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Non-linear entropy stability and a summation-by-parts framework are used to derive 
entropy stable wall boundary conditions for the three-dimensional compressible Navier–
Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved 
when the new boundary conditions are coupled with an entropy stable discrete interior 
operator. The data at the boundary are weakly imposed using a penalty flux approach and 
a simultaneous-approximation-term penalty technique. Although discontinuous spectral 
collocation operators on unstructured grids are used herein for the purpose of
demonstrating their robustness and efficacy, the new boundary conditions are compatible 
with any diagonal norm summation-by-parts spatial operator, including finite element, 
finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction 
procedure via reconstruction schemes. The proposed boundary treatment is tested for 
three-dimensional subsonic and supersonic flows. The numerical computations corroborate 
the non-linear stability (entropy stability) and accuracy of the boundary conditions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

During the last twenty years, scientific computation has become a broadly-used technology in all fields of science and en-
gineering due to a million-fold increase in computational power and the development of advanced algorithms. However, the 
great frontier is in the challenge posed by high-fidelity simulations of real-world systems, that is, in truly transforming com-
putational science into a fully predictive science. Much of scientific computation’s potential remains unexploited—in areas 
such as engineering design, energy assurance, material science, Earth science, medicine, biology, security and fundamental 
science—because the scientific challenges are far too gigantic and complex for the current state-of-the-art computational 
resources [1].

In the near future, the transition from petascale to exascale systems will provide an unprecedented opportunity to attack 
these global challenges using modeling and simulation. However, exascale programming models will require a revolution-
ary approach, rather than the incremental approach of previous projects. Rapidly changing high performance computing 
(HPC) architectures, which often include multiple levels of parallelism through heterogeneous architectures, will require 
new paradigms to exploit their full potential. However, the complexity and diversity of issues in most of the science com-
munity are such that increases in computational power alone will not be enough to reach the required goals, and new 
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algorithms, solvers and physical models with better mathematical and numerical properties must continue to be developed 
and integrated into new generation supercomputer systems.

In computational fluid dynamics (CFD), next generation numerical algorithms for use in large eddy simulations (LES) 
and hybrid Reynolds-averaged Navier–Stokes (RANS)–LES simulations will undoubtedly rely on efficient high-order accurate 
formulations (see, for instance, [2–21]). Although high order techniques are well suited for smooth solutions, numerical 
instabilities may occur if the flow contains discontinuities or under-resolved physical features. A variety of mathematical 
stabilization strategies are commonly used to cope with this problem (e.g., filtering [22], weighted essentially non-oscillatory 
(WENO) [23], artificial dissipation, over-integration, and limiters [2]), but their use for practical complex flow applications 
in realistic geometries is still problematic.

A very promising and mathematically rigorous alternative is to focus directly on discrete operators that are non-linearly 
stable (entropy stable) for the compressible Navier–Stokes equations. These operators simultaneously conserve mass, mo-
mentum, energy, and enforce a secondary entropy constraint. This strategy begins by identifying a non-linear neutrally 
stable flux for the Euler equations. An appropriate amount of dissipation can then be added to achieve the desired smooth-
ness of the solution. Regardless of whether dissipation is added, enforcing a semi-discrete entropy constraint enhances the 
stability of the base operator.

The idea of enforcing entropy stability in numerical operators is quite old [24], and is commonly used for low-order 
operators [25,26]. An extension of these techniques to include high-order accurate operators recently appears in refer-
ences [27–30] and provides a general procedure for developing entropy conservative and entropy stable, diagonal norm 
summation-by-parts (SBP) operators for the compressible Navier–Stokes equations. The strong conservation form repre-
sentation allows them to be readily extended to capture shocks via a comparison approach [25,28]. The generalization to 
multi-domain operators follows immediately using simultaneous-approximation-term (SAT) penalty type interface condi-
tions [31], whereas the extension to three-dimensional (3D) curvilinear coordinates is obtained by using an appropriate 
coordinate transformation which satisfies the discrete geometric conservation law [32]. See LeFloch and Rohde [33] for a 
more comprehensive discussion on high order schemes and entropy inequalities. Therein, the focus is on the approxima-
tion of under-compressive, regularization-sensitive, non-classical solutions of hyperbolic systems of conservation laws by 
high-order accurate, conservative, and semi-discrete finite difference methods.

Several major hurdles remain, however, on the path towards complete entropy stability of the compressible Navier–Stokes 
equations including shocks. A major obstacle is the need for solid wall viscous boundary conditions that preserve the 
entropy stability property of the interior operator. In fact, practical experience indicates that numerical instability frequently 
originates at solid walls, and the interaction of shocks with these physical boundaries is particularly challenging for high 
order formulations. An important step towards entropy stable boundary conditions appears in the work of Svärd and Özcan 
[34]. Therein, entropy stable boundary conditions for the compressible Euler equations are reported for the far-field and for 
the Euler no-penetration wall conditions, in the context of finite difference approximations.

The focus herein is on building non-linearly stable wall boundary conditions for the compressible Navier–Stokes equa-
tions; primarily a task of developing stable wall boundary conditions for the viscous terms. At the semi-discrete level, the 
proposed boundary treatment mimics exactly the boundary contribution obtained by applying the entropy stability analysis 
to the continuous, compressible Navier–Stokes equations. Furthermore, the new technique enforces the Euler no-penetration 
wall condition as well as the remaining no-slip and thermal wall conditions in a weak sense (using the SAT approach). The 
thermal boundary condition is imposed by prescribing the heat entropy flow (or heat entropy transfer), which is the pri-
mary means for exchanging entropy between two thermodynamic systems connected by a solid viscous wall. Note that the 
entropy flow at a wall is a quantity that in some experiments is directly or indirectly available (e.g., through measurements 
of the wall heat flux and temperature in some supersonic or hypersonic wind tunnel experiments), or can be estimated 
from geometrical parameters and fluid flow conditions for the problem at hand. For fluid–structure interaction simulations, 
(e.g., supersonic and hypersonic flow past aerospace vehicles, heat-exchangers), the entropy flow can be numerically com-
puted at no additional cost while numerically solving the coupled systems of partial differential equations of the continuum 
mechanics and fluid dynamics.

Historically, most boundary condition analysis for the compressible Navier–Stokes equations is performed at the linear 
level by linearizing about a known state; a rich collection of literature is available [35–38]. The non-linear wall boundary 
conditions developed herein are fundamentally different from those derived using linear analysis and cannot rely on a 
complete mathematical theory. In fact, a fundamental shortcoming that limits further development of any entropy stable 
boundary conditions is the incomplete development of the analysis at the continuous level for proving well-posedness 
of the compressible Navier–Stokes equations. Nevertheless, the boundary conditions proposed herein is extremely powerful 
because they provide a mechanism for ensuring the non-linear stability in the L2 norm of the semi-discretized compressible 
Navier–Stokes equations. In fact, they allow for a priori bounds on the entropy function at the continuous and semi-discrete 
level when imposing “solid viscous wall” boundary conditions. The new boundary conditions are easy to implement and 
compatible with any diagonal norm SBP spatial operator, including finite element (FE), finite volume (FV), finite difference 
(FD) schemes and the more recent class of high-order accurate methods which include the large family of discontinuous 
Galerkin (DG) discretizations [39] and flux reconstruction (FR) schemes [40].

The robustness and accuracy of the complete semi-discrete operator (i.e., the entropy stable interior operator coupled 
with the new boundary conditions) is demonstrated by computing subsonic and supersonic flows past a 3D square cylinder 
without any stabilization technique (e.g., artificial dissipation, filtering, limiters, over-integration, de-aliasing, etc.), a feat 
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unattainable with several alternative approaches to wall boundary conditions based on linear analysis. In fact, instabilities 
are observed when wall boundary conditions designed with linear analysis are used in combination with highly clustered 
grids and/or high order polynomials, or very coarse grids near solid walls, which yield unresolved physical flow features.

The paper is organized as follows. In Section 2, the compressible Navier–Stokes equations, their entropy function and 
symmetrized form are introduced. Section 3 presents the entropy analysis of the viscous wall boundary conditions at the 
continuous level. Section 4 provides a discussion of the inviscid flux condition which allows the construction of high-order 
accurate entropy conservative and entropy stable fluxes at the semi-discrete level on unstructured grids, for the interior 
operator. The new entropy stable wall boundary conditions and their non-linear stability (entropy stability) analysis are 
presented in Section 5. Finally, the accuracy and high level of robustness of the proposed approach in combination with a 
discontinuous high-order accurate entropy stable interior operator are demonstrated in Section 6. Conclusions are discussed 
in Section 7.

2. The compressible Navier–Stokes equations

Consider a fluid in a domain � with boundary surface denoted by ∂�, without radiation and external volume forces. 
In this context, the compressible Navier–Stokes equations, equipped with suitable boundary and initial conditions, may be 
expressed in the form

∂q

∂t
+ ∂ f (I)

i

∂xi
= ∂ f (V )

i

∂xi
, x ∈ �, t ∈ [0,∞),

q|∂� = g(B)(x, t), x ∈ ∂�, t ∈ [0,∞),

q(x,0) = g(0)(x), x ∈ �, (1)

where the Cartesian coordinates, x = (x1, x2, x3)
� , and time, t , are the independent variables. Note that in (1) Einstein 

notation is used. The vectors q(x, t), f (I)
i = f (I)

i (q), and f (V )
i = f (V )

i (q, ∇q) are the conserved variables, and the inviscid and 
viscous fluxes in the i direction, respectively.1 Both boundary data, g(B) , and initial data, g(0) , are assumed to be bounded, 
L2 ∩ L∞ . Furthermore, g(B) is also assumed to contain (linearly) well-posed Dirichlet and/or Neumann and/or Robin data. 
The vector of the conservative variables is

q = (ρ,ρu1,ρu2,ρu3,ρE)� , (2)

where ρ denotes the density, u = (u1, u2, u3)
� is the velocity vector, and E is the specific total energy, which is the sum of 

the specific internal energy, e, (defined later) and the kinetic energy, 1
2 u ju j . The convective fluxes are

f (I)
i = (ρui,ρuiu1 + δi1 p,ρuiu2 + δi2 p,ρuiu3 + δi3 p,ρui H)� , (3)

where p, H and δi j are the pressure, the specific total enthalpy and the Kronecker delta, respectively. The viscous fluxes are

f (V )
i = (

0, τi1, τi2, τi3, τ jiu j − qi
)�

, (4)

where the shear stress tensor, τi j , assuming a zero bulk viscosity, is defined as

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− δi j

2

3

∂uk

∂xk

)
, (5)

and the heat flux, according to the Fourier heat conduction law, is

qi = −κ
∂T

∂xi
. (6)

The symbols T , μ = μ (T ) and κ = κ (T ) which appear in (5) and (6) denote the temperature, the dynamic viscosity and 
the thermal conductivity, respectively. The viscous fluxes in (4) can also be expressed as

f (V )
i = ci j

∂q

∂x j
= c′

i j
∂v

∂x j
, (7)

where ci j and c′
i j are variable five-by-five matrices2 and v = (ρ, u1, u2, u3, T )� is the vector of the primitive variables. The 

functional form of the matrices c′
i j is given in Appendix A. As we will show later, relation (7) is a very convenient form for 

the entropy stability analysis.
The constitutive relations for a calorically perfect gas are

e = cv T , h = H − 1

2
u j u j = cp T , (8)

1 The symbol ∇q denotes the gradient of the conservative variables.
2 The coefficient matrices ci j and c′

i j depend on the solution variables.
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where the symbols cv and cp denote the specific heat capacity at constant volume and constant pressure, respectively, and

p = ρR T , R = Ru

MW
, (9)

where Ru is the universal gas constant and MW is the molecular weight of the gas. The speed of sound for a perfect gas is

c = √
γ R T , γ = cp

cp − R
. (10)

In the entropy analysis that will follow, the definition of the thermodynamic entropy is the explicit form,

s = R

γ − 1
log

(
T

T∞

)
− R log

(
ρ

ρ∞

)
, (11)

where T∞ and ρ∞ are the reference temperature and density, respectively.
Note that in practical situations, most simulations are performed in computational space, that is, by transforming all 

grid elements in physical space to standard elements in computational space via a smooth mapping. However, to keep the 
notation as simple as possible, a uniform Cartesian grid is considered in the derivations presented herein. The extension to 
generalized curvilinear coordinates and unstructured grids follows immediately if the transformation from computational to 
physical space preserves the semi-discrete geometric conservation (GCL) [32].

2.1. Entropy function and entropy variables of the compressible Navier–Stokes equations

In the linear hyperbolic framework, L2 stability is sought as a discrete analogue for a priori energy estimates available in 
the differential formulation (e.g., Richtmyer and Morton [41] and Gustafsson, Kreiss and Oliger [35]; Kreiss and Lorenz [42]). 
In the context of non-linear problems dominated by non-linear convection, we seek entropy stability as a discrete analogue 
for the corresponding statement in the differential formulation [25]. Moreover, for systems of conservation laws, stability 
with respect to a mathematical entropy function is considered as an admissibility criterion for selecting physically relevant 
weak solutions. In fact, the entropy condition plays a decisive role in the theory and numerics of such problems as shown, 
for instance, by Lax [43] and Smoller [44].

Harten [45] and Tadmor [46] showed that systems of conservation laws are symmetrizable if and only if they are 
equipped with a convex mathematical entropy function. Given a set of conservation variables q(x, t), the entropy variables 
which symmetrize the system are defined as the derivatives of the mathematical entropy function with respect to q(x, t). 
Hughes and co-authors [24] extended these ideas to the compressible Navier–Stokes equations (1). Therein, it is shown 
that the mathematical entropy must be an affine function of the physical (or thermodynamic) entropy function and that 
semi-discrete solutions obtained from a weighted residual formulation based on entropy variables will respect the second 
law of thermodynamics. Hence, it is again found that the entropy function and the entropy variables are critical ingredients 
in the design of numerical schemes exhibiting non-linear stability.

Definition 2.1. A scalar function S = S(q) is an entropy function of Eq. (1) if it satisfies the following conditions:

• The function S(q) when differentiated with respect to the conservative variables (i.e., ∂ S/∂q) simultaneously contracts 
all the inviscid spatial fluxes as follows

∂ S

∂q

∂ f (I)
i

∂xi
= ∂ S

∂q

∂ f (I)
i

∂q

∂q

∂xi
= ∂ Fi

∂q

∂q

∂xi
= ∂ Fi

∂xi
, i = 1,2,3. (12)

The components of the contracting vector, ∂ S/∂q, are the entropy variables denoted as w� = ∂ S/∂q. Fi(q), i = 1, 2, 3, 
are the entropy fluxes in the three Cartesian directions.

• The new entropy variables, w , symmetrize Eq. (1):

∂q

∂t
+ ∂ f (I)

i

∂xi
− ∂ f (V )

i

∂xi
= ∂q

∂ w

∂ w

∂t
+ ∂ f (I)

i

∂ w

∂ w

∂xi
− ∂

∂xi

(̂
ci j

∂ w

∂x j

)
= 0, i = 1,2,3 (13)

with the symmetry conditions: ∂q/∂ w = (∂q/∂ w)� , ∂ f (I)
i /∂ w =

(
∂ f (I)

i /∂ w
)�

and ̂ci j = ĉ�
i j , with the matrices ĉi j in-

cluded in Appendix A.

The mathematical entropy is convex, meaning that the Hessian, ∂2 S/∂q2 = ∂ w/∂q, is symmetric positive definite (SPD),

ζ T ∂2 S

∂q2
ζ > 0, ∀ζ 
= 0, (14)

and yields a one-to-one mapping from conservation variables, q, to entropy variables, w� = ∂ S/∂q. The entropy and 
corresponding entropy flux are often denoted as entropy–entropy flux pair, (S, F ), [25].
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The symmetry of the matrices ∂q/∂ w , ∂ f (I)
i /∂ w indicates that the conservative variables, q, and the inviscid fluxes, f (I)

i , 
are Jacobians of scalar functions with respect to the entropy variables,

q� = ∂ϕ

∂ w
,

(
f (I)

i

)� = ∂ψi

∂ w
, (15)

where the non-linear function ϕ is called the potential and ψi, i = 1, 2, 3, are called the potential fluxes [25]. Just as the 
entropy function is convex with respect to the conservative variables (∂2 S/∂q2 is SPD), the potential function is convex with 
respect to the entropy variables.

Godunov [47] proved that (see Ref. [45] for a detailed summary of the proof):

Theorem 2.1. If Eq. (1) can be symmetrized by introducing new variables w, and q is a convex function of ϕ (the so-called potential), 
then an entropy function S(q) is given by

ϕ = w�q − S, (16)

and the entropy fluxes satisfy

ψi = w� f (I)
i − Fi, (17)

where ψi, i = 1, 2, 3, are the so-called potential fluxes. The potential and the corresponding potential flux are usually denoted as 
potential–potential flux pair, (ϕ, ψ), [25].

In the specific case of the compressible Navier–Stokes equations, the entropy–entropy flux pair is

S = −ρ s, Fi = −ρ ui s, i = 1,2,3, (18)

and the potential–potential flux pair is

ϕ = ρ R, ψi = ρ ui R, i = 1,2,3. (19)

Note that the mathematical entropy has the opposite sign of the thermodynamic entropy. To avoid confusion, herein entropy 
refers to the mathematical entropy unless otherwise noted. The entropy variables using the pair in (18) result in

w =
(

∂ S

∂q

)�
=

(
h

T
− s − uiui

2T
,

u1

T
,

u2

T
,

u3

T
,− 1

T

)�
. (20)

A sufficient condition to ensure the convexity of the entropy function S(q) (and, hence, a one-to-one mapping between the 
entropy variables (20) and the conservative variables (2)) is that ρ, T > 0 (for the proof see, for instance, Appendix B.1 in 
[28]). Expressly:

ζ T ∂2 S

∂q2
ζ T > 0, ∀ζ 
= 0, ρ, T > 0.

This (physical and mathematical) restriction on density and temperature weakens the entropy proof, making it less than 
full measure of non-linear stability. Another mechanism must be employed to bound ρ and T away from zero to guarantee 
stability and positivity; positivity preservation will not be considered herein.

Remark 2.1. Dafermos [48] showed that if system of conservation laws is endowed with a convex entropy function, S = S(q), 
a bound on the global estimate of S = S(q) can be converted into an a priori estimate on the solution vector q (e.g., the 
solution of (1)). In fact, the convexity of the entropy function leads to the local well-posedness of the Cauchy problem in a 
Sobolev space of sufficiently high order, as well as the L2-stability of the solution even within the broader class of entropy 
solution. The latter result is repeated here for completeness. Details of the proof can be found in Chapter 5 of Dafermos’ 
book [48] and the references therein, and in the recent work of Svärd [49].

Given a C3 entropy function S(q) and sufficiently smooth initial data q(x, 0), the bound on the conservative variables at 
time t f is related to the bound of the convex entropy function S(q) in the following way∫

�

q�(x, t f )q(x, t f )dx ≤ C[
∂2 S
∂q2 (t f )

]
min

+
∫
�

q(x,0)� q(x,0)dx, (21)

where 
[

∂2 S
∂q2 (t f )

]
min

> 0 is the minimum eigenvalue of the Hessian on the domain � (the Hessian is SPD, provided that 
ρ, T > 0), and C is an a priori known and bounded constant.

Remark 2.2. The semi-discrete entropy stability does not necessarily lead to fully discrete stability as is usually the case for 
linear partial differential equations (PDEs). However, as noted by Tadmor [25], entropy stability is enhanced by fully implicit 
time discretization. For example, the fully implicit backward Euler time discretization is unconditionally entropy-stable and 
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is responsible for additional entropy dissipation. In contrast, explicit time discretization, leads to entropy production. Thus, 
the entropy stability of explicit schemes hinges on a delicate balance between temporal entropy production and spatial 
entropy dissipation. For example, the fully explicit Euler time discretization does not conserve entropy except in the case 
of linear fluxes [33]. Consequently, both the fully explicit and fully implicit Euler differencing do not respect (non-linear) 
entropy conservation, independent of the spatial discretization. Fully discrete entropy conservation is offered, for instance, 
by Crank–Nicolson time differencing [25].

3. No-slip boundary conditions: continuous analysis

The problem of well-posed boundary conditions is an essential question in many areas of physics. For the two- (2D) 
and three-dimensional (3D) Navier–Stokes equations, the number of boundary conditions implying well-posedness can be 
obtained using the Laplace transform technique [35]; a complicated procedure for system of PDEs like the compressible 
Navier–Stokes equations. Nordström and Svärd [36] proposed an alternative semi-discrete approach to arrive at the num-
ber and type of boundary conditions for a general time-dependent system of PDEs. This analysis was applied to the 3D 
compressible Navier–Stokes equations for different flow regimes and the case of the Euler no-penetration velocity condition.

In 2008, Svärd and Nordström [37] showed that the no-slip boundary conditions together with a boundary condition on 
the temperature imply stability for the linearized compressible Navier–Stokes equations. Their result, can also be generalized 
to assess the stability of the non-linear problem for smooth solutions as indicated in [50,35] and references therein. In 2011, 
Berg and Nordström [38] proved that the no-slip boundary conditions together with a thermal Robin boundary condition 
also imply stability for the same linearized equations. In this section we address the non-linear stability (entropy stability) 
of the wall boundary conditions for the (non-linear) compressible Navier–Stokes equations given in (1). The aim is to derive 
a sharp a priori bound for the entropy function which holds for smooth and non-smooth solutions.

Contracting the system of Eqs. (1) with the entropy variables and using the relations given in (12) and (13) results in 
the differential form of the (scalar) entropy equation:

∂ S

∂q

∂q

∂t
+ ∂ S

∂q

∂ f (I)
i

∂xi
= ∂ S

∂t
+ ∂ Fi

∂xi
= ∂ S

∂q

∂ f (V )
i

∂xi
= ∂

∂xi

(
w� f (V )

i

)
−

(
∂ w

∂xi

)�
f (V )

i

= ∂

∂xi

(
w� f (V )

i

)
−

(
∂ w

∂xi

)�
ĉi j

∂ w

∂x j
. (22)

Integrating Eq. (22) over the domain yields a global conservation statement for the entropy in the domain,

d

dt

∫
�

S dx =
[

w� f (V )
i − Fi

]
∂�

−
∫
�

(
∂ w

∂xi

)�
ĉi j

∂ w

∂x j
dx =

[
w� f (V )

i − Fi

]
∂�

− DT , (23)

where DT is the viscous dissipation term,

DT =
∫
�

(
∂ w

∂xi

)�
ĉi j

∂ w

∂x j
dx =

∫
�

(
∂ w/∂x1
∂ w/∂x2
∂ w/∂x3

)� ( ĉ11 ĉ12 ĉ13
ĉ21 ĉ22 ĉ23
ĉ31 ĉ32 ĉ33

)(
∂ w/∂x1
∂ w/∂x2
∂ w/∂x3

)
dx. (24)

This equation indicates that the entropy can only increase in the domain based on data that convects and diffuses through 
the boundaries. It is shown in [24,28] that the larger 15 × 15 coefficient matrix in (24) is positive semi-definite, which 
makes the term −DT in (23) strictly dissipative. Therefore, the sign of the (mathematical) entropy change due to viscous 
dissipation is always negative.3

To simplify, we let the domain of interest, �, be the unit cube 0 ≤ x1, x2, x3 ≤ 1. Expanding the Einstein notation in 
Eq. (23) yields

d

dt

∫
�

S dx1 dx2 dx3 = −DT

+
∫

x1=0

[
+F1 − w�

(̂
c11

∂ w

∂x1
+ ĉ12

∂ w

∂x2
+ ĉ13

∂ w

∂x3

)]
dx2 dx3

+
∫

x1=1

[
−F1 + w�

(̂
c11

∂ w

∂x1
+ ĉ12

∂ w

∂x2
+ ĉ13

∂ w

∂x3

)]
dx2 dx3

3 From a physical point of view, this means that the viscous dissipation always yields an increase of the thermodynamic entropy.
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+
∫

x2=0

[
+F2 − w�

(̂
c21

∂ w

∂x1
+ ĉ22

∂ w

∂x2
+ ĉ23

∂ w

∂x3

)]
dx1 dx3

+
∫

x2=1

[
−F2 + w�

(̂
c21

∂ w

∂x1
+ ĉ22

∂ w

∂x2
+ ĉ23

∂ w

∂x3

)]
dx1 dx3

+
∫

x3=0

[
+F3 − w�

(̂
c31

∂ w

∂x1
+ ĉ32

∂ w

∂x2
+ ĉ33

∂ w

∂x3

)]
dx1 dx2

+
∫

x3=1

[
−F3 + w�

(̂
c31

∂ w

∂x1
+ ĉ32

∂ w

∂x2
+ ĉ33

∂ w

∂x3

)]
dx1 dx2 . (25)

Consider the case of a wall placed at x1 = 0, and assume that all the other boundaries terms are entropy stable; their 
contributions are neglected without loosing generality. Therefore, estimate (25) reduces to

d

dt

∫
�

S dx1 dx2 dx3 = −DT +
∫

x1=0

[
F1 − w�

(̂
c11

∂ w

∂x1
+ ĉ12

∂ w

∂x2
+ ĉ13

∂ w

∂x3

)]
dx2 dx3 . (26)

To bound the time derivative of the entropy, the right-hand-side (RHS) of Eq. (26) requires boundary data. For a solid viscous 
wall, assuming linear analysis, four independent boundary conditions must be imposed [50].4 Three boundary conditions are 
the so-called no-slip boundary conditions, u1 = u2 = u3 = 0 (i.e., the velocity vector relative to the wall is the zero vector). 
In the linear settings (see, for instance, [38,37]), the fourth condition is the gradient of the temperature normal to the wall, 
(∂T /∂n)wall , (Neumann boundary condition; e.g., the adiabatic wall), or the temperature of the wall, Twall , (the Dirichlet or 
isothermal wall boundary condition), or a mixture of Dirichlet and Neumann conditions (the Robin boundary condition). 
These four boundary conditions lead to energy stability (linear stability); see, for instance, [37,38]. In the remainder of this 
section, we will show the type and the form of the wall boundary conditions that have to be imposed to bound estimate 
(26) and, hence, to attain entropy stability.

Consider the inviscid contribution to the boundary terms in (26).

Theorem 3.1. The no-slip boundary conditions u1 = u2 = u3 = 0 bound the inviscid contribution to the time derivative of the entropy 
in Eq. (26).

Proof. Eq. (17) provides the definition of the entropy flux, F1:

F1 = w� f (I)
1 − ψ1, ψ1 = ρu1 R. (27)

Substituting the no-slip conditions, u1 = u2 = u3 = 0, into the definition of the inviscid flux, f (I)
1 , (Eq. (3)) and the condition 

u1 = 0 into the definition of ψ1, yields the desired result F1 = 0. �
Consider now the viscous contribution to the boundary terms in (26).

Theorem 3.2. The boundary condition,

g(t) = ∂T

∂n

1

T
, (28)

where the symbol n defines the normal direction to the wall, bounds the viscous contribution to the time derivative of the entropy (26).

Proof. Using the definition of matrices ̂ci j given in Appendix A, the viscous vector–matrix–vector contraction given in (26)
yields the following term

− w�
(̂

c11
∂ w

∂x1
+ ĉ12

∂ w

∂x2
+ ĉ13

∂ w

∂x3

)
= κ

(
∂T

∂x1

1

T

)
. (29)

Therefore, specifying the condition g(t) =
(

∂T
∂x1

1
T

)
where g(t) is a known bounded function (i.e., L2 ∩ L∞), eliminates the 

last potential source of instability on the right-hand-side of Eq. (26). �
4 Using the linear analysis, it can be shown that a solid viscous wall behaves like a subsonic outflow [36].
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The boundary condition given by Theorem 3.2 at first glance appears ad hoc. Note, however, that the scalar value 
κ

(
∂T
∂x1

1
T

)
accounts for the change in entropy at the boundary x1 = 0, due to the wall heat flux, qwall , and it is often 

denoted heat entropy transfer or heat entropy flow [51]. In fact,

κ
∂T

∂x1

1

T
= −κ

∂

∂x1
[w(5)]

1

w(5)
= κ

∂

∂x1
[log(T )] = −qwall

Twall
, (30)

where w(5) denotes the fifth component of the entropy variable vector, w , in (20). Eq. (30) indicates that, in the context of 
the entropy stability analysis of the compressible Navier–Stokes equations, it is admissible and physically (thermodynami-
cally) correct to impose the fourth wall boundary condition as given in Theorem 3.2.

To the best of our knowledge, Theorem 3.2 provides new insight for future development of any entropy stable boundary 
conditions for the compressible Navier–Stokes equations.

Remark 3.1. We strongly remark that the non-linear contraction obtained in (29) is different from that obtained from the 
linearized compressible Navier–Stokes equations [37,38]. The linear analysis produces velocity gradient terms in the energy 
estimate (not present in (29)), and temperature gradient terms in the normal direction of the form T ∂T

∂x1
, with T and ∂T

∂x1
being perturbations; see, for instance, [37,38].

Remark 3.2. The boundary condition g(t) = 0, which corresponds to an adiabatic wall ∂T /∂x1 = 0, bounds the solution, and, 
as physically expected, does not contribute to the time derivative of the entropy (26) because the heat flux is zero.

4. Entropy stable spectral discontinuous collocation method for the semi-discretized system: interior operator

In this section, we summarize the main results that allow us to construct a numerical high order entropy stable dis-
continuous collocation interior operator of any order, p, on unstructured grids. The formalism provided here, will then 
be used in Section 5 to design new entropy stable solid wall boundary conditions for the semi-discretized compressible 
Navier–Stokes equations.

Using an SBP operator and its equivalent telescoping form (see, for instance, [52,54]), the semi-discrete form of the 
compressible Navier–Stokes equations (1) becomes

∂q

∂t
= Dxi

(
−f(I)

i + ci jDx j q
)

+P−1
xi

(
g(B)

i + g(In)
i

)
= P−1

xi
�xi

(
−f(I)

i + f(V )
i

)
+P−1

xi

(
g(B)

i + g(In)
i

)
,

q(x,0) = g(0)(x), x ∈ �, (31)

where the subscript xi indicates the coordinate direction to which the operators apply. The source terms g(B)
i and g(In)

i , 
with i = 1, 2, 3, enforce boundary and interface conditions, respectively; and g(0) represents the initial condition. The matrix 
P may be thought of as a mass matrix in the context of Galerkin finite element method. While it is not true in general 
that P is diagonal, herein the focus is exclusively on diagonal norm SBP operators, based on fixed element-based polyno-
mials of order p. The matrix D is used to approximate the first derivative; and it is defined as P−1Q, where the nearly 
skew-symmetric matrix, Q, is an undivided differencing operator where all rows sum to zero and the first and last column 
sum to −1 and 1, respectively [52,54]. The operator � is the telescopic flux matrix and allows to express the semi-discrete 
system in a telescopic flux form, by evaluating the fluxes at the collocated flux points, f(I) and f(V ) ,5 (see Fig. 1). Note that 
the spacing between the flux points is incorporated into the operator P . In fact, the diagonal elements of P are equal to 
the spacing between flux points. In the remainder of this paper, the elements of P are denoted as P(i)(i), i = 1, 2, . . . , N .6

The semi-discrete entropy estimate is achieved by mimicking term by term the continuous estimate given in Eq. (22). 
The non-linear analysis (entropy analysis) begins by contracting the semi-discrete equations given in Eq. (31) with the 
entropy variables: w�P . For clarity of presentation, but without loss of generality, the derivation is simplified to one spatial 
dimension. Tensor product algebra allows the results to extend directly to three dimensions. The resulting global equation 
that governs the time derivative of the entropy is given by

w�P ∂q

∂t
+ w��f(I) = w��f(V ) + w�(g(B) + g(In)), (32)

where

w =
(

w(q1)
�, w(q2)

�, . . . , w(qN)�
)�

is the vector of the entropy variables at the solution points.

5 In the remainder of this work, all quantities evaluated at the flux points are denoted with an overbar.
6 N = p + 1 for a pth-order scheme.
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Fig. 1. The one-dimensional discretization for p = 4 Legendre collocation. Solution points are denoted by • and flux points are denoted by ×.

4.1. Time derivative

The time derivative in (32) is in mimetic form for diagonal norm SBP operators. The entropy variables are defined by 
the expression w� = ∂ S/∂q (see Definition 2.1), which when combined with the definition of entropy yields the point-wise 
expression

w�
i

∂qi

∂t
= ∂ Si

∂qi

∂qi

∂t
= ∂ Si

∂t
, ∀i.

Now, define the diagonal matrices ∂S/∂q = W = diag[w]. Since P is a diagonal matrix and arbitrary diagonal matrices 
commute, the semi-discrete rate of change of entropy becomes

w�P ∂q

∂t
= 1�WP

∂q

∂t
= 1�PW

∂q

∂t
= 1�P ∂S

∂q

∂q

∂t
= 1�P ∂S

∂t
= d

dt
1�P S,

where

1 = (1,1, . . . ,1)�

is a vector with N elements.7

4.2. Inviscid terms

The inviscid portion of Eq. (32) is entropy conservative if it satisfies

w��f(I) = F (qN) − F (q1) = F (qN) − F (q1) = 1��F. (33)

Note that in (33), the first and last flux points are coincident with the first and last solution points, which enables the 
endpoint fluxes to be consistent (see Fig. 1). Condition (33) leads to globally entropy conservative schemes but it is difficult 
to enforce at the flux points. One plausible solution to circumvent this problem is to use a more restrictive point-wise 
relation between solution and flux-point data, which telescopes across the domain and yields a local condition on the flux 
for the global entropy consistency constraint (33). Tadmor [25] developed such a solution based on second-order accurate 
centered operators. Carpenter and co-authors [54], have generalized this solution for Legendre spectral collocation operators 
of any order of accuracy, p.

In the following paragraphs, we present, without any proof, the main theorems which allow to construct inviscid entropy 
conservative and stable fluxes of any order of accuracy, p. Interested readers should consult [28,54] and the references 
therein for details. Note that in this section the subscripts i − 1, i and i + 1 are used to denote a scalar or vector quantity 
at the i − 1, i or i + 1 collocated point, and do not have to be confused with the subscript used, for instance, in (1).

Theorem 4.1. The local conditions

(wi+1 − wi)
� f i = ψ̃i+1 − ψ̃i, i = 1,2, . . . , N − 1 ; ψ̃1 = ψ1, ψ̃N = ψN (34)

when summed, telescope across the domain and satisfy the entropy conservative condition given in Eq. (33). A flux that satisfies the 
condition given in Eq. (34) is denoted f̄ (S)

i . The potentials ψ̃i+1 and ψ̃i need not be the point-wise ψi+1 and ψi , respectively.

Proof. See Theorem 3.3 in Ref. [54] for the proof of this theorem. �
A possible strategy for constructing high order entropy conservative fluxes is to construct a linear combination of two-

point entropy conservative fluxes by using the coefficients in the SBP matrix Q. This approach follows immediately from the 

7 Recall that N = p + 1 for a pth-order scheme.
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generalized telescoping structural properties of diagonal norm SBP operators (see, for instance, [52,54]). Because it requires 
only the existence of a two-point entropy conservative flux formula and the coefficients of Q, it is valid for any SBP operator 
that satisfies the following SBP constraints

Q� = B −Q, B = diag (−1,0, . . . ,0,1) .

Thus, it is also valid for Legendre spectral collocation operators used herein; see [54].
The following theorem establishes the accuracy of the new fluxes.

Theorem 4.2. A two-point entropy conservative flux can be extended to high order with formal boundary closures by using the form

f (S)
i =

N∑
k=i+1

i∑
=1

2Qk f S (q,qk) , 1 ≤ i ≤ N − 1, (35)

when the two-point non-dissipative function from Tadmor [25],

f S (qk,q) =
1∫

0

g (w(qk) + ξ (w(q) − w(qk))) dξ, g(w(u)) = f (u), (36)

is used. The coefficient, Qk , corresponds to the k row and l column in Q.

Proof. See Theorem 3.1 in Ref. [28] for the proof of this theorem. �
Thus, Theorem 4.2 ensures that a high order flux constructed from a linear combination of two-point entropy conserva-

tive fluxes retains the design order of the original discrete operator for any diagonal norm SBP matrix Q.
The following theorem establishes instead that the linear combination of two-point entropy conservative fluxes does 

preserve the property of entropy stability for any arbitrary diagonal norm SBP matrix Q.

Theorem 4.3. A two-point high order entropy conservative flux satisfying Eq. (34) with formal boundary closures can be constructed 
using Eq. (35),

f (S)
i =

N∑
k=i+1

i∑
=1

2Qk f S (q,qk) , 1 ≤ i ≤ N − 1, (37)

where f̄ S (q,qk) is any two-point non-dissipative function that satisfies the entropy conservation condition

(w − wk)
� f S (q,qk) = ψ − ψk. (38)

The high order entropy conservative flux satisfies an additional local entropy conservation property,

w�P−1�f(S) = P−1�F = ∂

∂x
F (q) + Tp+1, (39)

where Tp+1 is the truncation error of the approximation of ∂ F (q) /∂x, or equivalently,

w�
i

(
f (S)

i − f (S)
i−1

)
= (

F i − F i−1
)
, 1 ≤ i ≤ N, (40)

where

F i =
N∑

k=i+1

i∑
=1

Qk

[
(w + wk)

� f S (q,qk) − (ψ + ψk)
]
, 1 ≤ i ≤ N − 1. (41)

Proof. See Theorem 3.2 in Ref. [28] for the proof of this theorem. �
4.2.1. Affordable entropy consistent Euler flux

The inviscid terms in the discretization of the compressible Navier–Stokes equations (31) are calculated according to 
Eqs. (37) by using the two-point entropy conservative flux of Ismail and Roe [55],

f S, j(qi,qi+1) =
(
ρ̂û j, ρ̂û j û1 + δ j1 p̂, ρ̂û j û2 + δ j2 p̂, ρ̂û j û3 + δ j3 p̂, ρ̂û j Ĥ

)�
,

û =
ûi√
Ti

+ υ̂i+1√
Ti+1

1√
T

+ 1√ , p̂ =
p̂i√
Ti

+ p̂i+1√
Ti+1

1√
T

+ 1√ ,
i T i+1 i T i+1
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ĥ = R

log

( √
Tiρi√

Ti+1ρi+1

)
1√
Ti

+ 1√
Ti+1

(θ1 + θ2) ,

θ1 =
√

Tiρi + √
Ti+1ρi+1(

1√
Ti

+ 1√
Ti+1

)(√
Tiρi − √

Ti+1ρi+1
) ,

θ2 = γ + 1

γ − 1

log

(√
Ti+1

Ti

)
log

(√
Ti

Ti+1

ρi
ρi+1

)(
1√
Ti

− 1√
Ti+1

) ,

Ĥ = ĥ + 1

2
ûû, ρ̂ =

(
1√
Ti

+ 1√
Ti+1

)(√
Tiρi − √

Ti+1ρi+1
)

2
(
log(

√
Tiρi) − log(

√
Ti+1ρi+1)

) . (42)

The index j denotes the spatial direction. This somewhat complicated explicit form is the first entropy conservative flux for 
the convective terms with low enough computational cost to be implemented in a practical simulation code.

To our knowledge, the Ismail and Roe flux [55] cannot be written in the form given by (36). Therefore, there is no math-
ematical proof that show that the entropy conservative flux constructed as in (37) by using (42) will retain the design-order 
of the spatial discretization. However, thorough numerical experiments reported in [28,56,29] and herein indicate that the 
inviscid terms calculated with the two-point entropy conservative flux of Ismail and Roe [55] do not destroy the order of 
accuracy of the spatial operator.

4.2.2. Entropy stable inviscid interface flux
Herein, the solution between adjoining elements is allowed to be discontinuous. An interface flux that preserves the 

entropy consistency of the interior operators on either side of the interface is needed. An entropy consistent (or entropy 
conservative) inviscid interface flux constructed according to Eq. (37) by using (42) is indicated as fsr

(
q(−)

i ,q(+)
i

)
. The 

superscripts (−) and (+) combined with the subscript i denote the left and right state used to compute the two-point 
entropy conservative flux and therefore replace the subscripts i and i + 1 in (42).

A more dissipative and hence entropy stable inviscid interface flux fssr
(

q(−)
i ,q(+)

i

)
is constructed as

fssr
(

q(−)
i ,q(+)

i

)
= fsr

(
q(−)

i ,q(+)
i

)
+ �

(
w(+)

i − w(−)
i

)
, (43)

where � is a negative semi-definite interface matrix with zero or negative eigenvalues. The entropy stable flux 
fssr

(
q(−)

i ,q(+)
i

)
is more dissipative than the entropy conservative inviscid flux, as is easily verified by contracting 

fssr
(

q(−)
i ,q(+)

i

)
against the entropy variables to yield the expression(

w(+)
i − w(−)

i

)�
fssr

(
q(−)

i ,q(+)
i

)
= ψ

(+)
i − ψ

(−)
i +

(
w(+)

i − w(−)
i

)�
�

(
w(+)

i − w(−)
i

)
. (44)

The matrix � can be constructed using different approaches, e.g., using an upwind operator that dissipates each character-
istic wave based on the magnitude of its eigenvalue:

fssc
(

q(−)
i ,q(+)

i

)
= fsr

(
q(−)

i ,q(+)
i

)
+ 1/2Y |λ|Y� (

w(−)
i − w(+)

i

)
,

∂

∂q
f (q) = Y λY�,

∂q

∂ w
= YY�, (45)

where λ and Y are the diagonal matrix of the eigenvalues and the matrix of the eigenvectors, respectively. Note that the 
relation ∂q

∂ w = YY T is achieved by an appropriate scaling of the rotation eigenvectors. Unless otherwise noted, the entropy 
stable characteristic flux (45) is used in all test simulations presented herein. In particular, we adopt the scaled eigenvectors 
introduced by Merriam [57] which allow to introduce an artificial viscosity from the viewpoint of numerical satisfaction of 
the second law of thermodynamics.

Remark 4.1. In [34] grid interfaces for entropy stable finite difference schemes are studied and interface fluxes similar to 
(43) are proposed.
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4.3. Viscous terms

Using the SBP formalism (see, for instance, [52,54]), the contribution of the viscous terms to the semi-discrete time 
derivative of the entropy is

w��f(V ) = w�B ĉ11Dw − (Dw)� P ĉ11 (Dw) . (46)

The last term is negative semi-definite. As with the continuous estimate given in (25), only the boundary term can produce 
a growth of the entropy (see RHS of (46)), and thus the approximation of the viscous terms is entropy stable. (Entropy 
stable boundary conditions bound these terms.)

4.3.1. Entropy stable viscous interface coupling
Herein, the 3D entropy stable viscous interface coupling procedure proposed by Parsani, Carpenter and Nielsen [52,53]

is used to patch interior interfaces for the compressible Navier–Stokes equations. This treatment is based on a precise 
combination of local discontinuous Galerkin (LDG) and interior penalty (IP) approaches.

5. Entropy stable solid wall boundary conditions for the semi-discrete system

An estimate for the time derivative of the entropy of an isolated element is derived, followed by a derivation of entropy 
stable penalty terms that impose physical data on a viscous wall.8

5.1. General approach for the entropy stability analysis of an SBP-based spatial discretization

Consider a single tensor product element and a spatially discontinuous collocation discretization with N = p + 1 solution 
points in each coordinate direction; the following element-wise matrices will be used:

Dx1 = (DN ⊗ IN ⊗ IN ⊗ I5) , · · · Dx3 = (IN ⊗ IN ⊗DN ⊗ I5) ,

Px1 = (PN ⊗ IN ⊗ IN ⊗ I5) , · · · Px3 = (IN ⊗ IN ⊗PN ⊗ I5) ,

Px1x2 = (PN ⊗PN ⊗ IN ⊗ I5) , · · · Px2x3 = (IN ⊗PN ⊗PN ⊗ I5) ,

P = Px1x2x3 = (PN ⊗PN ⊗PN ⊗ I5) ,

Bx1 = (BN ⊗ IN ⊗ IN ⊗ I5) , · · · Bx3 = (IN ⊗ IN ⊗ BN ⊗ I5) ,

�x1 = (�N ⊗ IN ⊗ IN ⊗ I5) , · · · �x3 = (IN ⊗ IN ⊗ �N ⊗ I5) , (47)

where DN , PN , �N , and BN are the one-dimensional (1D) SBP operators [52], and IN is the identity matrix of dimension 
N . I5 denotes the identity matrix of dimension five.9 The subscripts in (47) indicate the coordinate directions to which the 
operators apply (e.g., Dx1 is the differentiation matrix in the x1 direction). When applying these operators to the scalar 
entropy equation in space, a hat will be used to differentiate the scalar operator from the full vector operator. For example,

P̂ = (PN ⊗PN ⊗PN) . (48)

Within one tensor product element, the 3D compressible Navier–Stokes equations are discretized as

∂q

∂t
+P−1

x1
�x1

(
f(I)
1 − f(V )

1

)
+P−1

x2
�x2

(
f(I)
2 − f(V )

2

)
+P−1

x3
�x3

(
f(I)
3 − f(V )

3

)
= P−1

x1

(
g(B)

1 + g(In)
1

)
+P−1

x2

(
g(B)

2 + g(In)
2

)
+P−1

x3

(
g(B)

3 + g(In)
3

)
, (49)

where the vector of the conservative variables is ordered as

q =
(

q
(
x(1)(1)(1)

)�
,q

(
x(1)(1)(2)

)�
, . . . ,q

(
x(N)(N)(N)

)�)
=

(
q(1)

�,q(2)
�, . . . ,q(N3)

�)
, (50)

and f(I)
i and f(V )

i , i = 1, 2, 3, are the inviscid and viscous grid fluxes, respectively.10 The vectors g(B)
i , i = 1, 2, 3, enforce the 

boundary conditions, while g(In)
i , i = 1, 2, 3, patch interfaces together. The derivatives appearing in the viscous fluxes are 

also computed using the operator Dxi , i = 1, 2, 3, defined in (47).
As in the continuous case, we apply the entropy analysis to Eq. (49) by multiplying with w�P from the left. Moreover, 

we substitute to f(I)
i , i = 1, 2, 3, the high-order accurate entropy consistent flux constructed according to Eq. (37) with the 

8 The same boundary conditions (without stability proofs) could be used for almost any spatial discretization, including the family of DG methods, FR 
approaches, WENO schemes, FD and FV methods.

9 The 3D compressible Navier–Stokes equations form a system of five non-linear PDEs.
10 Recall that the vectors with an over-bar are defined at the flux points.
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two-point entropy conservative flux presented in Section 4.2.1. The final expression for the time derivative of the entropy in 
the element is then

d

dt
1�P̂ S + 1� (

P̂x2x3 B̂x1 F1 + P̂x1x3 B̂x2 F2 + P̂x1x2 B̂x3 F3
)

− w� (
Px2x3Bx1 f(V )

1 +Px1x3Bx2 f(V )
2 +Px1x2Bx3 f(V )

3

)
+ DT

= w� (
Px2x3

(
g(B)

1 + g(In)
1

)
+Px1x3

(
g(B)

2 + g(In)
2

)
+Px1x2

(
g(B)

3 + g(In)
3

))
. (51)

Note that in (51) the bar over the flux vectors could be safely removed because the contraction of (49) against w�P
leads only to the fluxes at the face flux points, which are coincident with the first and last solution points (see Fig. 1). This 
duality is needed to define unique operators and is important in proving entropy stability [54]. The quantity DT denotes a 
positive quadratic term in the first derivative approximation of the solution:

DT =
3∑

i=1

3∑
j=1

(
Dxi w

)� P [̂ci j]
(
Dx j w

)

=
(Dx1 w
Dx2 w
Dx3 w

)� (P [̂c11] P [̂c12] P [̂c13]
P [̂c21] P [̂c22] P [̂c23]
P [̂c31] P [̂c32] P [̂c33]

)(Dx1 w
Dx2 w
Dx3 w

)
, (52)

where [̂ci j] denotes a block diagonal matrix with blocks corresponding to the viscous coefficients of each solution point. 
The positive semi-definiteness of DT follows from the positivity of the matrices ̂ci j (see Appendix B.2 in [28] for the proof 
and Appendix A herein for the expression of these matrices). The matrices Bxi , i = 1, 2, 3, pick the interface terms in the 
respective directions (i.e., for a high-order accurate scheme on a tensor product cell, they pick the solution value at the 
nodes of the two “opposite” faces). Therefore, Eq. (51) is the semi-discrete form of Eq. (25), which was obtained from the 
analysis at the continuous level.

5.2. Entropy stability analysis for the solid wall boundary conditions

In this section, we focus now on the construction of an entropy stable penalty term for imposing the solid wall boundary 
conditions for the compressible Navier–Stokes equations.

Without loss of generality, we study a hexahedral element with edge length equal to one and we consider only the face 
plane (0, x2, x3). With these assumptions, Eq. (51) reduces to

d

dt
1�P̂ S −1�P̂x2x3 Ĝ(1)F1 + w�Px2x3G(1)f

(V )
1 + DT = w�Px2x3G(1)g

(B)
1 . (53)

The operators Ĝ(k) and G(k) are defined as

Ĝ(k) = (ek ⊗ IN ⊗ IN) , G(k) = (ek ⊗ IN ⊗ IN ⊗ I5) , (54)

where

ek = (0,0, . . . ,1,0, . . . ,0,0)�

is a vector of length N and has a non-zero element corresponding to the location k. Therefore, the operators Ĝ(k) and G(k)

pick out the nodal values of the solution or any flux vector at a specific plane according to the ordering introduced in (50). 
Herein, the face plane (0, x2, x3) is characterized by the index k = 1. Thus, Eq. (53) represents the contribution to the time 
derivative of the entropy of the boundary points that lie on the face plane (0, x2, x3).

In the remainder of this paper, we assume that the node with solution vector q 
(
x(1)(1)(1)

) = q(1) (see expression (50)) lies 
on this face plane. This point will be used to derive entropy stable wall boundary conditions. All numerical states associated 
to it will be identified with the subscript (·)(1) .

In estimate (53), the penalty source term g(B)
1 is composed of three design-order terms that weakly enforce the wall 

boundary conditions:

g(B)
1 = −

(
f(I)
1 − fsr

1

(
q,g(E)

))
+

(
f(V )
1 − f(V ,B)

1

)
+ [M]

(
w − g(NS),Vel

)
. (55)

In each of the three contributions, the first component (the numerical state) is constructed from the numerical solution, 
while the second component (the boundary state) is constructed from a combination of the numerical solution and four 
independent components of physical boundary data.

The first term enforces the Euler no-penetration wall condition through the inviscid flux of the compressible Euler 
equations. The boundary state is formed by constructing an entropy conservative flux based on the numerical state at 
boundary point, q(1) , and a manufactured boundary state given by the vector g(E):
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g(E) =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠q�
(1) = (

ρ(1),− (ρu1)(1) , (ρu2)(1) , (ρu3)(1) , (ρE)(1)

)�

= (
q(1)(1),−q(1)(2),q(1)(3),q(1)(4),q(1)(5)

)�
. (56)

The second term in (55) enforces the heat entropy flow boundary condition (28), facilitated by manufacturing a boundary 
viscous flux f (V ,B)

1 . Define the component of the gradient of the entropy variables in the numerical state as

�x1,(1) = [
�x1,(1)(1),�x1,(1)(2),�x1,(1)(3),�x1,(1)(4),�x1,(1)(5)

]�
, (57a)

�x2,(1) = [
�x2,(1)(1),�x2,(1)(2),�x2,(1)(3),�x2,(1)(4),�x2,(1)(5)

]�
, (57b)

�x3,(1) = [
�x3,(1)(1),�x3,(1)(2),�x3,(1)(3),�x3,(1)(4),�x3,(1)(5)

]�
, (57c)

where �xi ,(1)( j) denotes the derivative of the j-th entropy variable in the i direction. Next, specify the value of g(t), the 
externally provided bounded function given by (28). Finally, define the manufactured component of the gradient in the 
normal direction, �̃x1 , as

�̃x1 = [
�x1,(1)(1),�x1,(1)(2),�x1,(1)(3),�x1,(1)(4), �̃x1(5)

]�
, (58)

where �̃x1 (5) is computed as

�̃x1(5) = −g(t) w(1)(5) = g(t)

T(1)

. (59)

With these definitions, the manufactured viscous flux f (V ,B)
1 is constructed as

f (V ,B)
1 = ĉ11 �̃x1 + ĉ12 �x2,(1) + ĉ13 �x3,(1), (60)

where the matrices ̂c1 j , j = 1, 2, 3, are calculated using the numerical solution. As we will show later, the boundary flux, 
f (V ,B)

1 , constructed using (60) will yield a mimetic contribution to the time derivative of the entropy. Note that for an 
adiabatic wall g(t) = 0, and from expression (59) we get �̃x1 (5) = 0.

The third term in (55) enforces the no-slip wall (Dirichlet) boundary conditions (u1 = u2 = u3 = 0) through a standard 
SAT approach. The manufactured boundary state g(NS),Vel is defined in terms of entropy variables as

g(NS),Vel = (
w(1)(1),0,0,0, w(1)(5)

)�
, (61)

where, as usual, w(1)(1) and w(1)(5) are the first and the fifth components of the entropy vector constructed from the 
numerical solution. Three boundary conditions are imposed in Eq. (61); all velocity components are set to zero at the wall. 
This is immediately clear by recalling that the entropy variables for the compressible Navier–Stokes equations are defined 
as

w =
(

h

T
− s − uiui

2T
,

u1

T
,

u2

T
,

u3

T
,− 1

T

)�
.

Note that the no-slip conditions are not used to define the first component of g(NS),Vel , as the matrices ĉi j, i, j = 1, 2, 3, 
have zeros on the first row and column (see Appendix A).11 The matrix [M] in (55) is a block diagonal matrix with N3

five-by-five blocks12 which are defined as

M = − α(B)(
Px1

)
(1)(1)

H c̃11 H, H = diag(1,1,1,1,0), α(B) > 0. (62)

The matrix c̃11 has the functional form of the usual symmetric positive semi-definite matrix ĉ11 defined in Appendix A. 
This matrix has to be constructed using a set of primitive variables that is independent of the numerical solution at all 
times. For example, for external flows, c̃11 can be constructed using the externally provided data at the far-field (e.g., 
(ρ∞, |�u∞|, |�u∞|, |�u∞|, T∞)).13 The coefficient α(B) in (62) is used to modify the strength of the SAT penalty term, and can 
be specified by the user. The factor 

(
Px1

)
(1)(1)

> 0 in the denominator is the first diagonal element of the operator Px1
14 and 

11 Currently, there are no diffusion terms in the equation that describes the conservation of mass.
12 N3 = (p + 1)3 is the number of solution points within a three-dimensional tensor product cell.
13 In a general framework, the matrix M is built using the five-by-five matrix ̃cii where the index i denotes the normal direction to the wall.
14 Recall that the diagonal element of any operator P are equal to the spacing between flux points.
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is introduced to get the correct dimensions. This factor is also important because it allows to achieve the correct asymptotic 
order of accuracy and yields an increase in the strength of M with increased resolution.15

Summarizing Eq. (55), the penalty at the face point is the sum of three terms:

• the difference between inviscid flux and the entropy consistent flux at the node in the normal direction;
• the difference between the internal viscous flux and a boundary viscous flux at the node in the normal direction;
• the difference between the solution (in entropy variables) at the node and the data imposed at boundary, multiplied by 

the matrix M .

The penalty term (55) contracted with the entropy variables and simplified, yields the expression

RHS = −w�Px2x3 G(1)

(
f(I)
1 − fsr

1

(
q,g(E)

))
+ w�Px2x3 G(1)

(
f(V )
1 − f(V ,B)

1

)
+ w�Px2x3 G(1)[M]

(
w − g(NS),Vel

)
. (63)

The entropy stability of the penalty source term (53) defined by Eq. (55) is demonstrated in the following theorems. 
First, the inviscid term is proven to be entropy conservative and then entropy stable, if dissipation is added. Next, the 
second term, which specifies the thermal condition, is proven to be bounded by physical data provided by the user. Finally, 
the third term, which specifies the no-slip boundary conditions, is proven to be entropy stable.

Theorem 5.1. The penalty inviscid flux contribution in Eq. (55) is entropy conservative if the vector g(E) is defined as in (56).

Proof. The inviscid contribution of the boundary node, ϒ(I) , to the time derivative of the entropy can be written as (see 
Eqs. (53) and (63))

ϒ(I) = (
Px2x3

)
(1)(1)

F 1 − w�
1

(
Px2x3

)
(1)(1)

[
f 1

(
q(1)

) − f sr
1

(
q(1), g(E)

)]
, (64)

where 
(
Px2x3

)
(1)(1)


= 0. Substituting the expression for the entropy flux F 1 (i.e., Eq. (17) with i = 1) and evaluating the 
entropy consistent flux f sr

1 using q(1) and g(E) yields the desired result

ϒ(I) = (
Px2x3

)
(1)(1)

[
w�

(1) f (I)
1

(
q(1)

) − ψ1 − w�
(1) f (I)

1 (q1) + w�
(1) f sr

1

(
q(1), g(E)

)]
= (

Px2x3

)
(1)(1)

[
−ψ1 + w�

(1) f sr
1

(
q(1), g(E)

)]
= 0. � (65)

Corollary 5.1. The penalty inviscid flux contribution in Eq. (55) is entropy stable if the vector g(E) is defined as in (56) and fsr is 
replaced by the entropy stable flux fssr defined in (45).

Remark 5.1. A result similar to Corollary 5.1 is given by Svärd and Özcan [34] in the context of high order entropy stable fi-
nite difference schemes for the compressible Euler equations. Therein, an entropy dissipative Euler no-penetration boundary 
treatment is proposed to bound the time derivative of the entropy.

Using Theorem 5.1 we are left only with the viscous contributions:

d

dt
1�P̂ S + w�Px2x3 G(1) f(V )

1 + DT ≤ +w�Px2x3 G(1)

(
f(V )
1 − f(V ,B)

1

)
+ w�Px2x3 G(1)[M]

(
w − g(NS),Vel

)
. (66)

Theorem 5.2. The viscous penalty terms in (55),

G(1)

(
f(V )
1 − f(V ,B)

1

)
+ G(1)[M]

(
w − g(NS),Vel

)
,

are entropy stable for any value of g(t) and any five-by-five matrix M as defined in (62).

Proof. Clearly, the viscous flux term on the left-hand-side (LHS) of (66) is balanced by the same term on the RHS. Therefore, 
expression (66) reduces to

d

dt
1�P̂ S + DT ≤ −w�Px2x3 G(1) f(V ,B)

1 + w�Px2x3 G(1) [M]
(

w − g(NS),Vel
)

. (67)

The contraction −w�Px2x3 G(1) f(V ,B)
1 with f (V ,B)

1 defined as in (60) yields the following nodal contribution

−w�
(1)

(
Px2x3

)
(1)(1)

f (V ,B)
1 = (

Px2x3

)
(1)(1)

κ g(t). (68)

15 This dependence on the mesh size in the normal direction to the face is similar to that of the interior penalty approach used in finite element methods.
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Since g(t) is a known bounded function (i.e., L2 ∩ L∞) expression (68) is also bounded. We highlight that for an adiabatic 
wall g(t) = 0 and, consequently, the viscous flux penalty in (55) conserves the entropy (as it should) because the heat flux 
is zero.16 Note that the contribution (68) mimics exactly the boundary contribution to the time derivative of the entropy 
that has been obtained from the continuous analysis (see Eq. (29)).

We are then left with the contribution w�Px2x3G(1) [M] (w − g(NS),Vel
)
. At the nodal level, this term can be re-written as

w�
(1)

(
Px2x3

)
(1)(1)

M
(

w(1) − g(NS),Vel
)

= +1

2

(
Px2x3

)
(1)(1)

w�
(1)M w(1)

− 1

2

(
Px2x3

)
(1)(1)

(
g(NS),Vel

)�
M g(NS),Vel

+ 1

2

(
Px2x3

)
(1)(1)

(
w(1) − g(NS),Vel

)�
M

(
w(1) − g(NS),Vel

)
. (69)

The penalty contribution given by Eq. (69) imposes the no-slip Dirichlet boundary conditions on the velocity components 
and is bounded if

• M is negative semi-definite;
• M is independent of the numerical state.

If these two conditions are fulfilled, the first and the last term in (69) introduce only dissipation, whereas the second one 
is a bounded term because it is just a function of data; and it is zero for no-slip boundary conditions. �

For a Reynolds number (Re) that approaches +∞, we would like to smoothly recover only the no-penetration (or wall 
slip) boundary condition that characterizes the Euler equations (first contribution in (55)). To achieve that, the matrix M
needs to be a function of the Reynolds number and can be computed as in (62), i.e.,

M = − α(B)(
Px1

)
(1)(1)

H c̃11 H, H = diag(1,1,1,1,0), α(B) > 0,

where c̃11 has the functional form of the usual ĉ11 matrix and it is constructed using a state that is independent of the 
numerical solution at all times.

6. Numerical results

The objective of this section is to demonstrate the accuracy and robustness of the new entropy stable wall boundary 
conditions coupled with the family of high-order entropy stable interior operators developed in [54]. The unstructured grid 
solver used herein uses a transformation from computational to physical space that satisfies the semi-discrete geometric 
conservation law.

Before proceeding with the numerical tests, we demonstrate with an example that the construction of a penalty source 
term with only an inviscid and a viscous contributions leads to a non-entropy stable boundary treatment.

6.1. Non-entropy stable viscous wall boundary conditions: isothermal wall

In Section 5.2, we have shown that constructing g(B)
1 as in (55) yields entropy stable wall boundary conditions. However, 

one might attempt to construct g(B)
1 as the sum of an inviscid penalty flux and only a viscous interior penalty term,

g(B)
1 = −G(1)

(
f(I)
1 − fsr

1

(
q,g(E)

))
+ G(1) [L]

(
w − g(NS)

)
. (70)

For an isothermal wall, for instance, g(NS)17 is a vector of data that imposes both the no-slip boundary conditions (i.e., 
u1 = u2 = u3 = 0) and the wall temperature:

g(NS) =
(

w(1)(1),0,0,0,− 1

Twall

)�
. (71)

The matrix [L] in (70) is a block diagonal matrix with N3 blocks of size five-by-five. Comparing the two definitions of g(B)
1

given in Eqs. (55) and (70), it can be seen that in the latter approach no viscous flux penalty terms are introduced. This is 
a key difference, and as shown in Appendix B, yields a provably non-entropy stable solid wall boundary conditions. Such 
a boundary treatment leads to unstable simulations when used in combination with fine grids and/or high-order accurate 
polynomial representations of the solution.

16 g(t) = 0 in Eq. (68) yields zero.
17 Note that g(NS) is expressed in terms of entropy variables.
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Fig. 2. Example of structured/unstructured grids used for the flow past a 3D square cylinder at Re∞ = 2 × 102 and M∞ = 0.1.

6.2. Computation of a square cylinder in subsonic freestream

The flow past a square cylinder represents a benchmark test case for external flow past bluff bodies. This flow has 
been the subject of intense experimental and numerical research in the past. In fact, a cylinder with square cross section 
is a simple but a central shape for many engineering applications, including aeroacoustics and air pollutant transport and 
dispersion in urban environments.

The flow is described in a Cartesian coordinate system (x1, x2, x3), in which the x1-axis is aligned with the inlet flow 
direction, the x3-axis is parallel with the cylinder axis and the x2-axis is perpendicular to both directions (see Fig. 2). A fixed 
two-dimensional square cylinder with a side d is exposed to a uniform freestream velocity vector with modulus |�u∞|. The 
length of the square cylinder in the x3-direction is 10 d.

The following boundary conditions are used. A uniform flow is prescribed at the inlet which is located 10 d units 
upstream of the cylinder. At the outlet, located 20 d unit downstream of the cylinder, far-field boundary conditions are 
used. A no-penetration (Euler) boundary condition is prescribed at the upper and lower boundaries. No-slip and adiabatic 
conditions are enforced at the body surface. A periodic boundary condition is used in the spanwise direction x3. In the 
x2-direction, the solid blockage of the confined flow (i.e., the vertical distance between the upper and the lower inviscid 
walls) is set to 18 d.

The flow has a freestream Mach number of M∞ = 0.1, and a Reynolds number of Re∞ = 2 × 102. The Reynolds number 
is based on the modulus of the freestream velocity vector, |�u∞| and the height of the cylinder d. At this Reynolds number, 
the regime is laminar and it usually persists up to a Reynolds number of about 4 × 102. Moreover, the vortex shedding is 
characterized by one very well-defined frequency [58]. A very small time step is used to integrate the system of ordinary 
differential equations (ODEs) so that the temporal error is negligible compared to that of the spatial discretization.

6.2.1. Accuracy of the no-slip wall boundary conditions
The proposed entropy stable no-slip wall boundary conditions do not force the numerical solution to exactly fulfill 

the boundary conditions. Instead the effect can be described as a rubber-band pulling the solution towards the boundary 
conditions. The computed boundary value (or numerical state) typically deviates slightly from the prescribed value but the 
deviation is reduced as the grid is refined. Therefore, the error at the boundary can serve as a rough measure of the error 
of the entire solution.

We compute the maximum norm L∞ of the error of the three velocity components u1, u2, and u3 on the complete 
surface of the cylinder at t = 1, for three different grids. The meshes are fully unstructured, although a structured subdivision 
is used around the square cylinder and the near wake region to perform a grid convergence study (see Fig. 2). Grid 3 is the 
finest grid and has 20 points on each side of the square, 20 points in the “radial” direction in the “structured portion” near 
the body, 40 points in the near wake region in the freestream direction, and 8 points in the spanwise direction. Grid 2 and 
Grid 1 are obtained by taking every other and every fourth grid point of Grid 3 in the structured region. The simulations 
are performed using different orders of the polynomial (p = 1, 2, 3, 4). The results are shown in Tables 1, 2, and 3.

We highlight a few observations. First, in all cases an increase in theoretical order of accuracy results in an error re-
duction on all grids. Secondly, although the convergence rates in model problems are shown on much finer meshes, the 
computed order of accuracy is very close to the formal value between the medium and fine grids, even for these more 
realistic meshes.
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Table 1
L∞ error norm of the velocity component u1 at the wall and convergence rates; t = 1; 3D unsteady laminar flow past a square cylinder at Re∞ = 2 × 102

and M∞ = 0.1.

p = 1 Rate p = 2 Rate p = 3 Rate p = 4 Rate

Grid 1 4.73e−2 – 2.05e−2 – 8.61e−3 – 2.14e−3 –
Grid 2 1.47e−2 1.69 2.88e−3 2.83 5.83e−4 3.88 1.39e−4 4.71
Grid 3 3.55e−3 2.05 3.66e−4 2.98 3.40e−5 4.10 2.43e−6 5.07

Table 2
L∞ error norm of the velocity component u2 at the wall and convergence rates; t = 1; 3D unsteady laminar flow past a square cylinder at Re∞ = 2 × 102

and M∞ = 0.1.

p = 1 Rate p = 2 Rate p = 3 Rate p = 4 Rate

Grid 1 7.20e−2 – 2.71e−2 – 1.43e−2 – 5.14e−3 –
Grid 2 1.79e−2 2.01 3.54e−3 2.94 1.12e−3 3.67 1.96e−4 4.71
Grid 3 4.64e−3 1.95 4.20e−4 3.08 7.21e−5 3.96 6.46e−6 4.92

Table 3
L∞ error norm of the velocity component u3 at the wall and convergence rates; t = 1; 3D unsteady laminar flow past a square cylinder at Re∞ = 2 × 102

and M∞ = 0.1.

p = 1 Rate p = 2 Rate p = 3 Rate p = 4 Rate

Grid 1 2.75e−4 – 1.34e−4 – 1.01e−4 – 8.62e−5 –
Grid 2 5.98e−5 2.20 1.71e−5 2.97 7.92e−6 3.67 3.14e−6 4.78
Grid 3 1.38e−5 2.12 2.03e−6 3.07 5.28e−7 3.91 8.81e−8 5.16

Table 4
Strouhal number, mean drag coefficient, and spanwise-averaged RMS of the lift coefficient for 
the 3D unsteady laminar flow past a square cylinder at Re∞ = 2 × 102 and M∞ = 0.1; Grid 1.

Solution St 〈cD 〉 cRMS
L

SSDC p = 1 0.098 1.01 0.02
SSDC p = 2 0.109 1.08 0.06
SSDC p = 3 0.142 1.19 0.11
SSDC p = 4 0.151 1.28 0.15
Sohankar et al. [59] 0.160 1.41 0.22

Table 5
Strouhal number, mean drag coefficient, and spanwise-averaged RMS of the lift coefficient for 
the 3D unsteady laminar flow past a square cylinder at Re∞ = 2 × 102 and M∞ = 0.1; Grid 2.

Solution St 〈cD 〉 cRMS
L

SSDC p = 1 0.128 1.16 0.07
SSDC p = 2 0.139 1.28 0.13
SSDC p = 3 0.153 1.36 0.20
SSDC p = 4 0.159 1.40 0.23
Sohankar et al. [59] 0.160 1.41 0.22

6.2.2. Vortex shedding
In this section we investigate the vortex shedding and the time variation of the lift and drag coefficients. We compare 

our results against the data reported by Sohankar et al. [59]. We compute the following quantities: The Strouhal number, 
f d/|�u∞|, where f is the frequency of the vortex shedding; the time-averaged drag coefficient, cD , and the spanwise-
averaged root-mean-square (RMS) of the lift coefficient, cRMS

L . We use the same grids presented in the previous section, and 
different orders of the polynomial (p = 1, 2, 3, 4). The results are illustrated in Tables 4, 5, and 6. From these tables, it can 
be seen that in all cases the accuracy of the results improve by increasing the order of accuracy of the scheme. We also 
note that, on Grid 3, which is very coarse compared to the typical grids used with second-order FV and FD schemes, fourth-
(p = 3) and fifth-order (p = 4) accurate entropy stable schemes perform very well. In fact, the aerodynamic coefficients 
computed with these two discretizations are in very good agreement with the results reported in literature [59].

6.3. Heat entropy flow

In this section we perform a convergence study of the thermal condition to verify that the heat entropy flow at the wall 
converges to the prescribed value. At t = 100, we compute the maximum norm L∞ of the error of the quantity 

[
�̃x1 (5)T(·)

]
(see expression (59)) for all the solution points that lie on the solid wall. The entropy flow g(t) is set to g(t) = const = 0.02. 
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Table 6
Strouhal number, mean drag coefficient, and spanwise-averaged RMS of the lift coefficient for 
the 3D unsteady laminar flow past a square cylinder at Re∞ = 2 × 102 and M∞ = 0.1; Grid 3.

Solution St 〈cD 〉 cRMS
L

SSDC p = 1 0.134 1.29 0.12
SSDC p = 2 0.154 1.37 0.19
SSDC p = 3 0.159 1.40 0.22
SSDC p = 4 0.159 1.42 0.23
Sohankar et al. [59] 0.160 1.41 0.22

Table 7
L∞ error norm of the heat entropy flow at the wall and convergence rates; g(t) = const. = 0.02 (see (59)); t = 100; 3D unsteady laminar flow past a square 
cylinder at Re∞ = 2 × 102 and M∞ = 0.1.

p = 1 Rate p = 2 Rate p = 3 Rate p = 4 Rate

Grid 1 6.17e−2 – 3.68e−2 – 9.16e−3 – 2.23e−3 –
Grid 2 3.35e−2 0.88 1.09e−2 1.76 1.42e−3 2.69 1.72e−4 3.70
Grid 3 1.64e−2 1.03 2.47e−3 2.14 1.81e−4 2.97 9.71e−6 4.15

The results are illustrated in Table 7. As for the convergence study on the no-slip boundary conditions, it can be seen that 
in all cases the accuracy of the results improve by increasing the order of accuracy of the scheme. On this set of grids, the 
convergence rate of the error associated to the heat entropy flow is p.

6.4. Computation of a square cylinder in supersonic freestream

The development of a high-order accurate entropy stable discretization aims to provide the next generation of robust high 
fidelity numerical solvers for complex fluid flow simulations, for which standard suboptimal algorithms suffer greatly or fail 
completely. By computing the flow past a 3D square cylinder at Re∞ = 104 and M∞ = 1.5, we provide numerical evidence 
of such robustness for the complete entropy stable high order spatial discretization. This supersonic flow is characterized by 
a very large range of length scales, strong shocks and expansion regions that interact with each other, leading to complex 
flow patterns. During the past three decades, this fluid flow problem has been thoroughly investigated by several researchers 
for aerodynamic applications (see, for instance, [60–62]).

The domain of interest spans one square cylinder edge in the x3 direction, and at the two planes perpendicular to this 
coordinate direction, periodic boundary conditions are used. The flow is computed using an unstructured grids with 43,936 
hexahedrons. A fourth-order accurate (p = 3) entropy stable discretization without absolutely any stabilization technique is 
used. The body surface is considered adiabatic. The solution is initialized using a uniform flow at M∞ = 1.5 with zero angle 
of attack.

At the beginning of the simulation a strong shock is formed in front of the bluff body. Subsequently, the discontinuity 
moves upstream until it reaches a “stationary” position that is about 2.15 square cylinder edges far from the frontal surface 
of the body. During this phase, additional weaker shocks, which originate from the four sharp corners of the body, interact 
with the subsonic regions formed near the walls. This complicated flow pattern, yields the formation of shock-lets in the 
wake of the square cylinder. Fig. 3 shows a portion of the “high order grid”18 close to the body and its near-wake region, 
and the Mach number and density contours at t = 1.5. It can be seen that relatively small oscillations are generated in 
front of the shock. This numerical feature is absolutely natural and expected because the solution has been computed with 
a fourth-order accurate scheme without artificial dissipation or filtering technique. Nevertheless, the simulation remains 
stable at all time, and the oscillations are always confined in small regions close to the discontinuities.

In Fig. 4 a global view of the “high order grid”, the Mach number, density, temperature and entropy contours at t =
100 are shown. At t = 100, the shock has already reached a stationary position, and the flow past the square cylinder is 
completely unsteady, characterized by subsonic and supersonic regions. The formation of shock-lets in the near wake region 
are clearly visible.

7. Conclusions

Herein, we have shown that no-slip boundary conditions together with a boundary condition on the heat entropy flow, 
(1/T ∂T /∂n)wall , imply stability for the continuous compressible Navier–Stokes equations. The boundary condition on the 
heat entropy flow is in complete agreement with the thermodynamic (entropy) analysis of a generic system. An entropy 
stable numerical procedure is presented for weakly enforcing these solid wall boundary conditions via a penalty approach. 
The resulting semi-discrete operator mimics exactly the behavior at the continuous level. The proposed non-linear boundary 
treatment provides a mechanism for ensuring the non-linear stability in the L2 norm of the continuous and semi-discretized 

18 Original grid with element-wise interior node connections.
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Fig. 3. Unsteady flow past a 3D square cylinder at Re∞ = 104 and M∞ = 1.5; fourth-order (p = 3) accurate entropy stable spatial discretization without 
stabilization technique; t = 1.5.

compressible Navier–Stokes equations. Although discontinuous spectral collocation operators are used in this work, the new 
boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, 
finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes.

Numerical computations around a three-dimensional square cylinder in the subsonic regime are performed to highlight 
the accuracy and robustness of the proposed numerical procedure. Measurement of forces on the cylinder showed very good 
agreement with the results available from the literature. Furthermore, we have shown that the no-slip conditions approach 
zero to design-order (i.e., the convergence rate is p + 1), and the heat entropy flow converges to the prescribed boundary 
value at a rate of p.

The robustness of the complete semi-discrete operator (i.e., the entropy stable interior operator coupled with the new 
boundary treatment) has been demonstrated for the supersonic flow past a three-dimensional square cylinder at Re∞ =
104 and M∞ = 1.5. This test has been successfully computed with a fourth-order accurate method without the need to 
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Fig. 4. Unsteady flow past a 3D square cylinder at Re∞ = 104 and M∞ = 1.5; fourth-order (p = 3) accurate entropy stable spatial discretization without 
stabilization technique; t = 100.

introduce artificial dissipation, limiting techniques or filtering, for stabilizing the computations, a feat unattainable with 
several alternative approaches just based on linear analysis.

This work clearly indicates that, although incremental improvements to existing algorithms will continue to improve 
overall capabilities, the development of novel robust numerical techniques such as entropy preserving or entropy stable 
schemes and their extension to complex multi-scale and multi-physics problems offers the possibility of radical advances in 
computational fluid dynamics and computational aerodynamics in terms of robustness, fidelity and efficiency.
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Appendix A. Coefficient matrices of the viscous flux

The viscous coefficient matrices c′
i j used to define the viscous fluxes in Cartesian coordinates in (7) are defined as

c′
11 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 4
3μ 0 0 0

0 0 μ 0 0

0 0 0 μ 0

0 4
3μu1 μu2 μu3 κ

⎞⎟⎟⎟⎟⎟⎠ , c′
12 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 − 2
3μ 0 0

0 μ 0 0 0

0 0 0 0 0

0 μu2 − 2
3μu1 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

c′
13 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 − 2
3μ 0

0 0 0 0 0

0 μ 0 0 0

0 μu3 0 − 2
3μu1 0

⎞⎟⎟⎟⎟⎟⎠ , c′
21 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 μ 0 0

0 − 2
3μ 0 0 0

0 0 0 0 0

0 − 2
3μu2 μu1 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

c′
22 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 μ 0 0 0

0 0 4
3μ 0 0

0 0 0 μ 0
4

⎞⎟⎟⎟⎟⎟⎠ , c′
23 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 0 0

0 0 0 − 2
3μ 0

0 0 μ 0 0
2

⎞⎟⎟⎟⎟⎟⎠ ,
0 μu1 3μu2 μu3 κ 0 0 μu3 − 3μu2 0
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c′
31 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 μ 0

0 0 0 0 0

0 − 2
3μ 0 0 0

0 − 2
3μu3 0 μu1 0

⎞⎟⎟⎟⎟⎟⎠ , c′
32 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 0 0

0 0 0 μ 0

0 0 − 2
3μ 0 0

0 0 − 2
3μu3 μu2 0

⎞⎟⎟⎟⎟⎟⎠ ,

c′
33 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 μ 0 0 0

0 0 μ 0 0

0 0 0 4
3μ 0

0 μu1 μu2
4
3μu3 κ

⎞⎟⎟⎟⎟⎟⎠ .

The symmetrized coefficient matrices used in (13) to define the viscous fluxes as a function of the gradient of the entropy 
variables are found using

ĉi j = ci j
∂q

∂ w
= c′

i j
∂v

∂ w
.

Therefore, they take the following form:

ĉ11 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 4
3 Tμ 0 0 4

3 Tμu1

0 0 Tμ 0 Tμu2

0 0 0 Tμ Tμu3

0 4
3 Tμu1 Tμu2 Tμu3 T 2κ + 1

3 T
(
4μu2

1 + 3μu2
2 + 3μu2

3

)

⎞⎟⎟⎟⎟⎟⎠ ,

ĉ22 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 Tμ 0 0 Tμu1

0 0 4
3 Tμ 0 4

3 Tμu2

0 0 0 Tμ Tμu3

0 Tμu1
4
3 Tμu2 Tμu3 T 2κ + 1

3 T
(
3μu2

1 + 4μu2
2 + 3μu2

3

)

⎞⎟⎟⎟⎟⎟⎠ ,

ĉ33 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 Tμ 0 0 Tμu1

0 0 Tμ 0 Tμu2

0 0 0 4
3 Tμ 4

3 Tμu3

0 Tμu1 Tμu2
4
3 Tμu3 T 2κ + 1

3 T
(
3μu2

1 + 3μu2
2 + 4μu2

3

)

⎞⎟⎟⎟⎟⎟⎠ ,

ĉ12 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 − 2
3 Tμ 0 − 2

3 Tμu2

0 Tμ 0 0 Tμu1

0 0 0 0 0

0 Tμu2 − 2
3 Tμu1 0 1

3 Tμu1u2

⎞⎟⎟⎟⎟⎟⎠ , ĉ13 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 − 2
3 Tμ − 2

3 Tμu3

0 0 0 0 0

0 Tμ 0 0 Tμu1

0 Tμu3 0 − 2
3 Tμu1

1
3 Tμu1u3

⎞⎟⎟⎟⎟⎟⎠ ,

ĉ23 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 0 0

0 0 0 − 2
3 Tμ − 2

3 Tμu3

0 0 Tμ 0 Tμu2

0 0 Tμu3 − 2
3 Tμu2

1
3 Tμu2u3

⎞⎟⎟⎟⎟⎟⎠ ,

where

ĉ21 = ĉ�
12, ĉ31 = ĉ�

13, ĉ32 = ĉ�
23.
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Appendix B. Counter example of non-linear wall boundary conditions

Carrying out the entropy stability analysis by using expression (70), it can be shown that the inviscid penalty in (70) is 
entropy conservative (see the proof of Theorem 5.1). Therefore, the remaining relation to analyze is

d

dt
1�P̂ S + w�Px2x3 G(1)f

(V )
1 + DT ≤ +w�Px2x3 G(1)[L]

(
w − g(NS)

)
. (B.1)

To obtain a quadratic form in boundary terms we need to borrow from DT:

DT =
3∑

i=1

3∑
j=1

(
Dxi w

)� P [̂ci j]
(
Dx j w

)

=
⎛⎝Dx1 w

Dx2 w

Dx3 w

⎞⎠� ⎛⎜⎝P [̂c11] P [̂c12] P [̂c13]
P [̂c21] P [̂c22] P [̂c23]
P [̂c31] P [̂c32] P [̂c33]

⎞⎟⎠
⎛⎝Dx1 w

Dx2 w

Dx3 w

⎞⎠

=
⎛⎝Dx1 w

Dx2 w

Dx3 w

⎞⎠� (
Px1

)
(1)(1)

⎛⎜⎝Px2x3 [̂c11] Px2x3 [̂c12] Px2x3 [̂c13]
Px2x3 [̂c21] Px2x3 [̂c22] Px2x3 [̂c23]
Px2x3 [̂c31] Px2x3 [̂c32] Px2x3 [̂c33]

⎞⎟⎠
⎛⎝Dx1 w

Dx2 w

Dx3 w

⎞⎠ + D̃T

=
⎛⎝Dx1 w

Dx2 w

Dx3 w

⎞⎠� (
Px1

)
(1)(1)

P ′

⎛⎜⎝ [̂c11] [̂c12] [̂c13]
[̂c21] [̂c22] [̂c23]
[̂c31] [̂c32] [̂c33]

⎞⎟⎠
⎛⎝Dx1 w

Dx2 w

Dx3 w

⎞⎠ + D̃T, (B.2)

where

P ′ = diag
(
Px2x3 ,Px2x3 ,Px2x3

)
,

and the scalar 
(
Px1

)
(1)(1)

> 0. Therefore, Eq. (B.1) may be written as

d

dt
1�P̂ S + D̃T

≤ + 1

2
w̃�P̃ ′

⎛⎜⎜⎜⎜⎝
[L] −[̂c11] −[̂c12] −[̂c13]

−[̂c11] −2
(
Px1

)
(1)(1)

[̂c11] −2
(
Px1

)
(1)(1)

[̂c12] −2
(
Px1

)
(1)(1)

[̂c13]
−[̂c12] −2

(
Px1

)
(1)(1)

[̂c12] −2
(
Px1

)
(1)(1)

[̂c22] −2
(
Px1

)
(1)(1)

[̂c23]
−[̂c13] −2

(
Px1

)
(1)(1)

[̂c13] −2
(
Px1

)
(1)(1)

[̂c23] −2
(
Px1

)
(1)(1)

[̂c33]

⎞⎟⎟⎟⎟⎠ w̃

+ 1

2
w�Px2x3 G(1)[L]w − w�Px2x3 G(1)[L]g(NS), (B.3)

where

P̃ ′ = diag
(
Px2x3 ,Px2x3 ,Px2x3 ,Px2x3

)
,

and

w̃� =
(
(w�

(0,x2,x3),0,
(
Dx1 w

)�
(0,x2,x3)

,
(
Dx2 w

)�
(0,x2,x3)

,
(
Dx3 w

)�
(0,x2,x3)

,0
)

. (B.4)

The bold zeros in (B.4) indicate that all the numerical states (entropy variables and gradients of the entropy variables) of 
the nodes which do not lie on the plane (0, x2, x3) are set to zero.

To bound the time derivative of the entropy we must ensure that each term in (B.3) is bounded. The first contribution 
on the RHS is a quadratic term in w̃ and dissipative if the large matrix

1

2

⎛⎜⎜⎜⎜⎝
[L] −[̂c11] −[̂c12] −[̂c13]

−[̂c11] −2
(
Px1

)
(1)(1)

[̂c11] −2
(
Px1

)
(1)(1)

[̂c12] −2
(
Px1

)
(1)(1)

[̂c13]
−[̂c12] −2

(
Px1

)
(1)(1)

[̂c12] −2
(
Px1

)
(1)(1)

[̂c22] −2
(
Px1

)
(1)(1)

[̂c23]
−[̂c13] −2

(
Px1

)
(1)(1)

[̂c13] −2
(
Px1

)
(1)(1)

[̂c23] −2
(
Px1

)
(1)(1)

[̂c33]

⎞⎟⎟⎟⎟⎠ (B.5)

is symmetric negative semi-definite. However, to ensure that we only need to construct the following 20 × 20 matrix,
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� = 1

2

⎛⎜⎜⎜⎜⎝
L −̂c11 −̂c12 −̂c13

−̂c11 −2
(
Px1

)
(1)(1)

ĉ11 −2
(
Px1

)
(1)(1)

ĉ12 −2
(
Px1

)
(1)(1)

ĉ13

−̂c12 −2
(
Px1

)
(1)(1)

ĉ12 −2
(
Px1

)
(1)(1)

ĉ22 −2
(
Px1

)
(1)(1)

ĉ23

−̂c13 −2
(
Px1

)
(1)(1)

ĉ13 −2
(
Px1

)
(1)(1)

ĉ23 −2
(
Px1

)
(1)(1)

ĉ33

⎞⎟⎟⎟⎟⎠ , (B.6)

so that it is symmetric negative semi-definite. The matrices ĉi j, i, j = 1, 2, 3, in (B.6) are constructed using the primitive 
variable at the usual boundary node. The rows and columns of the matrix � corresponding to the density components 
are all zero because the first component of the viscous fluxes is zero. Therefore, such rows and columns do not affect the 
negativity of (B.6). The matrix � can be expressed in block form as

� =
(

A B

B� D

)
. (B.7)

The condition on the five-by-five matrix L that ensures the negative-definiteness of (B.7) can be obtained by requiring that 
the Schur complement of � is negative,

Schur = A − B D−1 B� = −
ĉ11 + 2 L

(
Px1

)
(1)(1)

4
(
Px1

)
(1)(1)

< 0. (B.8)

The inequality in (B.8) is a sufficient condition because the block matrix D is already well behaved (i.e., it is already 
symmetric and positive semi-definite). Thus, the Schur complement (B.8) is smaller than or equal to zero if

L ≤ − ĉ11

2
(
Px1

)
(1)(1)

. (B.9)

The last two terms on the RHS of expression (B.3) are the remaining contributions to bound. Such terms can be re-written 
in a quadratic form as

1

2
w�Px2x3 G(1)[L]w − w�Px2x3 G(1)[L]g(NS) = +1

2

(
w − g(NS)

)�
Px2x3 G(1) [L]

(
w − g(NS)

)
− 1

2

(
g(NS)

)�
Px2x3 G(1) [L]g(NS). (B.10)

From inequality (B.9), we know that the matrix [L] is negative definite or negative semi-definite. Therefore, the first term, 
which is quadratic in 

(
w − g(NS)

)
, is dissipative. However, the second contribution is a positive term and cannot be bounded 

because it is not only a function of the imposed boundary data g(NS) . In fact, the element in the fifth row and fifth column 
of the matrix L is non-zero and it is a function of the numerical solution through relation (B.9) (i.e., through the matrix ̂c11
which is built from the numerical state at the boundary node).
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