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Static and dynamic aeroelastic analyses have been performed for the Ares I crew launch vehicle during
atmospheric ascent. It is shown that, through the transonic speed range, there is a rapid change in the static
aeroelastic center-of-pressure increment with increasing Mach number. The greatest sensitivity to grid resolution is
observed through the transonic range. Dynamic aeroelastic analyses are also performed to assess the aeroelastic
stability of the launch vehicle. Flexible dynamic linearized quasi-steady analyses using steady rigid line loads are
compared with fully coupled aeroelastic time-marching computational fluid dynamic analyses. There are significant
differences between the methods through the transonic Mach number range. The largest difference is at Mach 1. At
that Mach number, the linearized quasi-steady method produces strong damping in modes 1 and 2. The unsteady
computational aeroelastic method indicates that the first mode is significantly undamped, while mode 2 is strongly
damped. The cause of the disparity in damping between modes 1 and 2 is also investigated. A vehicle with no
protuberances other than rings produced damping values in modes 1 and 2 that were nearly identical. It is shown that
the disparity in damping of modes one and two is due to asymmetric placement of protuberances around the vehicle

circumference.
Nomenclature

[Bial = projection matrix, structure to computational fluid
dynamics surface nodes

[By] = projection matrix, structure to section loads analysis
points

{C} = vector of nondimensional x, y, and z-direction line
loads

C, = pitch moment coefficient about gimbal point

Cy = force coefficient in z direction

Cq = aerodynamic damping, 1b - s/in.

Cor = critical structural damping M w), 1b - s/in.

Cy = structural damping, 1b - s/in.

D, = reference diameter, in.

{f} = vector of forces at computational fluid dynamics node
points, 1b

{G} = generalized force vector

{g} = generalized variable

{gs} = dynamic component of generalized variable

{g,} = static (mean) component of generalized variable

{I} = identity matrix

Ngq = number of computational fluid dynamics surface nodes

Ny = number of section nodes

N, = number of centerline structure nodes

Gnom = freestream dynamic pressure at nominal ascent, psi

9o = freestream dynamic pressure, psi
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Siet reference area, in?

[Ty,] = vy transformation matrix

[T.] = ztransformation matrix

U, = freestream velocity, in./s.

o = vehicle angle of attack, rad

{oy} = vector of local angles of attack, rad

B = vehicle angle of sideslip, rad

{B;} = vector of local angles of sideslip, rad

[A] = structural and aerodynamic damping matrix
{8} = total displacement vector, in.

Ax = x distance between section load points, in.
{844 = dynamic aeroelastic displacement vector, in.
{8,} = static aeroelastic displacement vector, in.

¢, = aerodynamic damping ratio (c,/c.)

¢ = structural damping ratio (c,/c)

Poo = freestream density, slug - in./in.?

T = pseudotime

(] = matrix of eigenvectors of structural dynamics equations

[®4] = modal vectors projected to computational fluid
dynamics surface mesh

[®,] = modal vectors projected to section loads analysis points

{x = state variable vector

[2] = structural and aerodynamic stiffness matrix

0] = frequency of vehicle structural modes, rad/s.

1. Introduction

HE aeroelastic stability of launch vehicles has been a concern

since at least the early development of Saturn I [1,2].
Furthermore, vehicles with a hammerhead configuration, having an
upper stage diameter larger than the first stage, have been shown to
have an additional potential for aeroelastic instability [3,4]. One of
the notable features of the Ares I is the use of a five-segment solid
rocket booster (SRB) as a first stage with a larger diameter upper
stage. The two stages are connected by an aft-facing frustum. Along
with the usual geometric complexity associated with a major launch
vehicle, this hammerhead configuration is a challenge to model with
computational fluid dynamics (CFD) because of the potential
the configuration has of producing flowfield separation from the
frustum. Combined with shock-induced flow separation over the
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upper stage, flow separation at the frustum can significantly influence
overall vehicle aerodynamics [3-5]. In addition, the first-stage SRB
aftskirt adds an additional mechanism for dynamic aeroelastic
instability due to the disturbance time lag between the upper stage,
the frustum, and the aftskirt [4]. These features of the Ares vehicle
have motivated the widespread use of high-fidelity Reynolds-
averaged Navier—Stokes (RANS) analyses, including a modeling of
both static and dynamic fluid/structure interaction.

To the authors’ knowledge, the first attempts to provide unsteady
CFD in flexible launch vehicle analysis were performed by Azevedo
[6]. This analysis tended to confirm the destabilizing effects
predicted by the earlier analyses of Ericsson [4]. The use of CFD in
the analysis of launch vehicles has expanded over the last several
decades [6—12]. For current and future launch vehicles, it can be
expected that CFD will be an integral part of the design from the
conceptual stage. Vehicles will very likely be designed with a smaller
proportion of aerodynamic data derived from wind-tunnel testing
and a larger proportion due to CFD [13]. This approach to launch
vehicle design poses both exciting possibilities in the extent to which
the aerodynamics and flowfield physics of a launch vehicle can be
understood as well as challenges in validating methodologies for the
highly complex flowfield about a launch vehicle.

At the same time, the common method to simulate flexible launch
vehicle dynamics is the quasi-steady method of line loads. This
approach models the displacement and inertial, elastic, and aero-
dynamic forces by a distribution along the vehicle centerline axis.
The aerodynamic forcing is usually derived from steady state rigid
aerodynamics, either from a wind-tunnel test, slender body theory, or
CFD. This approach is based upon the assumption that, unlike lifting
surfaces, the loading of a slender flexible launch vehicle can be
approximated by a series of sectional loads each independently
computed from rigid sectional aerodynamics. Combined with a
model of vehicle buffeting or gust loading, this method provides a
rapid simulation tool for the vehicle response dynamics during
ascent. The origin of the method dates at least to Saturn I analyses
[2,14], and the aerodynamic modeling of section loads dates even
earlier to slender body theory [15]. The vehicle structure typically is
modeled as a simple beam [3,4,16-18]. This approach has been
applied to launch vehicles [3.4,16,19], tactical weapons [17], and
hypersonic atmospheric reentry vehicles [18].

The limitation of the quasi-steady aeroelastic method of line loads
is that it does not represent a true aeroelastic interaction of the vehicle
in flight. The use of rigid steady aerodynamics assumes that each
station along the body is influenced only by local angle of attack and
not by flexibility-induced downwash from upstream or downstream
aerodynamic response to flexibility. Simulating the unsteady flexible
response by a quasi-steady method is further removed from reality,
unless a correction is included to account for the time lag associated
with flow separation. Ericsson has developed a quasi-steady ana-
lytical method of sectional loads using steady-state wind-tunnel data
that incorporate corrections to the aerodynamic damping based on an
assumed disturbance time lag [4]. This lag is due to the time required
for boundary-layer separation to grow in response to vehicle motion
in an unsteady flowfield compared with a steady flowfield. The
analytical/empirical approach of Ericsson and Pavish does provide
an initial rapid approximation to the phase shift [3], and thus the
destabilizing effect of unsteady aerodynamics. However, it is only
approximate and somewhat heuristic. Nevertheless, it can provide an
initial assessment of aeroelastic stability.

In the present work, we have initiated unsteady aeroelastic CFD
early in the conceptual design stage. The goal is to provide an
accurate analysis of vehicle aeroelastic stability early in the vehicle
design. Computational aeroelastic (CAE) analyses have been
performed for the Ares I crew launch vehicle in two areas. The first is
an understanding of the influence of flexibility on static loading and
controllability. To quantify the static influence of flexibility, aero-
elastic center-of-pressure increments are obtained over the nominal
vehicle ascent trajectory. This paper will compare results derived by a
fully coupled fluid/structure CAE analysis method with the quasi-
steady method of line loads. A second area is an assessment of the
dynamic aeroelastic stability of the launch vehicle. Design practice
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Fig. 1 Trajectory and analysis points.

requires that a launch vehicle be free of flutter beyond 1.32 times the
nominal ascent dynamic pressure [20]. If analysis shows dynamic
aeroelastic instability within this range, aeroelastic wind-tunnel
testing is required, and ultimately a flutter clearance of the vehicle. In
response to this requirement, a complete range of analyses has been
conducted. Aeroelastic stability will be presented using an
eigenvalue analysis of the quasi-steady equations and using a time-
marching dynamic aeroelastic CFD analysis. The present results all
assume that there are no rigid body rotational accelerations and
considers only the influence of transverse flexibility.

The outer mold line (OML) used in the present paper is the Ares I
A105. Figure 1 shows the lunar ascent trajectory with dynamic
pressure in terms of vehicle Mach number. The symbols represent the
complete set of analysis points. Static and dynamic aeroelastic results
using an unstructured node based RANS CAE code will be presented
at several of these conditions to highlight key features of the vehicle
aeroelastic behavior.

II. Methods of Analysis

A. Fully Unstructured Navier—Stokes Three-Dimensional
Aeroelastic Solver

The Navier—Stokes code used in this study is the fully unstructured
Navier-Stokes three-dimensional (FUN3D). The FUN3D flow
solver is a finite volume unstructured CFD code for either com-
pressible or incompressible flows [21,22]. Flow variables are stored
at the vertices of the mesh. In the present study, the RANS solver and
the loosely coupled Spalart—Allmaras turbulence model are used on a
tetrahedral grid [23]. FUN3D employs an implicit upwind algorithm.
The low dissipation flux splitting scheme for the inviscid flux
construction and the blended van Leer flux limiter were used. For
tetrahedral meshes, the full viscous fluxes are made discrete by using
a finite volume formulation in which the required velocity gradients
on the dual faces are computed using the Green—Gauss theorem [24].
This approach is equivalent to a Galerkin-type approximation. The
solution at each time step is updated with a backward Euler time
differencing scheme and the use of local time stepping. At each time
step, the linear system of equations is approximately solved either
with a multicolor point-implicit procedure or an implicit-line relax-
ation scheme [25]. Domain decomposition exploits the distributed
high-performance computing architectures that are necessary for the
grid sizes used in the present study.

For a moving mesh, the conservation equations are written in the
arbitrary Lagrange—Euler formulation [26]. The mesh deformation is
accomplished by treating the mesh as linear elasticity problem [27].
Element stiffnesses vary in inverse proportion to distance from a
solid boundary. The displacements are computed from the finite
volume formulation of the elasticity equations using the generalized
minimum residual algorithm [26,28].

The present aeroelastic analysis uses a modal decomposition of the
structural model. An orthogonal transformation of the finite element
equations provides the eigenvalues and eigenvectors from which the
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mode shapes and structural frequencies are derived. The transformed
equations of elastic structural dynamics are

[11g} + [28,0{g} + [0’ g} = Gool Pera] 4} )
where

[Cpcfd] = [Bcfd][f/’] )

and [Byq] is a 3Ny X 3N, projection matrix relating structural
centerline nodes to CFD surface nodes, [@] is @ 3N, X N,p04es Matrix
of eigenvectors, and [P ;4] is @3N g X N modes Matrix of mode shapes
projected to the CFD surface nodes.

B. Static and Dynamic Aeroelastic Analysis Based on Section Loads

The present paper formulates a flexibilized rigid integrated line
loads (FRILLS) method that uses integrated surface pressures
derived from rigid steady CFD coupled with a vehicle structural
dynamics model that has been reduced to the vehicle centerline.
Unlike previous quasi-steady sectional loading methods based on
beam theory, the present method uses a Guyan reduction to the
centerline of the full stack vehicle finite element model. This
approach is fully compatible with the Guyan reduction also used in
the FUN3D aeroelastic solutions. Compatibility of the two solution
methods allows mixing models to perform rapid parametric studies
of the influence of aeroelasticity on the system. By comparing
FUN3D CAE with FRILLS solutions, we have a way to assess the
effect of a full aeroelastic interaction on the static and dynamic
responses of the vehicle.

The quasi-steady method of line loads simplifies the aeroelastic
response of the vehicle to displacements along the vehicle centerline
axis and applies elastic, inertial, and aerodynamic forces at uniformly
distributed points along that axis. Figure 2 shows the vehicle with the
coordinate system superimposed. The vehicle is partitioned into N
stations. Displacements at each station can be written as a sum of
static aeroelastic and dynamic aeroelastic displacements. The

displacement is defined as {8} = (81, 81y, 81, Syyws Sy Sny) s
where
=13+  =r. Vg=rx 3

{8,} and {8,} are the static and dynamic aeroelastic centerline
displacements, respectively, as functions of the vehicle x station and
time 7. The material derivative yields an approximation for the local
angles of attack and side slip:

{o)} ~a+ L[T ]{a{sd} TuU, (8{&} @)}

Uy 0x 0x
g L8, (3053 a5
=g+ oo (PR D)

where matrices [T,] and [T] are defined in the Appendix.

Fig. 2 Coordinate system with origin at SRB gimbal point.

The mode shapes from the finite element model are projected to the
analysis points along the vehicle. The projection can be written as

[D4] = [Bullg] (©)

where [B;;] is an 3N;; x 3N, projection matrix relating structural and
sectional centerline nodes, and [®;] is a 3Ny X N,moges Matrix of
mode shapes projected to the sectional centerline nodes. The
matrices [B;;] and [B,4] use the same method of projection to ensure
consistency of the sectional load and FUN3D CAE results. The
modal transformation yields

{g} =18} +{ga} =" [Bul ({8} + {64}) (©)

where g, is the generalized variable due to static loading, and g, is the
generalized variable responding to vehicle dynamic forcing. The
generalized forcing due to aerodynamics can be written in terms of
the 3N;;-dimensional section loading {C}

et A
Gy = 2 g, i) @
ref
where
{C} = { Clx Cly Clz Tt CN//X CN,,y CN,,: }T (8)

The line loads at each body station n of C,,, C,,, and C,, are
functions of Mach number, angle of attack, and angle of side slip.

The line loads are integrated from vehicle surface pressure
coefficients that were computed using the FUN3D code. The
integration is accomplished using a discrete data transfer algorithm
developed by Samareh [29]. The approach is based on that of Farhat
et al. [30], which is a variation of the inverse isoparametric method
(IIM). The further modified IIM algorithm of Samareh [29]
maintains conservation of momentum and energy between separate
meshes having dissimilar mesh spacing by an integration of loads on
the source mesh and injection of the force vectors to the target mesh.
Having transferred discrete loads from the unstructured CFD mesh to
the sectional mesh, the nodal loads are integrated into sectional loads.
The sectional loads are assembled by computing CFD solutions for
the rigid vehicle at each Mach number at a series of angles of attack
and sideslip.

Computation of the static aeroelastic solution using line loads can
be performed by treating the structural dynamics in pseudotime t.
The generalized aerodynamic forcing is updated at each iteration
using the current «; and §;. The static structural modal damping and
dilation of time step are set to optimize convergence to a static
solution. Once a converged static aeroelastic solution is obtained, the
time-accurate dynamic response of the vehicle can be computed by
linearizing the line loads around the local static «;, 8,;, and static
generalized force. The linearized equation can be written as

152} + (Al + (2} =0 ©
where

Q0= [07] - puUR[0.  [A] = 2] — poUnlQd  (10)
100 =5 gy HF{B{C} [S][T]+3{§}[S][T1}[B”1[¢] (an
and

(00 =S g teay {8 + S, e

(12)

The 3N, x 3N, square matrices d{C}/da and 9{C}/0B are
constructed, placing along the diagonals the derivative of {C}. The
derivatives with respect to & and 8 are computed from a spline fit of



654 BARTELS ET AL.

the aerodynamic section loadings. The matrices [S], [T,], and [T} ] are
defined in the Appendix. Equation (9) can be written in state space as

0 =MA1x. X =184 84}" (13)

where

1= [_(;2 _’A] (14)

The eigenanalysis of this system provides aeroelastic damping and
frequency at a given flight condition.

III. Models

A. Computational Fluid Dynamics Mesh

The unstructured tetrahedral grids used in this study were created
using VGRID [31]. Four grids were developed and designated the
extra coarse, coarse, baseline, and fine [32]. The extra coarse grid had
10 million nodes, the coarse grid had 19 million nodes, the baseline
had 41 million nodes, and the fine grid had 83 million nodes.
Clustering of grid points near protuberances, rings, and other
geometric discontinuities was used to aid in resolving flow features.
The refinement of successive grid levels was accomplished by
doubling the number of surface nodes uniformly everywhere. The
boundary-layer normal spacing was kept unchanged from one grid
level to the next. Refinement studies using the finer grids were done
for a few critical cases in the transonic Mach number range.
Additional details about the grid development and refinement studies
are discussed in a separate paper [32]. Because of the computational
expense, the coarse level grid was used for most of the computations
performed here.

B. Structural Model

The structural models are MSC.Nastran™ finite element models.
Two Ares I models were used in the present analysis. Each model
includes a finite element modeling of the first stage, the first-stage
solid propellant, the second stage including liquid fuel and oxidizer
masses, the crew exploration vehicle, and the launch abort system.
The baseline Ares I model is designated the Ares I Integrated Model 1
(AIIM1). The second Ares I model is otherwise identical but includes
an upper stage thrust oscillation isolator (AIIM1-TOI).

The Orion configuration used here is the liftoft configuration for
the lunar mission. The Orion structural data consist of a stiffness
matrix produced by Craig-Bampton analysis, retaining information
only along the centerline and an interface circumference where the
Orion connects to the upper stage. The upper stage configuration
contains fluid elements, pressure stiffening, and temperature effects
of the J-2X engine. The first-stage solid propellant is modeled as
four concentrated masses. Because the first-stage propellant mass
changes during atmospheric ascent, there is a continuous change in
the stiffness and mass properties of the first stage. First-stage

(@),

(@),

z component

y compone

a) Mode 1

propellant mass data were defined at a rather coarse spacing of ascent
times, namely, at 0, 20, 40, 50, 60, 80, 100, and 115 s. The lunar
mission trajectory data, including total vehicle mass, are defined
significantly more finely. To apply propellant mass data in a
consistent manner, the coarsely spaced propellant data were inter-
polated to the present analysis points by matching total mass with the
trajectory vehicle mass.

An additional structural model is used here that incorporates a
thrust oscillation isolator (AIIM1-TOI). The AIIM1-TOI model is a
dual-plane isolation system intended to isolate the upper stage from
first-stage thrust oscillation. The isolator mechanism was modeled
by a circumferential ring of springs at the interface between the Orion
and the upper stage, and a circumferential ring of spring elements and
mass elements at the interface between the upper stage and the first
stage. In all other respects, the AIIM1-TOI model is identical to the
baseline structural model.

The entire structural model was reduced to 51 points along the
vehicle centerline by a Guyan reduction. This reduction produced
both translational and rotational modal deflections. Mode shapes
having only axial or rotational deflections were discarded. Likewise,
rigid body modes were also not included in the present analysis. The
remaining modes were ranked by the moduli of the mode shape
amplitude, and the top 37 flexible modes were retained. The
translational deflections of the remaining modes were projected with
a third-order spline fit to the CFD surface mesh points.

The liftoff frequencies of the retained modes span from 1.0 to
39 Hz. As SRB propellent is burned, vehicle mass decreases and the
frequencies of propellent related modes change. The first bending
mode frequencies increase by 15-25% over the ascent. Mode
switching also occurs. An analysis of the modal frequencies through
the entire ascent showed that, by including 37 modes, none of the
important modes were lost to modal switching. Because of the
additional springs located in the upper stage, the first mode
frequencies of the AIIM1-TOI model are slightly lower than that of
the AIIM1 model. The orientation of the x-, y-, and z-coordinate
system with respect to the vehicle is shown in Fig. 2. The transverse y
and z components of the coupled first two modes of the AIIM1 model
are shown in Fig. 3. These modes have an identical frequency but
orthogonal modal amplitudes. Many modes over the entire frequency
range exhibit similar pairing.

The finite element structural models per se do not include
information about the structural damping. The preliminary design of
the Ares I has relied on historical data to provide estimates. Hanson
and Doggett measured the Saturn I wind-tunnel model structural
damping ratio ({; = ¢,/c,,) in the range of 0.007 to 0.018 [15,33].
Subsequent models and full-scale estimates of the Apollo/Saturn
structural damping ratio were put at 0.012 to 0.022 [1]. In the present
aeroelastic analysis, an assumed nominal structural damping ratio
value of 0.005 is used for all modes throughout the ascent. This value
of the damping ratio is consistent with the conservative value of
structural damping of the first bending mode assumed in previous
studies [4].

(D era) 2

((Dcfd)y

z component

y component

b) Mode 2

Fig. 3 Ares I first bending modes. x-coordinate origin at gimbal point.
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IV. Results

A. Aeroelastic Analysis Process

Aeroelastic analysis using the FUN3D software is performed
as a multistep process. From a steady-state rigid solution, a static
aeroelastic computation provides a steady-state flexible vehicle
solution. Starting from a static aeroelastic solution, the dynamic
solution is initiated by perturbing each mode with an initial
generalized velocity. In this analysis, the time step for dynamic
analyses has been selected to provide 700-1000 time steps per cycle
of the first flexible mode and approximately 30 time steps per
cycle for the highest frequency mode. The number of subiterations is
set to 15.

B. Static Aeroelastic Results

To assess the grid convergence of the solutions, the static
aeroelastic center-of-pressure increment has been computed at three
grid levels at three transonic Mach numbers. The present analysis
calculates the nondimensional aeroelastic center-of-pressure incre-

ment by
C C
Acp), == == 1
( Cp)ae (Cl)ﬂex (CZ)rig ( 5)

Results are shown in Fig. 4. Coarse, baseline, and fine grid
solutions are computed at Mach 0.50, 0.90, 1.20, and 1.55. Static
aeroelastic solutions are computed at an angle of attack of 2.5 deg
(5 deg at Mach 0.50). These nonzero angles of attack are still within
the dispersed angle-of-attack range, and they are large enough that
the z force is sufficiently large to correctly compute the c.p. shift.
Considering the overall features of the aeroelastic c.p. increment, it is
clear that there is a large and rapidly varying influence that flexibility
has on static aerodynamics in the transonic range. The major
contributor to the shift in the center of pressure through the transonic
range is the shifting position of the shock. The rapid positive trend in
the aeroelastic center-of-pressure increment with Mach number is
due to the formation of supersonic flow over the crew module. Atlow
transonic Mach numbers, this supersonic flow is terminated by a
shock near the crew module. Aft movement of the shock from the
crew module to the frustum with increasing Mach number between
Mach 1.2 and 1.5 is the cause of the downward trend in the aeroelastic
center-of-pressure increment over a very short Mach number range.
Because of shock motion, the transonic Mach number range is
substantially more sensitive to grid resolution than either the
subsonic or supersonic ranges. At Mach 1.20, the solution on the
baseline and fine grids shows a significantly smaller shift than does
the coarse grid solution. Likewise, at Mach 0.90, both the baseline
and fine grids show a center-of-pressure aeroelastic increment that is
smaller than the coarse solution. These results suggest that the coarse
solution may overpredict the change in the center of pressure through
the transonic range.
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Fig. 4 Effect of grid resolution on (Ac.p.),., AIIM1 model at ¢,,,,,.
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Fig. 5 Effect of angle of attack on (A c.p.),., coarse grid, AIIM1 model
at qnom .

The flexibility-induced center-of-pressure increments at 2.5 and
8 deg angles of attack are shown in Fig. 5. At 8 deg, the aeroelastic
center-of-pressure increment is much lower than at 2.5 but still
positive. These results most likely reflect the fact that shock strength
and movement are less pronounced and z force is larger at the higher
angles of attack than at a low angle of attack.

Figure 6 presents a comparison of the aeroelastic center-of-
pressure increment due to the fully interactive CAE analysis with that
due to the FRILLS solutions. FRILLS predicts the largest aeroelastic
center-of-pressure increment at Mach 1.55, whereas the fully
coupled aeroelastic solution puts it at Mach 1.2. The FRILLS
aeroelastic center-of-pressure increment peaks at a somewhat lower
value than does the CAE solution. At Mach 4.5, the solutions by the
two methods are very similar, whereas at Mach 0.5, the aeroelastic
center-of-pressure increment due to the FRILLS method is somewhat
higher. These results indicate that the static aeroelastic solutions are
most sensitive in the transonic Mach number range to grid resolution,
angle of attack, and the method of simulation. It is most important to
notice that the commonly used FRILLS method may in fact be
nonconservative in this Mach range.

C. Dynamic Aeroelastic Results

Time-accurate aeroelastic analyses have been performed to assess
dynamic aeroelastic stability. To provide an initial assessment of
overall aeroelastic characteristics of the vehicles, coarse grid
dynamic computations were performed at all analysis conditions at
a=0and2.5deg (e =5 degat Mach0.5), and at nominal and 1.32
times nominal dynamic pressure. The measurement of damping
required excitation of adynamic solution by an initial modal velocity.
Once a solution was obtained, the log decrement method was applied
to the first three or four cycles of oscillation of the modal time
histories.

l Symbol Method deg.
08 ©—FUN3D CAE 2.5
3 [J |FUN3D CAE 5.0
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0.2F
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0>\..ll\..ll\‘..l\llllw‘..l
0 1 2 3 4 5

Mach number
Fig. 6 Effect of solution method on (Ac.p.),., coarse grid, AIIM1
model at q,,,,,,.
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Figure 7 shows the minimum modal aerodynamic damping at each
trajectory condition. The figure plots the ratio of aerodynamic modal
damping to critical structural damping. Typically, the least stable
mode is the first mode, but at some conditions at which all modes are
damped, a higher mode may prove to be the most lightly damped. At
high supersonic and low subsonic Mach numbers, the magnitude of
damping of the least stable mode is small. In the transonic range,
there is a negative dip in damping. Significantly negative aero-
dynamic damping of the first mode occurs over a range from just
below Mach 1.0 to around Mach 1.20. The minimum aerodynamic
damping of mode 1 is at Mach 1.0.

Having identified the most critical condition to be at Mach 1.0,
additional analyses are focused on understanding the behavior of the
vehicle at that condition. A study of the effect of grid resolution on
the aerodynamic damping was performed. Results are shown in
Fig. 8. In that and remaining figures, left-hand direction represents
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positive aerodynamic damping while right represents negative
aerodynamic damping. Time-accurate CAE solutions are computed
using the coarse, baseline, and fine grids. Each solution is initiated by
the same excitation of each mode. Regarding the damping values
shown in Fig. 8, modes 3 and higher show very little sensitivity to
grid resolution. Mode 2 damping increases with grid resolution,
while mode 1 computed with the fine grid is much more undamped
than with the other grids. The conclusion from this grid study is that
even the fine grid does not show a sufficiently converged damping of
the first mode oscillation.

Because of constraints on available computing, the remaining
results were computed with the coarse grid. Figure 9 provides a
comparison the damping of the fully coupled time-accurate aero-
elastic solutions with the linearized FRILLS method. The condition
is Mach 1.0 at nominal dynamic pressure using the coarse grid. The
aerodynamic damping of modes 3 and higher are very similar
between the two methods. On the other hand, the two methods
produce damping values of modes 1 and 2 that are much different.
The FRILLS method indicates that modes 1 and 2 are strongly
damped for both the AIIM1 and the AIIM1-TOI structural models.
The dynamic FUN3D solutions indicate mode 2 to be damped while
mode 1 is undamped. Itis also interesting to note that the AIIM1-TOI
model shows a greater separation in damping of the first two modes
than does the AIIM1 model, as indicated mainly by the much more
negative modal aerodynamic damping in the AIIM1-TOI mode 1.

Because the amplitudes of modes 1 and 2 are nearly identical but
orthogonal, it was of interest to investigate the cause of the difference
in the damping of the two modes at Mach 1.0. The results of a study of
the influence of OML on the dynamic aeroelastic behavior of the
vehicle are shown in Figs. 10a and 10b. On the left is shown the
damping of the original OML (with all protuberances) at q,om,
repeated from Fig. 9b, and 1.32¢,,,,,. Figure 10b shows the damping
from a computation using a clean OML with ring protuberances only;
all other protuberances were removed. The damping of modes 1 and
2 of the clean OML are nearly identical. These results indicate that
the reason for the strongly damped mode 2 and undamped mode 1 is
the effect that protuberances have on the vehicle aerodynamics.
Apparently, an asymmetry in the locations of protuberances causes
the predominantly lateral mode 2 to be damped and the predom-
inantly longitudinal mode 1 to be undamped.

V. Conclusions

This paper discussed two areas in which CAE analyses have been
performed in the support of developing the Ares I launch vehicle. The
firstis an understanding of the influence of flexibility on static vehicle
response. The vehicle displays considerable sensitivity of center-of-
pressure aeroelastic increment to grid resolution, solution method,
and freestream Mach number in the transonic speed range. Between
Mach 1 and the maximum dynamic pressure condition, there
is a large positive center-of-pressure increment due to flexibility
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Fig. 9 Effect of structural model and solution method on damping, coarse grid, Mach 1.00, « = 0 deg at q,,,,,-
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(positive forward). Through this Mach range, there is also a large and
rapid change in the aeroelastic center-of-pressure increment with
increasing Mach number. A second area was an assessment of the
dynamic aeroelastic stability of the launch vehicle. The modal
aerodynamic damping values were computed from a log decrement
of the time history of the fully coupled aeroelastic solutions.
Analyses over the complete ascent trajectory have been presented,
using a time-marching dynamic CFD based aeroelastic analysis. In
the transonic Mach range, the modal aerodynamic damping has a
negative dip. The largest negative damping is at Mach 1. The AIIM1-
TOI structural model, with its added isolator springs, results in a
more negative modal aerodynamic damping than the AIIM1 model.
Selected conditions also were presented to compare a full aeroelastic
interaction with results derived from the method of quasi-steady
line loads. The modal aerodynamic damping values from a full
aeroelastic interaction are compared with the eigenvalues of
linearized equations derived from quasi-steady line loads. Both static
and dynamic aeroelastic results show that, away from the transonic
Mach range, the two methods agree reasonably well. The methods
agree very well in the supersonic Mach range. In the transonic range,
the dynamic aeroelastic stability results calculated using the quasi-
steady method do not agree well with those due to a fully coupled
aeroelastic time-marching CFD analysis. In either the static or
dynamic sense, the method of quasi-steady line loads produces
results that are significantly nonconservative. The present results
suggest at the very least that, through the transonic Mach range, a
method that provides the physically correct time-accurate fluid/
structure interaction is needed to predict dynamic flexible vehicle
behavior.

Appendix

The matrices [T,] and [T ] used in Egs. (11) and (12) relate the y and
z displacements to the local angles of sideslip and attack. They are
defined by

[0 1 0 000

[T)]:_
0 0 0 07

7] =- (A1)
0 0 0 00 1]

[T,] and [T,] are Ny, x 3N;, matrices. The 3N, x N, matrix [5‘]
relates the y and z modal displacements to the matrices d[¢]/da and
d[c]/dpB. [S] is defined as

r1 0 0 07
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
[S]= (A2)
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
LO O 0 1.4
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