.1725 3.2200
2,930/18,676 T: 2.4478 2.4914 3.3036 3.3747
2,930/18,676 ~ν: 2.1644 2.1005 3.1353 3.1269
18,676/128,610 ρ: 2.0471 2.0763 2.9493 2.9687
18,676/128,610 u: 2.1066 2.1170 2.9123 2.9226
18,676/128,610 v: 2.0829 2.0895 2.9712 2.9828
18,676/128,610 w: 2.0305 2.0414 2.9347 2.9420
18,676/128,610 T: 2.0196 2.0418 3.0342 3.0466
18,676/128,610 ~ν: 2.1083 2.1032 2.9478 2.9683

Table 4 Achieved order of accuracy for hexahedral
elements

Linear Quadratic

Nodes in mesh Q L1 L2 L1 L2

1,000/8,000 ρ: 2.3055 2.2705 3.1294 3.0977
1,000/8,000 u: 2.0528 2.0717 3.2113 3.2297
1,000/8,000 v: 2.0380 1.9711 3.1272 3.1251
1,000/8,000 w: 1.8539 1.8767 3.1455 3.1729
1,000/8,000 T: 2.3514 2.3254 3.2318 3.1443
1,000/8,000 ~ν: 2.2098 2.1697 2.9806 2.9272
8,000/64,000 ρ: 2.1220 2.1284 3.0577 3.1022
8,000/64,000 u: 2.0825 2.0874 3.0974 3.0994
8,000/64,000 v: 2.0538 2.0358 2.9273 2.8960
8,000/64,000 w: 2.0011 2.0099 3.1026 3.1066
8,000/64,000 T: 2.1437 2.1350 3.0259 3.0281
8,000/64,000 ~ν: 2.0822 2.0885 2.8774 2.8064

Table 5 Achieved order of accuracy for
pentahedral elements

Linear Quadratic

Nodes in mesh Q L1 L2 L1 L2

1,000/8,000 ρ: 2.3447 2.3068 2.9834 2.9667
1,000/8,000 u: 1.9678 1.9719 3.0190 3.0300
1,000/8,000 v: 1.9249 1.8475 2.8880 2.8945
1,000/8,000 w: 1.8937 1.8816 3.0392 3.0398
1,000/8,000 T: 2.3909 2.3346 2.9921 2.9579
1,000/8,000 ~ν: 2.2234 2.1192 2.8688 2.8795
8,000/64,000 ρ: 2.1386 2.1355 2.9172 2.9410
8,000/64,000 u: 2.0759 2.0657 2.9496 2.9504
8,000/64,000 v: 2.0350 2.0017 2.8123 2.7465
8,000/64,000 w: 2.0394 2.0461 2.9759 2.9917
8,000/64,000 T: 2.1475 2.1381 2.9206 2.9298
8,000/64,000 ~ν: 2.1137 2.0872 2.8358 2.8159

Table 6 Achieved order of accuracy for pyramidal
elements

Linear Quadratic

Nodes in mesh Q L1 L2 L1 L2

1,729/14,859 ρ: 2.1257 2.0924 3.0275 3.0515
1,729/14,859 u: 1.9718 1.9832 3.0217 3.0254
1,729/14,859 v: 1.9762 1.9127 2.9956 2.9860
1,729/14,859 w: 1.8902 1.9475 2.9379 2.9393
1,729/14,859 T: 2.1196 2.1193 3.0815 3.0644
1,729/14,859 ~ν: 2.1055 2.0836 3.0200 2.9890
14,859/123,319 ρ: 2.0556 2.0561 3.0188 3.0388
14,859/123,319 u: 2.0148 2.0258 2.9853 2.9818
14,859/123,319 v: 2.0004 1.9926 2.9426 2.9112
14,859/123,319 w: 1.9809 1.9852 2.9732 2.9839
14,859/123,319 T: 2.0556 2.0570 3.0218 3.0089
14,859/123,319 ~ν: 2.0421 2.0503 2.9749 2.9501

ANDERSON, NEWMAN, AND KARMAN 703

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 



profiles obtained using the SUPG scheme on the tetrahedral mesh
agree very well with the reference solution, as well as a finite-volume
solution obtained on a pure hexahedral mesh. On coarser meshes, the
finite-element scheme continues to achieve accuracy on tetrahedral
meshes comparable to the finite-volume scheme on hexahedral
meshes. Finally, note that the SUPG scheme achieves better accuracy
on a tetrahedral mesh with only 18 thousand nodes than is achieved
by the finite-volumemesh with almost 1 million nodes. Although the
intentional bias introduced into themesh clearly adversely affects the
finite-volume scheme, the finite-element scheme is much more
impervious to the biasing.

To assess potential gains in accuracy for the finite-element
scheme that may be realized on hexahedral meshes, a comparison of
results obtained on both tetrahedral and hexahedral meshes is
shown in Fig. 6. On the finest mesh, no substantive improvement is
observed by using hexahedrons when comparing the solutions
against the reference solution, but, as seen in Figs. 6b and 6c,
benefits of using hexahedral meshes become more apparent as the
grid is systematically coarsened. In summary, the significance of the
cumulative results is that the accuracy of the stabilized finite-
element scheme on tetrahedral meshes can be comparable to the
finite-volume scheme on hexahedral meshes and that further gains

Fig. 4 Mesh and contours of pressure coefficient for 3D swept bump.
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Fig. 5 Profiles of v-velocity.
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in accuracy in the finite-element solutions can be achieved using
hexahedral meshes.

C. Shock Capturing

To demonstrate the effectiveness of the shock-capturing method,
two examples are provided. The first example is a transonic flow over
the wing used for the Third Drag Prediction Workshop [69,70]. This
particular combination of geometry and flow conditions allows
computations to be run beginning from freestream values without the

need for using the shock-smoothing function, thereby allowing the

effects of the shock-capturing algorithm to be observed in isolation
while still achieving iterative convergence. The wing depicted in

Fig. 7a is simulated at a freestreamMach number of 0.76, an angle of
attack of 0.5°, and a Reynolds number, based on the mean

aerodynamic chord, of Re � 5.0 × 106. From Fig. 7a a shock is

apparent on the upper surface of the wing, extending from the wing
root outward to the tip. Computed pressure distributions have been

obtained along the black line positioned toward the wing tip and are
shown in Fig. 7b. Without the shock smoothing, large oscillations
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Fig. 6 Profiles of v-velocity obtained on hexahedral and tetrahedral elements.

a) Pressure contours with slice location
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b) Pressure distributions
Fig. 7 Pressure distribution for transonic wing. M∞ � 0.76, α � 0.5°, Re � 5.0 × 105.
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appear ahead of and behind the shock location. Using the shock
sensor, however, these oscillations are essentially eliminated.
A second, more demanding example, is modeled after the circular

cylinder case originally considered to illustrate the difficulties in
computing hypersonic flows with finite-volume discretizations on
tetrahedral meshes [10,11,71,72]. For the test case, a two-
dimensional quadrilateral mesh is extruded into a hexahedral mesh
with 10 spanwise locations. A second mesh is then generated by
cutting the hexahedral mesh into tetrahedrons, where the cutting is
performed identically in each cell to introduce directional bias into
the simulations. For this specific test, the initial two-dimensional
mesh consists of 61 nodes distributed circumferentially around the
cylinder, with 65 nodes extending from the surface of the cylinder to
the outer boundary. Although any influence on the solution caused by
the biasingwill eventually diminishwith grid convergence, the use of
the coarse mesh is intended to exacerbate weaknesses with the
discretization. A view of the cylinder on both the hexahedral mesh
and the tetrahedral mesh is seen in Fig. 8. As expected, the tetrahedral
mesh exhibits uniform biasing of the diagonal elements on the
surface of the cylinder as seen in Fig. 8b.
The flow conditions correspond to a freestream Mach number of

8.0, and a Reynolds number, based on the radius of the cylinder, of
300,000. For all the simulations, a constant temperature wall is
employed using the adiabatic wall temperature based on freestream
values. Note that similar results have also been obtained for a
Reynolds number of 3,000,000 with no change in conclusions. A
baseline solution, which is considered the standard for comparison, is
obtained on the hexahedral mesh by using the finite-volume scheme
with the LDFSS [73] flux function and a van Albada flux limiter [74]
augmented with a pressure limiter [6]. Solutions are then attempted
on the tetrahedral mesh and the results are compared with those from
the hexahedral mesh.
To obtain the solution for the finite-volume scheme, 2000

iterations with first-order accuracy are first performed to allow an
initial shock position to establish. Second-order accuracy is then
initiated and the simulation is continued for 15,000 iterations,
reducing the residual five orders of magnitude from its initial value.
At several checkpoints, the upstream shock position and the skin
friction values on the surface of the cylinder are periodically
examined to verify that no substantive changes are occurring.
Because of the limiter, convergence to machine zero is not a simple
criterion to enforce, and freezing of this particular limiter is not
permitted.
In running the stabilized finite-element scheme, two variants of the

shock-smoothing algorithm are additively used. The first variation is
a straight-forward use of the shock-smoothing algorithm as described
previously. The second variation is used only during initial transients
to assist in establishing the final shock location. In this second

variant, the switching function ψ�ξ� is simply set to a constant value
of unity until theCFLnumber reaches 50, atwhich time it is gradually
decreased based on the CFL number using the ramping function
described by Eq. (25). Specifically, the switch is decreased to zero
beginning at a CFL number of 50 and terminating at a CFL number of
500.At this point, the only additional dissipation added to the scheme
is due to the shock sensor with the Larsson-based switch. The
motivation for this strategy is based on the assumption that, with the
smoothing activated throughout the flow field, a shock, independent
of where it appears, will be resolvable on the current mesh. Once the
shock begins to establish its final position, this smoothing can then be
reduced to zero.
The residual convergence history obtained with the SUPG scheme

is shown in Fig. 9a, with the corresponding history of the CFL
number shown in Fig. 9b. As seen, the CFL number for this
computation is initialized somewhat arbitrarily to 0.1 where it
remains over the first 20 iterations. At this point, the CFL number is
seen to increase to slightly higher than 10 until approximately
iteration 130, which is where the final shock position is established
and theCFL rises very rapidly. The residual history is seen to exhibit a
fairly “flat” shape until the shock position is established, at which
point it rapidly drops to machine zero.
A side view of the pressure contours obtained using the finite-

volume scheme on the hexahedral mesh is compared with the
solution obtained with the finite-element scheme on the tetrahedral
mesh in Fig. 10. As seen, both solutions are qualitatively similar, and
neither one exhibits nonphysical behavior.
A quantitative comparison of the two solutions is provided in

Fig. 11, which examines the pressure coefficient along a horizontal
line extending from the leading edge of the cylinder to the outer
boundary. As seen, the agreement between the finite-volume solution
obtained on the hexahedral mesh and the stabilized finite-element
solution obtained on the tetrahedral mesh is quite good; the shock
positions are in good agreement and neither solution exhibits
overshoots.
In [10,11,71,72], accurate computation of the skin friction values

for the finite-volume scheme on tetrahedral meshes has been
demonstrated to be an elusive goal. In Fig. 12, skin friction values
computed using the stabilized finite-element scheme on tetrahedrons
are compared with those obtained using the finite-volume scheme on
the pure hexahedral mesh. As seen, the finite-element solution has
slightly higher maximum values and there is some modest bias in the
solution, as evidenced by the slightly asymmetric values. Note that
even on a symmetric geometry, some asymmetry will be expected
unless the mesh is also symmetric; this is particularly true on coarser
meshes.
In comparison, a solution on the tetrahedral mesh has also been

attempted using the finite-volume scheme. Here, convergence

Fig. 8 Surface meshes for cylinder computations.
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criteria similar to that used for the solution on the hexahedral mesh
could not be achieved using the LDFSS scheme. To achieve
convergence, a flux-difference splitting scheme [7] is employed, with
eigenvalue smoothing added to provide additional dissipation.
Because of the coarseness of the mesh, the modified dissipation will
manifest itself through the skin friction values. To achieve a
meaningful comparison between the finite-volume solution on both
the hexahedral and tetrahedral meshes, the finite-volume solution on
the hexahedral mesh has been repeated using the same flux function
and limiter as used on the tetrahedral mesh. The results, depicted in
Fig. 12b, verify the trends observed in [10,11,71,72]; namely, the
results using the finite-volume scheme on the tetrahedral mesh
exhibit strong variations across the span of the mesh.
A graphic summary of the results obtained using the finite-volume

and finite-element schemes on tetrahedral meshes is presented in
Fig. 13. Contours of skin friction computed using the finite-volume
scheme on a hexahedral mesh are shown in Fig. 13a and, as expected,
the solution is uniform across the span of the cylinder, reflective of the
inherent symmetry in the mesh. In Fig. 13b, the finite-element

solution obtained on the biased tetrahedral mesh exhibits some slight
spanwise variation, most notably immediately adjacent to the
symmetry planes. Finally, the results for the finite-volume
discretization on the tetrahedral mesh, shown in Fig. 13c, are
substantially poorer than the finite-element solutions on the same
mesh and, as observable from the scale, yield higher skin friction
values than the finite-element solution. The stabilized finite-element
solution is much less sensitive to the biased elements in the mesh and
may provide a viable scheme for computing high-speed flows on
tetrahedral meshes.

D. Iterative Convergence and Timing Comparisons

To examine the effectiveness of the time-advancement method,
simulations for transonic flow over the ONERA M6 wing [75] are
initially considered. The flow conditions for the simulations
correspond to a freestreamMach number of 0.84, an angle of attack of
3.06°, and a Reynolds number based on mean aerodynamic chord of
11.72 × 106. A sequence of four meshes is used for the simulations,
and comparisons in pressure distribution, residual convergence, and
time to solution are made between the finite-element methodology
and the baseline finite-volume algorithm. The parameters associated
with each mesh are given in Table 7. Note that the geometry is
specified in millimeters so that the Reynolds number used for the
computation reflects scaling by the mean aerodynamic chord of
646.07 and the wall spacings correspond to estimated y� values of

Fig. 10 Pressure contours for supersonic cylinder. M∞ � 8.0, α � 0.°,
Re � 3.0 × 105.
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Fig. 11 Pressure coefficient along stagnation streamline for circular
cylinder.M∞ � 8.0, α � 0.°, Re � 3.0 × 105.
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Fig. 9 Convergence history for circular cylinder. M∞ � 8.0, α � 0°, Re � 3.0 × 105.
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approximately 3, 2, 1.5, and 1.0, respectively. For comparison
purposes, the finite-element and finite-volume schemes are both
executed using the same number of cores, which is also indicated in
the table.
The surface mesh on the smallest grid is shown in Fig. 14a, with

computed pressure contours shown in Fig. 14b. Although the volume
mesh is relatively coarse, the surface mesh has substantial resolution,

which allows for well-resolved shock structures, even on such a
coarse mesh.
Residual convergence for the finite-element scheme on the finest

mesh is depicted in Fig. 15a with the corresponding CFL history
shown in Fig. 15b. As seen in Fig. 15a, modest reductions in the
residual are achieved over the first 110 iterations, at which point, the
domain of attraction to the root is obtained and drastic reductions in

z
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Fig. 12 Computed skin friction for supersonic cylinder.M∞ � 8.0, α � 0.°, Re � 3.0 × 105.

Fig. 13 Skin friction contours for supersonic cylinder.M∞ � 8.0, α � 0.°, Re � 3.0 × 105.
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the residual are observed. The relatively small reductions in the

residual before iteration 110 are due to the establishment of the shock

structure in the flow field. As with the example depicted in Fig. 3, the

residual for the turbulence model reaches a lower value than for the

flow equations due to the scaling.
The CFL number for these simulations, as shown in Fig. 15b, is

initialized to unity and, after a brief initial increase, is decreased to

below one within the first five iterations. From there, it is

systematically, although slightly erratically, increased to the

maximum value allowed at which point the residual is rapidly

reduced. After reaching machine zero, further reduction of the

residuals can no longer be achieved and the line search, being

unsuccessful, consequently reduces the CFL number. Note that while

a maximum CFL number of only 25,000 is used, this choice is

somewhat arbitrary and values as high as 1 million have been used

during testing. The current choice is only because the increased rate

of convergence attributable to the higher CFL number has been

observed to be fairly minor once the solution is close to the root,

saving only a few iterations.

Pressure distributions along two spanwise locations are provided

for comparison in Fig. 16. The spanwise positions are both toward the

wing tip and correspond to the two black lines extending along the

chord in Fig. 14. Note that while one of the lines is easily discernible,

the other is located where the wing and the end cap join and is

somewhat difficult to visualize. Figure 16 demonstrates that there is

very little variation in the pressure distributions observable in the

finite-element solutions as the mesh is refined. Of particular interest,

depicted in the close-up view in Fig. 16e, is that the shock at the outer

most spanwise station is present on all meshes except the tiny one. As

seen in Fig. 16f, somewhat more variation is observed in the finite-

volume solutions where, at the outermost span-wise station, the

simulation fails to resolve the shock wave even on the finest mesh.

Note also that in the finite-volume simulation, no additional

smoothing or flux limiting is used so that any dissipation is either

physical dissipation or is inherent in the scheme. These results are

consistent with those presented for the transonic airfoil in the

introduction, although somewhat less dramatic because here even the

tiny mesh has relatively high surface resolution.

The iterative convergence between the baseline finite-volume

scheme and the time-advancement scheme used for the finite-element

algorithm is compared in Fig. 17. For convenience, the convergence of

the finite-element scheme, previously presented in Fig. 15, is repeated

here to facilitate comparison. The finite-element solver converges to

machine precision in approximately 125 iterations, whereas the finite-

volume scheme requires 20,000. Note that while both schemes use the

negative SA model, for this case the finite-volume scheme uses first-

order accurate convection because the residual could not otherwise be

Fig. 14 Surface mesh and pressure contours: ONERAM6 wing. M∞ � 0.84, α � 3.06°, Re � 11.72 × 106.
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Fig. 15 Convergence history for ONERAM6 wing on finest mesh.M∞ � 0.84, α � 3.06°, Re � 11.72 × 106.

Table 7 Mesh parameters for ONERAM6 calculations

Mesh Nodes Tetrahedrons Wall spacing CPU cores

Tiny 231,194 1,307,388 0.00360 16
Coarse 711,820 4,193,397 0.00240 48
Medium 2,307,525 13,667,813 0.00160 128
Fine 7,856,265 46,730,385 0.00107 320
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decreased to machine precision. As expected, the finite-element
scheme converges in much fewer iterations than the finite-volume
scheme simply because the algorithm makes far fewer assumptions in
the linearization of the residual and uses a much stronger linear solver.
Although not shown, only minor differences are observed in the
pressure distributions obtained using the first-order and second-order
accurate convective terms for the turbulence model.
In examining the convergence history, the majority of iterations

required to converge the SUPG scheme occur in the first 110 steps,
which iswhen the shock position is being established. To examine the
convergence for a casewithout a shock, a subsonic case is considered
and is presented in Fig. 18. As expected, the residual is reducedmuch
more rapidly in this case, with the flow variables reaching machine
precision in only 60 iterations, with the turbulence model requiring

approximately 80 time steps. In contrast, a notable decrease in
convergence rate is observed for the finite-volume scheme when
compared with the convergence for the transonic case. Recall that in
the transonic case, the finite-volume scheme was run using the
negative SAmodel with first-order accurate convective discretization
of the turbulence model because the residual would otherwise
“hang.” In the subsonic case, the negative SAmodel is again used, but
second-order discretization of the convective term in the turbulence
model is used to render a more neutral comparison. The presence of
the second-order differencing may likely be the cause in the
difference in convergence between the transonic and subsonic cases
for the finite-volume discretization.
Although iterative convergence is interesting, the computer time to

reach convergence is the metric that should ultimately be evaluated.
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Fig. 16 Pressure distributions for ONERAM6 wing. M∞ � 0.84, α � 3.06°, Re � 11.72 × 106.

710 ANDERSON, NEWMAN, AND KARMAN

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 



The transonic and subsonic flows over theONERAM6wing are used
for this initial assessment, simply because both the finite-element and
finite-volume methodologies converge well and provide reasonably
accurate results. However, there are several caveats that should be
considered. First, in comparing the timings, both schemes are run on
the same machine using the same number of processors. There have
been no studies conducted with the finite-element scheme to
determine optimal balancing of the number of nodes across
processors to achieve good performance. Similarly, there has been no

attempt to date to address coding or algorithmic issueswith the SUPG
scheme; the results are still preliminary and many improvements can
be easily identified. Second, in comparing timings, the most
meaningful measure would account for the accuracy of the obtained
solution. In this vein, it would be interesting to compare results for the
3D swept bump presented earlier. There, the finite-element solution
on a tetrahedral mesh with only 18 thousand mesh points is far
superior to the finite-volume solution with almost 1 million nodes.
Clearly, timing comparisons should be used as a general gauge and
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Fig. 17 Convergence histories for ONERAM6 wing.M∞ � 0.84, α � 3.06°, Re � 11.72 × 106.

Iteration
50 100 150 200

a) Finite-element scheme
Iteration

R
es

id
u

al

0 10000 20000 30000 40000
10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

R
es

id
u

al

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

Density
x-momentum
y-momentum
z-momentum
Energy
Turbulence Model

Density
x-momentum
y-momentum
z-momentum
Energy
Turbulence Model

b) Finite-volume scheme
Fig. 18 Finite-element and finite-volume convergence histories for ONERAM6 wing. M∞ � 0.299, α � 3.06°, Re � 11.72 × 106.

Wall Time
0 20000 40000 60000

Density (Finite Element)
Turbulence (Finite Element)
Density (Finite Volume)
Turbulence (Finite Volume: 1st order)

a) Transonic
Wall Time

R
es

id
u

al

0 5000 10000 15000 20000 25000 30000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

R
es

id
u

al

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Density (Finite Element)
Turbulence (Finite Element)
Density (Finite Volume)
Turbulence (Finite Volume)

b) Subsonic
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cannot be universally applied based on a limited number of test cases.

The purpose of the comparisons at this stage of development is to

evaluate the relative cost to guide future development.

A summary of time to achieve iterative convergence for the

transonic and subsonic ONERA M6 cases is provided in Fig. 19. In

Fig. 19a, the baseline finite-volume scheme appears to require

approximately half the computer time as the finite-element scheme to

converge the flow variables, whereas a somewhat smaller ratio is

required to converge the turbulence model. Recall, however, that the

finite-volume scheme uses only first-order accuracy for the

convective terms in the turbulence model, which undoubtedly aids in

convergence, especially because the scheme would not converge at

all using second-order discretization for this term. In the subsonic

case, the SUPG scheme clearly converges in less time than the finite-

volume scheme, which has not reachedmachine precision after twice

as much computer time.

To date, no consideration has been given to the performance of

the finite-element code. The goal has been to simply evaluate the

viability of the scheme and to demonstrate that much improved

accuracy can be achieved when compared with the finite-volume

scheme. Specifically, no effort has been devoted to cache

considerations or culling wasteful and duplicative regions of code.

A brief analysis of the run time indicates that the vast majority of the

time is spent computing the linearization matrix, followed closely

by the incomplete LU decomposition used as a preconditioner for

GMRES. These operations are currently repeated at every iteration

of the flow solver and clearly consume most of the computer time.

Another important observation is that, in previous studies for time-

dependent flows [29,38], the linearization can be frozen for as

many as 50 time steps, thereby minimizing the computation

required to recompute the matrix and perform an approximate LU

decomposition.

A final result is presented in Fig. 20. In examining the pressure

distributions in Fig. 16, one could reasonably claim that the SUPG

scheme achieves similar accuracy on either the medium- or coarse-

sized mesh that is only achieved using the finite-volume scheme on

the fine mesh. Comparing the time to solution for the SUPG scheme

on themediummeshwith that of the finite-volume scheme on the fine

mesh, the wall-clock time is observed to be approximately equal for

the turbulence model to reach convergence. However, recall from

Table 7 that the results on the finemesh are obtained using 320 cores,

whereas the results on the mediummesh are obtained using only 128

cores. Because the figure compares wall time and not total CPU time,

the SUPG scheme ultimately requires less than half the total

resources as the finite-volume scheme for similar accuracy.

VIII. Conclusions

A stabilized finite-element discretization has been developed and
implemented as a linkable librarywithin the FUN3D flow solver. The
accuracy of the scheme has been verified for linear and quadratic
basis functions on tetrahedral, hexahedral, prismatic, and pyramidal
elements. A time-advancement algorithm has been developed and
demonstrated for transonic and subsonic flows, as well as for a
hypersonic test case. This hypersonic test case also serves as an initial
evaluation of the mechanism used for capturing strong shocks.
Through the test cases presented, the streamlined upwind Petrov–
Galerkin (SUPG) finite-element discretization is demonstrated to
offer substantially improved accuracy over the finite-volume scheme
on tetrahedral elements. Timing assessments indicate that, although
there has been no attempt to enhance performance, the SUPG finite-
element scheme is competitive with the finite-volume scheme.
Furthermore, when accuracy is also considered, the finite-element
scheme could potentially offer significant reductions in the time
required to reach a solution of given accuracy.
To date, no consideration has been given to the performance of the

finite-element code; the goal has been to simply evaluate the viability
of the scheme and to demonstrate that improved accuracy can be
achieved when compared with the finite-volume scheme. A brief
analysis of the run time indicates that the vast majority of the time is
spent computing the linearization matrix, followed closely by the
incomplete LU decomposition used as a preconditioner for
generalized minimal residual. These operations are currently
repeated at every iteration of the flow solver and clearly consume
most of the computer time. These issues will be addressed during a
rewrite of the code base into C++, which is currently under way.
FUN3D is currently undergoing major refactoring effort to better

share common software components across multiple discretization
options being incorporated into the code base. During this time,
partitioning of the mesh for high-order discretization is obviously a
priority, as is the development of hp-adaptive technology.

Acknowledgment

This research was sponsored by NASA’s Transformational Tools
and Technologies (TTT) Project of the Transformative Aeronautics
Concepts Program under the Aeronautics Research Mission
Directorate.

References

[1] Anderson, W. K., and Bonhaus, D. L., “An Implicit Upwind Algorithm
forComputingTurbulent Flows onUnstructuredGrids,”Computers and
Fluids, Vol. 23, No. 1, 1994, pp. 1–21.
doi:10.1016/0045-7930(94)90023-X

[2] Anderson, W. K., Rausch, R. D., and Bonhaus, D. L., “Implicit/
Multigrid Algorithm for Incompressible Turbulent Flows on
Unstructured Grids,” Journal of Computational Physics, Vol. 128,
No. 2, 1996, pp. 391–408.
doi:10.1006/jcph.1996.0219

[3] Anderson, W. K., and Bonhaus, D. L., “Airfoil Design on Unstructured
Grids for Turbulent Flows,” AIAA Journal, Vol. 37, No. 2, 1999,
pp. 185–191.
doi:10.2514/2.712

[4] Nielsen, E. J., and Anderson, W. K., “Aerodynamic Design
Optimization on Unstructured Meshes Using the Navier-Stokes
Equations,” AIAA Journal, Vol. 37, No. 11, 1999, pp. 1411–1419.
doi:10.2514/2.640

[5] Nielsen, E. J., and Anderson, W. K., “Recent Improvements in
Aerodynamic Design Optimization on Unstructured Meshes,” AIAA

Journal, Vol. 40, No. 6, 2002, pp. 1155–1163.
doi:10.2514/2.1765

[6] Biedron, R. T., Carlson, J.-R., Derlaga, J. M., Gnoffo, P. A.,
Hammond, D. P., Jones, W. T., Kleb, B., Lee-Rausch, E. M.,
Nielsen, E. J., and Park, M. A., et al., “FUN3D Manual: 13.0,”
NASA TM-2016-219330, Langley Research Center, Aug. 2016.

[7] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes,” Journal of Computational Physics, Vol. 43,No. 2,
Oct. 1981, pp. 357–372.
doi:10.1016/0021-9991(81)90128-5

Wall Time

R
es

id
u

al

0 5000 10000 15000 20000 25000 30000
10-12

10-10

10-8

10-6

10-4

10-2

100

102 Density (Finite Element: Medium)
Turbulence (Finite Element: Medium)
Density (Finite Volume: Fine)
Turbulence (Finite Volume: Fine)

Fig. 20 Finite-element and finite-volume convergence histories for
ONERAM6 wing.M∞ � 0.84, α � 3.06°, Re � 11.72 × 106.

712 ANDERSON, NEWMAN, AND KARMAN

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 

http://dx.doi.org/10.1016/0045-7930(94)90023-X
http://dx.doi.org/10.1016/0045-7930(94)90023-X
http://dx.doi.org/10.1006/jcph.1996.0219
http://dx.doi.org/10.1006/jcph.1996.0219
http://dx.doi.org/10.1006/jcph.1996.0219
http://dx.doi.org/10.1006/jcph.1996.0219
http://dx.doi.org/10.2514/2.712
http://dx.doi.org/10.2514/2.712
http://dx.doi.org/10.2514/2.712
http://dx.doi.org/10.2514/2.640
http://dx.doi.org/10.2514/2.640
http://dx.doi.org/10.2514/2.640
http://dx.doi.org/10.2514/2.1765
http://dx.doi.org/10.2514/2.1765
http://dx.doi.org/10.2514/2.1765
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1016/0021-9991(81)90128-5
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0045-7930%2894%2990023-X&citationId=p_1
https://arc.aiaa.org/action/showLinks?system=10.2514%2F2.712&citationId=p_3
https://arc.aiaa.org/action/showLinks?system=10.2514%2F2.1765&citationId=p_5
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0021-9991%2881%2990128-5&citationId=p_7
https://arc.aiaa.org/action/showLinks?crossref=10.1006%2Fjcph.1996.0219&citationId=p_2
https://arc.aiaa.org/action/showLinks?system=10.2514%2F2.640&citationId=p_4


[8] Anderson, W. K., Ahrabi, B. R., and Newman, J. C., “Finite-Element
Solutions for Turbulent Flow over the NACA 0012 Airfoil,” AIAA

Journal, Vol. 54, No. 9, Sept. 2016, pp. 2688–2704.

doi:10.2514/1.J054508
[9] Park, M. A., and Anderson, W. K., “Spatial Convergence of Three-

Dimensional Turbulent Flows,” AIAA Paper 2016-0859, 2016.
[10] Gnoffo, P. A., and White, J. A., “Computational Aerothermodynamic

Simulation Issues on Unstructured Grids,”AIAA Paper 2004-2371, 2004.
[11] Gnoffo, P. A., “Simulation of Stagnation Region Heating in Hypersonic

Flow on Tetrahedral Grids,” AIAA Paper 2007-3960, 2007.
[12] Wang, Z. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A.,

Deconinck, H., Hartmann, R., Hillewaert, K., and Huynh, H. T., et al.,
“High-Order CFD Methods: Current Status and Perspective,”

International Journal for Numerical Methods in Fluids, Vol. 72,
No. 8, July 2013, pp. 811–845.

doi:10.1002/fld.v72.8
[13] Hartmann, R., and Houston, P., “Adaptive Discontinuous Galerkin

Finite ElementMethods for theCompressible Euler Equations,” Journal
of Computational Physics, Vol. 183, No. 2, 2002, pp. 508–532.

doi:10.1006/jcph.2002.7206
[14] Fidkowski, K. J., andDarmofal, D. L., “Development of a Higher-Order

Solver for Aerodynamic Applications,” AIAA Paper 2004-436, 2004.
[15] Ceze, M., and Fidkowski, K. J., “Pseudo-transient Continuation,

SolutionUpdateMethods, andCFLStrategies for DGDiscretizations of

the RANS-SA Equations,” AIAA Paper 2013-2686, 2013.
[16] Burgess, N. K., “An Adaptive Discontinuous Galerkin Solver for

Aerodynamic Flows,” Ph.D. Thesis, Univ. of Wyoming, Laramie, WY,
2011.

[17] Burgess, N. K., andMavriplis, D. J., “Robust Computation of Turbulent
Flows Using a Discontinuous-Galerkin Method,” AIAA Paper 2012-
457, 2012.

[18] Oliver, T. A., andDarmofal, D. L., “AnUnsteadyAdaptationAlgorithm
for Discontinuous-Galerkin Discretizations of the RANS Equations,”
AIAA Paper 2007-3940, 2007.

[19] Oliver, T. A., “A High-Order, Adaptive, Discontinuous Galerkin Finite
Element Method for the Reynolds-Averaged Navier-Stokes Equations,”

Ph.D. Thesis,Massachusetts Inst. of Technology, Cambridge,MA, 2008.
[20] Brooks, A. N., and Hughes, T. J. R., “Streamline Upwind/Petrov-

Galerkin Formulation for Convection Dominated Flows with Particular
Emphasis on Incompressible Navier-Stokes Equations,” Computer

Methods in Applied Mechanics and Engineering, Vol. 32, Nos. 1–3,
Sept. 1982, pp. 199–259.

doi:10.1016/0045-7825(82)90071-8
[21] Shakib, F., Hughes, T. J. R., and Johan, Z., “A New Finite-Element

Formulation for Computational Fluid Dynamics: X. The Compressible
Euler and Navier-Stokes Equations,” Computer Methods in Applied

Mechanics and Engineering, Vol. 89, Nos. 1–3, Aug. 1991, pp. 141–219.
doi:10.1016/0045-7825(91)90041-4

[22] Hughes, T. J. R., Franca, L. P., and Hulbert, G. M., “A New Finite-
Element Formulation for Computational Fluid Dynamics: VIII. The
Galerkin Least Squares Method for Advective-Diffusion Equations,”

Computer Methods in Applied Mechanics and Engineering, Vol. 73,
No. 2, May 1989, pp. 173–189.
doi:10.1016/0045-7825(89)90111-4

[23] Bazilevs, Y., and Akkerman, I., “Large Eddy Simulation of Turbulent
Taylor–Couette Flow Using Isogeometric Analysis and the Residual-
Based Variational Multiscale Method,” Journal of Computational

Physics, Vol. 229, No. 9, May 2010, pp. 3402–3414.
doi:10.1016/j.jcp.2010.01.008

[24] Anderson, W. K., Wang, L., Kapadia, S., Tanis, C., and Hilbert, B.,
“Petrov–Galerkin and Discontinuous-Galerkin Methods for Time-

Domain and Frequency-Domain Electromagnetic Simulations,”
Journal of Computational Physics, Vol. 230, No. 23, 2011,

pp. 8360–8385.
doi:10.1016/j.jcp.2011.06.025

[25] Anderson, K., and Wang, L., “A Perspective on High-Order Accurate
Solvers for Field Equations,” JRV Symposium; Four Decades of CFD:

Looking Back and Looking Forward, AFOSR and Univ. of Kansas,
2013.

[26] Wang, L., Anderson, K., Erwin, T., andKapadia, S., “Solutions of High-
Order Methods for Three-Dimensional Compressible Viscous Flows,”

AIAA Paper 2012-2836, 2012.
[27] Wang, L., Anderson, K., Erwin, T., and Kapadia, S., “High-Order

Methods for Solutions of Three-Dimensional Turbulent Flows,” AIAA

Paper 2013-0856, 2013.
[28] Wang, L., and Anderson, W. K., “Shape Sensitivity Analysis for the

Compressible Navier-Stokes Equations via Discontinuous Galerkin
Methods,” Computers and Fluids, Vol. 69, No. 1, 2012, pp. 93–107.

doi:10.1016/j.compfluid.2012.08.014

[29] Wang, L., Anderson, W. K., Erwin, J. T., and Kapadia, S.,
“Discontinuous-GalerkinandPetrov-GalerkinMethods forCompressible
Viscous Flows,”Computers andFluids, Vol. 100,No. 1, 2014, pp. 13–29.

doi:10.1016/j.compfluid.2014.04.035
[30] Venkatakrishnan, V., Allmaras, S. R., Johnson, F. T., and Kamenetskii,

D. S., “Higher Order Schemes for the Compressible Navier-Stokes

Equations,” AIAA Paper 2003-3987, 2003.
[31] Hughes, T. J., Mazzei, L., and Jansen, K. E., “Large Eddy Simulation

and the Variational Multiscale Method,” Computing and Visualization

in Science, Vol. 3, Nos. 1–2, 2000, pp. 47–59.

doi:10.1007/s007910050051
[32] Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., and Scovazzi, G.,

“Variational Multiscale Residual-Based Turbulence Modeling for Large

Eddy Simulation of Incompressible Flows,” Computer Methods in

AppliedMechanics andEngineering, Vol. 197,No. 1, 2007, pp. 173–201.

doi:10.1016/j.cma.2007.07.016
[33] Glasby, R., Erwin, T., Stefanski, D. L., Allmaras, S., Galbraith, M. C.,

Anderson, W. K., and Nichols, R. H., “Introduction to COFFE: The
Next-Generation HPCMP CREATE-AV CFD Solver,” AIAA Paper

2016-0567, 2016.
[34] Whiting, C. H., and Jansen, K. E., “AStabilized Finite-ElementMethod

for the Incompressible Navier-Stokes Equations Using a Hierarchical

Basis,” International Journal for NumericalMethods in Fluids, Vol. 35,
No. 1, 2001, pp. 93–116.

doi:10.1002/(ISSN)1097-0363
[35] Jansen, K. E., “A Stabilized Finite Element Method for Computing

Turbulence,” Computer Methods in Applied Mechanics and Engineer-

ing, Vol. 174, No. 3, 1999, pp. 299–317.
doi:10.1016/S0045-7825(98)00301-6

[36] Jansen, K., Johan, Z., and Hughes, T. J., “Implementation of a One-
Equation Turbulence Model within a Stabilized Finite Element

Formulation of a Symmetric Advective-Diffusive System,” Computer

Methods in AppliedMechanics and Engineering, Vol. 105, No. 3, 1993,

pp. 405–433.
doi:10.1016/0045-7825(93)90066-7

[37] Kamenetskiy, D. S., Bussoletti, J. E., Hilmes, C. L., Venkatakrishnan,
V., Wigton, L. B., and Johnson, F. T., “Numerical Evidence of Multiple
Solutions for the Reynolds-Averaged Navier–Stokes Equations for

High–Lift Configurations,” AIAA Paper 2013-663, 2013.
[38] Newman, J. C., and Anderson, W. K., “Investigation of Unstructured

Higher-Order Methods for Unsteady Flow and Moving Domains,”
AIAA Paper 2015-2917, 2015.

[39] Burgess, N. K., and Mavriplis, D. J., “hp-Adaptive Discontinuous
Galerkin Methods for the Navier-Stokes Equations,” AIAA Journal,
Vol. 50, No. 12, Dec. 2012, pp. 2682–2694.

doi:10.2514/1.J051340
[40] Bonhaus, D. L., “A Higher Order Accurate Finite Element Method for

Viscous Compressible Flows,” Ph.D. Thesis, Virginia Polytechnic Inst.

and State Univ., Blacksburg, VA, 1998.
[41] Allmaras, S. R., Johnson, F. T., and Spalart, P. R., “Modifications and

Clarifications for the Implementation of the Spalart-Allmaras
Turbulence Model,” 7th International Conference on Computational

Fluid Dynamics (ICCFD7), Paper ICCFD7-1902, 2012.
[42] Spalart, P. R., and Allmaras, S. R., “AOne-Equation Turbulence Model

for Aerodynamic Flows,” La Recherche Aérospatiale, No. 1, 1994,

pp. 5–21.
[43] White, F.M., andCorfield, I.,ViscousFluidFlow, Vol. 3,McGraw–Hill,

New York, 2006, Chap. 1.
[44] Barth, T. J., Numerical Methods for Gasdynamic Systems on

Unstructured Meshes, Springer, Berlin, 1999, pp. 195–285.
[45] Hartmann, R., and Leicht, T., “Generalized Adjoint Consistent

Treatment of Wall Boundary Conditions for Compressible Flows,”
Journal of Computational Physics, Vol. 300, No. 1, 2015, pp. 754–778.

doi:10.1016/j.jcp.2015.07.042
[46] Galbraith, M. C., and Ollivier-Gooch, C., “BI2–Smooth Bump, BL1–

Laminar Airfoil, and BR1–Turbulent Airfoilnic,” Invited Presentation

at the 4th International Workshop on High-Order CFD Methods),

Eccomas/6th European Conference on CFD (ECFD VI), 2016.
[47] Ahrabi, B. R., Anderson, W. K., and Newman, J. C., III, “An Adjoint-

Based hp-Adaptive Petrov-Galerkin Method for Turbulent Flows,”

AIAA Paper 2015-2603, 2015.
[48] Allmaras, S., “Lagrange Multiplier Implementation of Dirichlet

Boundary Conditions in Compressible Navier–Stokes Finite-Element

Methods,” AIAA Paper 2005-4714, 2005.
[49] Pandya, M. J., Diskin, B., Thomas, J. L., and Frink, N., T., “Improved

Convergence and Robustness of USM3D Solutions on Mixed Element
Grids,” AIAA Paper 2015-1747, 2013.

[50] Burgess, N., and Glasby, R., “Advances in Numerical Methods for
CREATE-AVAnalysis Tools,” AIAA Paper 2014-417, 2014.

ANDERSON, NEWMAN, AND KARMAN 713

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 

http://dx.doi.org/10.2514/1.J054508
http://dx.doi.org/10.2514/1.J054508
http://dx.doi.org/10.2514/1.J054508
http://dx.doi.org/10.1002/fld.v72.8
http://dx.doi.org/10.1002/fld.v72.8
http://dx.doi.org/10.1002/fld.v72.8
http://dx.doi.org/10.1002/fld.v72.8
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1006/jcph.2002.7206
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/0045-7825(91)90041-4
http://dx.doi.org/10.1016/0045-7825(91)90041-4
http://dx.doi.org/10.1016/0045-7825(89)90111-4
http://dx.doi.org/10.1016/0045-7825(89)90111-4
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2011.06.025
http://dx.doi.org/10.1016/j.jcp.2011.06.025
http://dx.doi.org/10.1016/j.jcp.2011.06.025
http://dx.doi.org/10.1016/j.jcp.2011.06.025
http://dx.doi.org/10.1016/j.jcp.2011.06.025
http://dx.doi.org/10.1016/j.jcp.2011.06.025
http://dx.doi.org/10.1016/j.compfluid.2012.08.014
http://dx.doi.org/10.1016/j.compfluid.2012.08.014
http://dx.doi.org/10.1016/j.compfluid.2012.08.014
http://dx.doi.org/10.1016/j.compfluid.2012.08.014
http://dx.doi.org/10.1016/j.compfluid.2012.08.014
http://dx.doi.org/10.1016/j.compfluid.2012.08.014
http://dx.doi.org/10.1016/j.compfluid.2014.04.035
http://dx.doi.org/10.1016/j.compfluid.2014.04.035
http://dx.doi.org/10.1016/j.compfluid.2014.04.035
http://dx.doi.org/10.1016/j.compfluid.2014.04.035
http://dx.doi.org/10.1016/j.compfluid.2014.04.035
http://dx.doi.org/10.1016/j.compfluid.2014.04.035
http://dx.doi.org/10.1007/s007910050051
http://dx.doi.org/10.1007/s007910050051
http://dx.doi.org/10.1016/j.cma.2007.07.016
http://dx.doi.org/10.1016/j.cma.2007.07.016
http://dx.doi.org/10.1016/j.cma.2007.07.016
http://dx.doi.org/10.1016/j.cma.2007.07.016
http://dx.doi.org/10.1016/j.cma.2007.07.016
http://dx.doi.org/10.1016/j.cma.2007.07.016
http://dx.doi.org/10.1002/(ISSN)1097-0363
http://dx.doi.org/10.1002/(ISSN)1097-0363
http://dx.doi.org/10.1016/S0045-7825(98)00301-6
http://dx.doi.org/10.1016/S0045-7825(98)00301-6
http://dx.doi.org/10.1016/0045-7825(93)90066-7
http://dx.doi.org/10.1016/0045-7825(93)90066-7
http://dx.doi.org/10.2514/1.J051340
http://dx.doi.org/10.2514/1.J051340
http://dx.doi.org/10.2514/1.J051340
http://dx.doi.org/10.1016/j.jcp.2015.07.042
http://dx.doi.org/10.1016/j.jcp.2015.07.042
http://dx.doi.org/10.1016/j.jcp.2015.07.042
http://dx.doi.org/10.1016/j.jcp.2015.07.042
http://dx.doi.org/10.1016/j.jcp.2015.07.042
http://dx.doi.org/10.1016/j.jcp.2015.07.042
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.jcp.2010.01.008&citationId=p_24
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.cma.2007.07.016&citationId=p_33
https://arc.aiaa.org/action/showLinks?crossref=10.1002%2F1097-0363%2820010115%2935%3A1%3C93%3A%3AAID-FLD85%3E3.0.CO%3B2-G&citationId=p_35
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0045-7825%2882%2990071-8&citationId=p_21
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0045-7825%2893%2990066-7&citationId=p_37
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.compfluid.2014.04.035&citationId=p_30
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.jcp.2015.07.042&citationId=p_46
https://arc.aiaa.org/action/showLinks?crossref=10.1006%2Fjcph.2002.7206&citationId=p_14
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0045-7825%2889%2990111-4&citationId=p_23
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2Fs007910050051&citationId=p_32
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.J054508&citationId=p_9
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.jcp.2011.06.025&citationId=p_25
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS0045-7825%2898%2900301-6&citationId=p_36
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-58535-7_5&citationId=p_45
https://arc.aiaa.org/action/showLinks?crossref=10.1002%2Ffld.3767&citationId=p_13
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.compfluid.2012.08.014&citationId=p_29
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0045-7825%2891%2990041-4&citationId=p_22


[51] Saad, Y., and Schultz, M. H., “GMRES: A Generalized Minimum
Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM
Journal of Scientific and Statistical Computing, Vol. 7, No. 3, 1986,
pp. 856–869.
doi:10.1137/0907058

[52] Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Soc. for
Industrial and Applied Mathematics, Philadelphia, 2003, Chap. 6.

[53] de Barros Ceze, M. A., “A Robust hp-Adaptation Method for
Discontinuous Galerkin Discretizations Applied to Aerodynamic
Flows,” Ph.D. Thesis, Univ. of Toronto, Toronto, 2013.

[54] Wrenn, G. A., “An Indirect Method for Numerical Optimization Using
the Kreisselmeier-Steinhauser Function,” NASA CR-4220, Langley
Research Center, 1989.

[55] von Neumann, J., and Richtmyer, R. D., “A Method for the Numerical
Calculation of Hydrodynamic Shocks,” Journal Applied Physics,
Vol. 21, No. 3, March 1950, pp. 232–237.
doi:10.1063/1.1699639

[56] Persson, P.-O., and Peraire, J., “Sub-Cell Shock Capturing for
Discontinuous Galerkin Methods,” AIAA Paper 2006-112, 2006.

[57] Liepmann,H., andRoshko,A.,Elements of Gasdynamics, DoverBooks
on Aeronautical Engineering Series, Wiley, New York, 1957, Chap. 13.

[58] Larsson, J., “Large Eddy Simulation of the HyShot II Scramjet
Combustor using a Supersonic Flamelet Model,” 48th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
AIAA Paper 2012-4261, July–Aug. 2012.

[59] Oberkampf, W. L., and Roy, C. J., Verification and Validation in

Scientific Computing, Cambridge Univ. Press, New York, 2010,
Chap. 6.

[60] Erwin, J. T., “Stabilized Finite Elements for Compressible Turbulent
Navier Stokes,” Ph.D. Thesis, Univ. of Tennessee at Chattanooga,
Chattanooga, TN, Dec. 2013.

[61] Ahrabi, B. R., “An hp-Adaptive Petrov-Galerkin Method for Steady-
State and Unsteady Problems,” Ph.D. Thesis, Univ. of Tennessee at
Chattanooga, Chattanooga, TN, Aug. 2015.

[62] Liu, C., “A Stabilized Finite Element Dynamic Overset Method for the
Navier-Stokes Equations,” Ph.D. Thesis, Univ. of Tennessee at
Chattanooga, Chattanooga, TN, May 2016.

[63] Rajamohan, S., “A Streamline Upwind/Petrov-Galerkin FEM Based
Time-Accurate Solution of 3D Time-Domain Maxwell’s Equations for
DispersiveMaterials,”Ph.D. Thesis, Univ. of Tennessee at Chattanooga,
Chattanooga, TN, Aug. 2014.

[64] Zhang, X., “Higher-Order Petrov-Galerkin Methods for Analysis of
Antennas,” Master’s Thesis, Univ. of Tennessee at Chattanooga,
Chattanooga, TN, Oct. 2013.

[65] Shoemake, W. L., “Extension of a High-Order Petrov-Galerkin
Implementation Applied to Non-Radiating and Radar Cross Section
Geometries,” Master’s Thesis, Univ. of Tennessee at Chattanooga,
Chattanooga, TN, Dec. 2013.

[66] Zhang, X., “Simulation and Optimization of Photonic Crystals and
Metamaterials Using a Stabilized Finite-Element Formulation,” Ph.D.
Thesis, Univ. of Tennessee at Chattanooga, Chattanooga, TN,
Dec. 2016.

[67] Lin,W., “DesignOptimization ofAcousticMetamaterials and Phononic
Crystals with a Time Domain Method,” Ph.D. Thesis, Univ. of
Tennessee at Chattanooga, Chattanooga, TN, Dec. 2016.

[68] Rumsey, C. L., Smith, B., and Huang, G. P., “Description of a Website
Resource for Turbulence Model Verification and Validation,” AIAA
Paper 2010-4742, 2010.

[69] Vassberg, J. C., Tinocoand, E., Mani, M., Brodersen, O., Eisfeld, B.,
Wahls, R., Morrison, J. H., Zickuhr, T., Laflin, K., and Mavriplis, D.,
“Summary of the 3rd AIAA CFD Drag Prediction Workshop,” AIAA
Paper 2007-260, 2007.

[70] Morrison, J. H., and Hemsch, M. J., “Statistical Analysis of CFD
Solutions from the 3rd AIAADrag PredictionWorkshop,”AIAA Paper
2007-254, 2007.

[71] Gnoffo, P. A., “Multi-Dimensional, Inviscid Flux Reconstruction for
Simulation of Hypersonic Heating on Tetrahedral Grids,” AIAA Paper
2009-599, 2009.

[72] Gnoffo, P. A., “Updates to Multi-Dimensional Flux Reconstruction for
Hypersonic Simulations on Tetrahedral Grids,” AIAA Paper 2010-
1271, 2010.

[73] Edwards, J. R., “A Low-Diffusion Flux-Splitting Scheme for Navier-
Stokes Calculations,” Computers & Fluids, Vol. 26, No. 6, 1997,
pp. 635–659.
doi:10.1016/S0045-7930(97)00014-5

[74] VanAlbada, G., Van Leer, B., andRoberts,W. Jr, “AComparative Study
of Computational Methods in Cosmic Gas Dynamics,” Upwind and

High-Resolution Schemes, Springer, Berlin, 1997, pp. 95–103.
[75] Schmitt, V., and Charpin, F., “Pressure Distributions on the ONERA-

M6-Wing at Transonic Mach Numbers,” Experimental Data Base for

Computer Program Assessment, Vol. 4, Report of the Fluid Dynamics
Panel Working Group 04 AGARD AR 138, May 1979.

714 ANDERSON, NEWMAN, AND KARMAN

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 

http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1016/S0045-7930(97)00014-5
http://dx.doi.org/10.1016/S0045-7930(97)00014-5
https://arc.aiaa.org/action/showLinks?crossref=10.1063%2F1.1699639&citationId=p_56
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS0045-7930%2897%2900014-5&citationId=p_74
https://arc.aiaa.org/action/showLinks?crossref=10.1063%2F1.3060140&citationId=p_58
https://arc.aiaa.org/action/showLinks?crossref=10.1017%2FCBO9780511760396&citationId=p_60
https://arc.aiaa.org/action/showLinks?crossref=10.1137%2F1.9780898718003&citationId=p_53
https://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-60543-7_6&citationId=p_75
https://arc.aiaa.org/action/showLinks?system=10.2514%2F6.2012-4261&citationId=p_59
https://arc.aiaa.org/action/showLinks?crossref=10.1137%2F0907058&citationId=p_52


This article has been cited by:

1. Li Wang, Boris Diskin, Eric J. Nielsen, Yi Liu. Improvements in Iterative Convergence of FUN3D Solutions . [Abstract]
[PDF] [PDF Plus]

2. Michael A. Park, Aravind Balan, Francesco Clerici, Frederic Alauzet, Adrien Loseille, Dmitry S. Kamenetskiy, Joshua
A. Krakos, Todd R. Michal, Marshall C. Galbraith. Verification of Viscous Goal-Based Anisotropic Mesh Adaptation .
[Abstract] [PDF] [PDF Plus]

3. Emmett Padway, Dimitri J. Mavriplis. Application of the Pseudo-Time Accurate Formulation of the Adjoint to Output-
Based Adaptive Mesh Refinement . [Abstract] [PDF] [PDF Plus]

4. Hojun You, Chongam Kim. 2021. Direct reconstruction method for discontinuous Galerkin methods on higher-order
mixed-curved meshes III. Code optimization via tensor contraction. Computers & Fluids 215, 104790. [Crossref]

5. Marshall C. Galbraith, Philip C. Caplan, Hugh A. Carson, Michael A. Park, Aravind Balan, W. Kyle Anderson, Todd
Michal, Joshua A. Krakos, Dmitry S. Kamenetskiy, Adrien Loseille, Frédéric Alauzet, Loïc Frazza, Nicolas Barral. 2020.
Verification of Unstructured Grid Adaptation Components. AIAA Journal 58:9, 3947-3962. [Abstract] [Full Text] [PDF]
[PDF Plus]

6. Emmett Padway, Dimitri J. Mavriplis. Advances in the Pseudo-Time Accurate Formulation of the Adjoint and Tangent
Systems for Sensitivity Computation and Design . [Abstract] [PDF] [PDF Plus]

7. William K. Anderson, Stephen Wood, Kevin E. Jacobson. Node Numbering for Stabilizing Preconditioners Based on
Incomplete LU Decomposition . [Abstract] [PDF] [PDF Plus]

8. Todd R. Michal, Joshua Krakos, Dmitry S. Kamenetskiy, Marshall Galbraith, Carmen-Ioana Ursachi, Michael A. Park,
William K. Anderson, Frederic Alauzet, Adrien Loseille. Comparing Unstructured Adaptive Mesh Solutions for the High
Lift Common Research Model Airfoil . [Abstract] [PDF] [PDF Plus]

9. Bret Stanford, Kevin E. Jacobson, Steven Massey. Transonic Aeroelastic Modeling of the NACA 0012 Benchmark Wing .
[Abstract] [PDF] [PDF Plus]

10. Josiah Waite, Robert E. Bartels, Bret Stanford. Aeroelastic Model Development for the Integrated Adaptive Wing
Technology Maturation Project Wind-Tunnel Test . [Abstract] [PDF] [PDF Plus]

11. Douglas L. Stefanski, Cyrus Jordan, Jack R. Edwards. Toward Improved RANS Modeling for Hypersonic Applications
within the ∼k-ln(ω) Framework for Finite-Element CFD . [Abstract] [PDF] [PDF Plus]

12. Stephen Wood, William K. Anderson. Finite-Element and Finite-Volume Solutions for the Juncture-Flow Experiment .
[Abstract] [PDF] [PDF Plus]

13. Aravind Balan, Michael A. Park, William K. Anderson, Dmitry S. Kamenetskiy, Joshua A. Krakos, Todd Michal, Frédéric
Alauzet. 2020. Verification of Anisotropic Mesh Adaptation for Turbulent Simulations over ONERA M6 Wing. AIAA
Journal 58:4, 1550-1565. [Abstract] [Full Text] [PDF] [PDF Plus]

14. Stephen L. Wood, Kevin Jacobson, William T. Jones, William K. Anderson. Sparse Linear Algebra Toolkit for
Computational Aerodynamics . [Abstract] [PDF] [PDF Plus]

15. Michael A. Park, William L. Kleb, William K. Anderson, Stephen L. Wood, Aravind Balan, Beckett Yx Zhou, Nicolas R.
Gauger. Exploring Unstructured Mesh Adaptation for Hybrid Reynolds-Averaged Navier–Stokes/Large Eddy Simulation .
[Abstract] [PDF] [PDF Plus]

16. Aravind Balan, Michael A. Park, Stephen Wood, William K. Anderson. Verification of Anisotropic Mesh Adaptation for
Complex Aerospace Applications . [Abstract] [PDF] [PDF Plus]

17. Kevin R. Holst, Ryan S. Glasby, Jon T. Erwin, Douglas L. Stefanski, Daniel Prosser, William K. Anderson, Stephen L.
Wood. Current Status of the COFFE Solver within HPCMP CREATETM-AV Kestrel . [Abstract] [PDF] [PDF Plus]

18. Behzad R. Ahrabi, Dimitri J. Mavriplis. 2020. An implicit block ILU smoother for preconditioning of Newton–Krylov
solvers with application in high-order stabilized finite-element methods. Computer Methods in Applied Mechanics and
Engineering 358, 112637. [Crossref]

19. Yoshifumi Suzuki. A nonlinear SUPG method for hyperbolic conservation laws . [Citation] [PDF] [PDF Plus]
20. Kyle B. Thompson, Matthew O'Connell. Streamlined Convergence Acceleration for CFD Codes . [Citation] [PDF] [PDF

Plus]
21. Aravind Balan, Michael A. Park, William K. Anderson. Adjoint-based Anisotropic Mesh Adaptation for a Stabilized

Finite-Element Flow Solver . [Citation] [PDF] [PDF Plus]

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 

https://doi.org/10.2514/6.2021-0857
https://arc.aiaa.org/doi/pdf/10.2514/6.2021-0857
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2021-0857
https://doi.org/10.2514/6.2021-1362
https://arc.aiaa.org/doi/pdf/10.2514/6.2021-1362
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2021-1362
https://doi.org/10.2514/6.2021-1326
https://arc.aiaa.org/doi/pdf/10.2514/6.2021-1326
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2021-1326
https://doi.org/10.1016/j.compfluid.2020.104790
https://doi.org/10.2514/1.J058783
https://arc.aiaa.org/doi/full/10.2514/1.J058783
https://arc.aiaa.org/doi/pdf/10.2514/1.J058783
https://arc.aiaa.org/doi/pdfplus/10.2514/1.J058783
https://doi.org/10.2514/6.2020-3136
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-3136
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-3136
https://doi.org/10.2514/6.2020-3022
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-3022
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-3022
https://doi.org/10.2514/6.2020-3219
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-3219
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-3219
https://doi.org/10.2514/6.2020-2716
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2716
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-2716
https://doi.org/10.2514/6.2020-2717
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2717
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-2717
https://doi.org/10.2514/6.2020-2978
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2978
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-2978
https://doi.org/10.2514/6.2020-2751
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2751
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-2751
https://doi.org/10.2514/1.J059158
https://arc.aiaa.org/doi/full/10.2514/1.J059158
https://arc.aiaa.org/doi/pdf/10.2514/1.J059158
https://arc.aiaa.org/doi/pdfplus/10.2514/1.J059158
https://doi.org/10.2514/6.2020-0317
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-0317
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-0317
https://doi.org/10.2514/6.2020-1139
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-1139
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-1139
https://doi.org/10.2514/6.2020-0675
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-0675
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-0675
https://doi.org/10.2514/6.2020-1530
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-1530
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2020-1530
https://doi.org/10.1016/j.cma.2019.112637
https://doi.org/10.2514/6.2019-3423
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-3423
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-3423
https://doi.org/10.2514/6.2019-3709
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-3709
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-3709
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-3709
https://doi.org/10.2514/6.2019-2949
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2949
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-2949


22. Michael A. Park, Aravind Balan, William K. Anderson, Marshall C. Galbraith, Philip Caplan, Hugh A. Carson, Todd
R. Michal, Joshua A. Krakos, Dmitry S. Kamenetskiy, Adrien Loseille, Frederic Alauzet, Loïc Frazza, Nicolas Barral.
Verification of Unstructured Grid Adaptation Components . [Citation] [PDF] [PDF Plus]

23. Behzad Reza Ahrabi, Dimitri J. Mavriplis. An Implicit Block ILU Smoother for Preconditioning of Newton-Krylov Solvers
with Application in Finite-Element Discretizations . [Citation] [PDF] [PDF Plus]

24. Behzad R. Ahrabi, Dimitri J. Mavriplis. 2018. A scalable solution strategy for high-order stabilized finite-element solvers
using an implicit line preconditioner. Computer Methods in Applied Mechanics and Engineering 341, 956-984. [Crossref]

25. Behzad Reza Ahrabi, Michael J. Brazell, Dimitri J. Mavriplis. An Investigation of Continuous and Discontinuous Finite-
Element Discretizations on Benchmark 3D Turbulent Flows (Invited) . [Citation] [PDF] [PDF Plus]

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

16
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

44
82

 

https://doi.org/10.2514/6.2019-1723
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-1723
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-1723
https://doi.org/10.2514/6.2019-0101
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-0101
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0101
https://doi.org/10.1016/j.cma.2018.07.026
https://doi.org/10.2514/6.2018-1569
https://arc.aiaa.org/doi/pdf/10.2514/6.2018-1569
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-1569

