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Motivation

Sensitivity Anaylsis

Sensitivity Analysis Methods compute derivatives of outputs with
respect to inputs.
With the adjoint, we go backwards in time to find the sensitivity of
outputs to inputs.
The computational cost of the Adjoint method DOES NOT scale
with the number of gradients computed.
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Motivation

Adjoint Flow-Field
Sensitivities propagate upstream

From Wang and Gao, 2012
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Motivation

Sensitivity Analysis Applications
Aerodynamic Shape Optimization

From Jameson 2004
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Motivation

Sensitivity Analysis Applications
Error Estimation and Mesh Adaptation

From Venditti and Darmofal, 2003
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Motivation

Sensitivity Analysis Applications
Other Applications

From University of Miami CCS

Flow Control
Uncertainty Quantification
and many more...
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Motivation

High Fidelity Model Issue

From DOE

As computers become more powerful, high fidelity turbulence
models such as LES will become increasingly popular.
High fidelity models capture the chaotic nature of turbulent flows.
However, traditional sensitivity analysis methods break down
when applied to chaotic fluid flows.
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Motivation

Chaotic, Turbulent Flow-fields
Unsteady Wakes

From E. Nielsen
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Motivation

Chaotic, Turbulent Flow-fields
Aeroaccoutics

LEFT: From E. Nielsen RIGHT: From TU Berlin
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Motivation

Chaotic, Turbulent Flow-fields
Mixing

From J. Larsson, Stanford University
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Chaotic Sensitivity Analysis Issues Overview

Traditional Forward Sensitivity Analysis

Interested in the long time averaged quantity J, governed by a
system of equations f with some design parameter(s) s:

J̄ =

∫ T

0
J(u, s)dt ,

∂u
∂t

= f (u, s)

Solve the tangent equation for v = ∂u
∂s :

∂v
∂t

=
∂f
∂u

v +
∂f
∂s

Compute the sensitivity of J̄ to s:

dJ̄T

ds
=

∫ T

0

∂J
∂u

v +
∂J
∂s

dt
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Chaotic Sensitivity Analysis Issues Overview

Main Issue

For chaotic systems, this does not work, because:

dJ̄∞

ds
6= lim

T→∞

dJ̄T

ds

This is because the tangent solution v diverges for chaotic
systems. Counter-intuitively, increasing T can exacerbate this
divergence.
Adjoint sensitivity analysis breaks down for a similar reason.
This property of chaotic systems has been shown by Lea et al. for
the Lorenz Attractor.
This problem exists for chaotic PDEs as well.
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Chaotic Sensitivity Analysis Issues Kuramoto-Shivashinsky Equation

Chaotic KS Equation Solution

∂u
∂t

= −u
∂u
∂x
− 1

R
∂2u
∂x2 −

∂4u
∂x4

R = 2.0 for Chaos in space and time.
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Chaotic Sensitivity Analysis Issues Kuramoto-Shivashinsky Equation

Objective Function

J̄T =
1
T

∫ T

0

∂u
∂t

dt
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Chaotic Sensitivity Analysis Issues Kuramoto-Shivashinsky Equation

Tangent and Adjoint Solutions

Both Tangent and Adjoint solutions diverge exponentially for the
KS equation.
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Chaotic Sensitivity Analysis Issues NACA 0012

NACA 0012 Airfoil Vorticity Contours
Mach 0.1, Angle of Attack 20◦, Re = 10000
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Chaotic Sensitivity Analysis Issues NACA 0012

NACA 0012 Airfoil Vorticity Contours
Mach 0.1, Angle of Attack 20◦, Re = 10000
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Chaotic Sensitivity Analysis Issues NACA 0012

Drag Coefficient Time History
Aperiodicity indicates that the flow is chaotic
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Chaotic Sensitivity Analysis Issues NACA 0012

Adjoint Residual L2 Norm
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Least Squares Sensitivity Method Overview

Least Squares Sensitivity Method: The Basics

A chaotic system has at least three different modes.
An unstable mode, associated with a positive Lyapunov Exponent.
A stable mode, associated with a negative Lyapunov Exponent.
A neutrally stable mode, associated with a zero Lyapunov
Exponent.

The unstable mode is responsible for the divergence of the
tangent and adjoint equations.
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Least Squares Sensitivity Method Overview

Least Squares Sensitivity Method: The Basics (cont’d)

Solve for stable modes forwards in time and solve unstable modes
backward in time to prevent divergence of tangent and adjoint
solutions.
This solution is called the "Shadow Trajectory" (Wang, 2012) and
is the least divergent tangent solution.
Find the shadow trajectory by solving the following linearly
contrained, least squares problem:

min
η,v(t),0<t<T

‖v‖2, s.t .
∂v
∂t

=
∂f
∂u

v +
∂f
∂d

+ ηf , 0 < t < T

Patrick J. Blonigan (MIT) 8/28/2012 22 / 35



Least Squares Sensitivity Method Overview

Shadow Trajectory

Divergent and Shadow trajectories for the Lorenz Attractor.
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Least Squares Sensitivity Method Overview

LSS as a "Black Box"

J̄ =

∫ T

0
J(u, s)dt ,

∂u
∂t

= f (u, s)

Inputs:
Forward Solution: ui

Design Variable(s): s
Operator values fi
Operator design parameter sensitivity ∂f

∂s i

Objective Function Sensitivity: ∂J
∂u i

Objective Function Sensitivity: ∂J
∂s i

Jacobian matricies: ∂fi
∂ui

Ouputs:

Sensitivities: dJ̄
ds
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Least Squares Sensitivity Method Overview

KKT System
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Fi =
I

∆t
, Gi = −

I

∆t
+
∂f

∂u
(un, s), bi =

∂f

∂d
(ui , s), fi = f (ui ), i = 0, ...,m

The KKT matrix is a large, symmetric block matrix, where each block is n
by n for an n state system. Total size is 2mn + n + 1 by 2mn + n + 1 for
m time steps. For a discretization with a five element stencil, there are
approximately 23mn non-zero elements in the matrix.

For the Airfoil simulation shown earlier the KKT matrix would be
3.2× 109 by 3.2× 109 with 3.7× 1010 non-zero elements.
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Least Squares Sensitivity Method Multigrid Elimination

Multigrid Elimination

New method to reduce memory usage when solving the LSS KKT
system.
Gaussian Elimination conducted like 1D Multigrid.
Eliminate every 2nd equation, reduce the system from
2mn + n + 1 to n + 1 equations.
No need to save coefficients on every grid.
Potentially Parallelizable.
Method can be used to solve any unsteady system and its adjoint
simultaneously.
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Least Squares Sensitivity Method Multigrid Elimination

Schur Complement

The KKT matrix is symmetric indefinite, so it becomes singular on
coarser grids due to poor scaling.
Instead, conduct ME on the KKT system’s Schur Complement,
which is SPD (ignoring the constraint equation).
Original System: [

I BT

B 0

] [
v
λ

]
= −

[
0
b

]
Schur Complement:

BBTλ = b
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Least Squares Sensitivity Method Multigrid Elimination

Elimination Scheme
Fine Grid Equations

Li−1λi−2 + Di−1λi−1 + Ui−1λi + fi−1η = bi−1 (1)

Liλi−1 + Diλi + Uiλi+1 + fiη = bi (2)

Li+1λi + Di+1λi+1 + Ui+1λi+2 + fi+1η = bi+1 (3)
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Least Squares Sensitivity Method Multigrid Elimination

Elimination Scheme
Coarse Grid Equation

LIλi−2 + DIλi + UIλi+2 + fIη = bI

Where:

LI = −LiD−1
i−1Li−1

DI = −LiD−1
i−1Ui−1 + Di − UiD−1

i+1Li+1

UI = −UiD−1
i+1Ui+1

fI = −LiD−1
i−1fi−1 + fi − UiD−1

i+1fi+1

bI = −LiD−1
i−1bi−1 + bi − UiD−1

i+1bi+1

A similar method is used to restrict the constraint equation and the
equation for the long-time averaged gradient of interest.
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Least Squares Sensitivity Method Multigrid Elimination

LSS and ME applied to the Lorenz Equations

Lorenz Equations:

dx
dt

= s(y − x),
dy
dt

= x(r − z)− y ,
dz
dt

= xy − bz

Long time averaged z gradients computed by LSS/ME:

dz̄
ds

= 0.1545,
dz̄
dr

= 0.9709,
dz̄
db

= −1.8014

Gradients computed by finite difference/linear regression:

dz̄
ds

= 0.16± 0.02,
dz̄
dr

= 1.01± 0.04,
dz̄
db

= −1.68± 0.15
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Least Squares Sensitivity Method Multigrid Elimination

Avoiding inverting Matrices

ME can be implemented so that no Jacobian matrices need to be
inverted
Consider the following system: D1 U1 0

L2 D2 U2
0 L3 D3

 λ1
λ2
λ3

 =

 b1
b2
b3


The system is restricted using ME:

Aλ2 = b

with:

A = −L2D−1
1 U1 + D2 − U2D−1

3 L3

b = −L2D−1
1 b1 + b2 − U2D−1

3 b3
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Least Squares Sensitivity Method Multigrid Elimination

Avoiding inverting Matrices (cont’d)

This system can be solved iteratively, using some preconditioner
P:

P∆x = b − Axk , xk+1 = xk + ∆x

Where xk is the value of λ2 after k iterations.
Decompose Axk into three parts:

Axk = −L2D−1
1 U1xk + D2xk − U2D−1

3 L3xk = α + β + γ
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Least Squares Sensitivity Method Multigrid Elimination

Avoiding inverting Matrices (cont’d)

Consider α:
−L2D−1

1 U1xk = α

Compute yk = U1xk :
−L2D−1

1 yk = α

Next, define zk = D−1
1 yk . Itertively solve:

D1zk = yk

Use the result to compute α:

α = −L2zk

This idea can be applied to a much larger system and allows ME
to be conducted without inverting any Jacobian matricies.
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Conclusion

Conclusion

Traditional sensitivity analysis methods are unable to compute
sensitivities of long-time averaged quantities in CFD simulations.
The LSS method could compute these quantities in an efficient
manner if applied with Multigrid elimination.

Future Work
Further develop and implement ME without inverting Jacobians,
ideally in C, C++ or Fortran.
Apply LSS/ME to the KS equation.
Validate LSS on aerodynamic test cases.
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Conclusion
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