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I. Introduction

AXIMUM lift characteristics and vibratory loading of the

rotor are limiting factors in rotorcraft performance [1]. To
expand the range of helicopter capabilities, active control methods to
improve performance and reduce vibratory loading are being
developed. For example, Grohmann et al. [2] produced oscillatory
trailing-edge deflections and active trailing-edge tabs by applying
layers of piezoelectric fibers on the skin of an airfoil section and
activating the piezoelectric fibers at frequencies ranging from
@/Q = 2 to 6. In hover, aerodynamic pressures reduced the con-
trol authority by approximately 20%, indicating that aeroelastic
effects must be included to produce an accurate aeroelastic analysis
of the blade section. Gandhi et al. [3] designed and optimized a
variable-camber blade section by integrating piezoelectric stacks
into the blade structure and applying a compliant skin on the blade
surface.

Highly compliant materials are applied in the construction of
active airfoils to reduce the work required to deform the airfoil.
Flexibility in camber can adversely affect the stability characteristics
of a rotor blade. To determine the effects of camber flexibility on
aeroelastic stability, Murua et al. [4] conducted a two-dimensional
numerical aeroelastic experiment using the aerodynamic model of
Peters et al. for flexible airfoils [5] and included pitch, plunge, and
parabolic camber modes. Numerical results indicated that camber
effects alone can cause flutter and that the camber mode significantly
influences stability boundaries when coupled with pitch and plunge
modes. In forward flight and during maneuvers, the increased
presence of transonic flow, dynamic stall, and wake effects add to
the complexity of the physics. Thus, the solution of the Navier—
Stokes equations is required to obtain accurate performance
characteristics.

The ability of a surface-conforming aeroelastic methodology
formed from coupling an unsteady Reynolds-averaged Navier—
Stokes (URANS) computational fluid dynamics (CFD) solver with a
computational structural dynamics (CSD) code to predict pitch/
plunge and parabolic camber flutter speeds of a thin symmetrical
airfoil in incompressible and compressible flow is demonstrated in
this work. This CFD/CSD method is believed to be one of the first
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approaches that includes full-surface morphing for rotating blades in
the current published literature.

II. Aeroelastic Methodology

The aeroelastic method couples a finite-element CSD code
(University of Michigan’s NLABS [6,7]) with a URANS CFD solver
(NASA’s FUN3D [8,9]) at each time step. The development and
validation of this methodology is discussed in Cook [10] and
Thepvongs et al. [11].

The fluid-structure interface applied in this effort was originally
developed for three-dimensional morphing rotor blades [11] and has
been modified for application to two-dimensional flexible airfoils
[10]. In this methodology the aerodynamic forces on each cell face on
the surface of the blade are imported into NLABS and interpolated
onto an interface grid, based on an inverse isoparametric mapping
(IIM) method [12]. These forces are applied in the structural model
to compute beam deflections and cross-sectional deformations.
Displacements are then interpolated at CFD grid nodes using the IIM
method and exported to the CFD solver. Beam deflections were
eliminated by increasing the bending and torsional stiffnesses to
10%° N - m?, which effectively modeled a rigid blade in bending and
torsion with deflections less than 107 chord. Substantiation of
spatial and temporal independencies for the grids applied in this note
has been demonstrated in Cook [10] and Thepvongs et al. [11].

To verify the methodology, the stability of an airfoil section was
evaluated with both a single parabolic camber degree of freedom as
well as with pitching and plunging degrees of freedom. The results for
the parabolic camber flutter evaluation were compared with a closed-
form approximate solution for a NACA 0012 airfoil, which is in
accordance with thin airfoild theory, in the incompressible Mach
range by Murua et al. [4]. This solution depends only on the inverse
mass ratio k = zp,,b/m. Results that include a lower-fidelity
aerodynamics model (the finite state of Peters et al. [5]) and a
URANS aerodynamics module with the Menter k- turbulence
model [13] were compared. At higher mass ratios, the results of
the two methods were comparable to the approximate solution,
but at lower mass ratios, differences are observed in the results of
potential-based linear aerodynamic methods and the nonlinear CFD
simulations (Fig. 1a[14,15]). In potential-based methods, viscosity is
neglected, airfoil deflections are assumed to be small relative to chord
length, disturbance velocities are small compared to freestream
velocity, and the wake is assumed to be one-dimensional. Differences
in flutter speed, blade loading, and structural deflection predictions
based on potential methods and CFD are further analyzed and
discussed in Cook [10] and Thepvongs et al. [11].

A two-dimensional pitch—plunge flutter analysis with a rigid
NACA 0012 airfoil was also evaluated. Comparisons with Theodorsen
and Garrick [16], corrected by Zeiler [15], were compared with the two
aerodynamic modules. In these cases, the location of the elastic axis,
a, was —0.3 semichords aft the midchord; the inverse mass ratio
Kk = mp,b*/m, where p., is the freestream air density, b is the
semichord, and m is the blade mass per unit span, was 0.05; the radius
of gyration, r,, was 0.5; and center of mass, x,, was varied at 0.0, 0.1,
and 0.2 semichords aft of the elastic axis in F-S/NLABS simulations.
In FUN3D/NLABS simulations, results were generated only for
x, = 0.1. In each case, the flutter speed predictions were within 3% of
those of Zeiler [15]. Results correlate well at x, = 0.1 (5% difference
in the flutter speed) when w,/w, < 0.9, whereas the CFD-based
solution deviates up to 47% at larger natural frequency ratios
(w; /o, = 1.4,Fig. 1b). This difference at the larger frequency ratios is
because the pitch mode begins to dominate the instability. The physical
assumptions of the two aerodynamic models begin to deviate as the
angle of attack increases.
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Fig.1 Flutter speeds for camber and pitch-plunge modes for the NACA 0012 with comparisons to Murua [4], Palacios [14], and Zeiler [15].

III. Stability Analysis of Two-Dimensional
Airfoil Sections

The finite-state/NLABS and URANS/NLABS analyses have also
been applied to a NACA 23012 airfoil at compressible velocities
to determine the minimum stiffness required for a flexible airfoil
section. The airfoil is that of the rotor in the hover tip vortex structure
test [17]. The torsion and flap stiffnesses (126 N - m/rad and
15.4 kN/m, respectively) were selected so that the natural fre-
quencies correspond to the first natural frequencies of twist
(415 rad/s) and flap (121 rad/s) of the rotor rotating at 109 rad/s.

Simulations were performed at three nondimensional freestream
velocities Uy, = Vo /wsb of 6.5, 8.7, and 10.8 (M, = 0.48, 0.64,
and 0.80, respectively). These correspond to the velocity at the rotor
75% radial station and tip in hover and the maximum tip velocity
during forward flight at an advance ratio of y = 0.25. The inverse
mass ratio is 0.0148, and the elastic axis and center of mass are
located at the quarter-chord. Spatial and temporal independence were
ensured by following the guidelines of studies performed previously
on the NACA 0012 airfoil.

Results with finite-state aerodynamics indicate that static di-
vergence due to camber—pitch coupling is encountered before the
onset of flutter. The static deflections of the airfoil (Fig. 2) identify the
minimum frequency ratios required for stability at U, = 6.5, 8.7,
and 10.8 to be approximately ws/w, = 12, 24 and 72, respectively.

In cases where the flow remains subsonic (M, = 0.48 and 0.64 at
0 < a < =3 deg), the pitch deflections of the finite-state/NLABS and
FUN3D/NLABS simulations agree to within 10-12%. As stiffness
decreases, the airfoil deflections increase, and the flow becomes
transonic. The predictions of the two aerodynamic models begin to
diverge, resulting in differences in the predicted pitch angles of
greater than 41%, regardless of camber stiffness. In all cases (Figs. 2a
and 2b), the magnitude of the mean pitch and camber deflections
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predicted by the finite-state aerodynamics are larger than those
predicted by URANS.

Large airfoil deflections and transonic flow in the URANS
simulations produce separation and shed vortices that introduce
unsteady pressure loads that drive the oscillatory deflections. These
vortices are not modeled by the finite-state aerodynamic model in
NLABS, and as a consequence, the NLABS deflections were steady.

The load and deflections are further examined at M, = 0.64 to
understand the interaction between camber, pitch, and plunge modes.
As the camber stiffness is decreased, pitch deflections become larger,
and nonlinear aerodynamic effects cause unsteady airfoil loads
resulting in limit-cycle oscillations at low frequencies due to the
plunge mode and higher frequencies due to the pitch and camber
modes. As camber stiffness is decreased, the camber deflections
become larger and begin to dominate the physics. These high-
frequency oscillations also drive pitch oscillations, while the plunge
mode is damped [10].

A single camber oscillation period illustrates the influence of the
transonic flow and separation vortices. Flow contours are examined
at nondimensional time intervals s = 0.9, from 0.0 to 7.2 (Fig. 3),
where s = #(U,/b). Ats = 1.8, avortex forms on the lower surface
of the airfoil due to the large camber deflection (Fig. 3¢c). As the
vortex travels along the lower side of the airfoil, it creates a low-
pressure region near the midchord, driving a negative camber
deflection (Fig. 3, s = 2.7-4.5). At the same time, a shock forms at
60%c on the upper surface and moves forward until it reaches the
leading edge (Fig. 3b, s = 2.7-6.3). The shock induces boundary-
layer separation, resulting in a new vortex on the upper surface of the
airfoil (Fig. 3c).

As this vortex passes the midchord of the airfoil, it creates a low-
pressure region on the upper surface, which drives a positive camber
deflection (Fig. 3d, s =6.3-7.2, s = 0.0-1.8). At s = 1.8, the
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Fig.2 Mean deflections for NACA 23012 airfoil. The amplitude of unsteady deflections is indicated in parentheses when present. The response was steady

for all cases when finite-state aerodynamics were used.
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Fig. 3 Mach, vorticity, and pressure contours for M, = 0.64, w;/w, = 12.0; s = 0 for top images and 7.2 for bottom images with step of As = 0.9

between images.

vortex on the upper surface reaches the trailing edge as another vortex
forms on the lower surface at the leading edge, and the cycle repeats.

IV. Conclusions

Two-dimensional aeroelastic analyses of a flexible symmetric
airfoil in incompressible and compressible flow have been performed
using a CSD solver, with aerodynamics based on finite-state flexible
thin airfoil theory and a coupled URANS CFD/CSD methodology. In
the incompressible cases, the CFD/CSD methodology is verified
through comparison to analytical solutions for camber stability based
on finite-state theory. The following conclusions can be made.

1) At high inverse mass ratios, the prediction of the flutter speeds
by both methods for the camber mode compare well. The finite-state
aeroelastic flutter speed solutions are lower at very low inverse
mass ratios due to the different physical assumptions in the two
aerodynamics models. For the finite-state acrodynamic analysis, this
includes small perturbations, inviscid flow, and a linear wake.

2) Predicted flutter speeds using URANS and finite-state aero-
dynamic models for a pitching and plunging airfoil are comparable

when the instability is dominated by the plunge mode. As the plunge-
to-pitch frequency ratio w; /@, increases, the instability is dominated
by pitching motion, which the finite-state-based aeroelastic method
cannot accurately capture and results in a lower flutter speed
prediction.

3) In compressible subcritical subsonic flow, finite-state-based
aeroelastic solutions predict 10—12% larger pitch deflections, whereas
the URANS aeroelastic stability limits agree with classic thin air-
foil theory. In transonic conditions finite-state-based aeroelastic
simulations predicted much larger pitch deflections in all cases due to
the lack of aerodynamic damping inherent in URANS.

4) A novel CFD/CSD coupling method has successfully predicted
limit-cycle oscillations of an airfoil when transonic flow and leading-
edge separation are present. Finite-state aerodynamics were not
capable of modeling these nonlinear aerodynamic phenomena.
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