ERIPEME PrOOramming.............ccooeveeveeennennnee.,

William A. Wood and William L. Kleb, NASA Langley Research Center

xtreme Programming, as an agile programming methodology, fo-
cuses on delivering business value. In the realm of exploratory,
long-term, small-scale research projects, prioritizing near-term
tasks relative to their business or scientific value can be difficult.

Assigning even a qualitative monetary value can be particularly challenging

for government research in enabling fields for which business markets have not

yet developed. The conflict between near-term value and long-term research

objectives leads to a culture clash when apply-
ing basic XP practices.

We decided to explore this culture clash
when the Langley Creativity and Innovation Of-
fice solicited bids for exploring nontraditional
methodologies for aerospace engineering re-
search. C&I was looking for a way to produce
extraordinary gains in productivity or enable
entirely new applications. We submitted a bid
and received one-year funding to perform a
short prototyping assessment of XP at the
NASA Langley Research Center. We conducted

Eight of Extreme Programming’s 12 practices are seemingly
incompatible with the existing research culture. However, despite

initial awkwardness, the authors successfully implemented an kP
prototype-assessment project at the NASA Langley Research Center.

30

IEEE SOFTWARE

Published by the IEEE Computer Society

the project using a GNU/Linux operating sys-
tem, the Emacs integrated development environ-
ment, and the Ruby programming language.!?
We had prior experience programming related
algorithms for the advection-diffusion equation
using Fortran but no experience in team soft-
ware development, object-oriented design,
unit testing, or programming with Ruby.

As the project began, we realized that we
first had to deal with several cultural conflicts
before implementing the 12 XP practices.

Kent Beck lists nine environments that he
says don’t work well with XP.3 Six of these
nine are counter to the existing culture at Lan-
gley. However, Beck prefaces his assertions
with the caveat that the list is based on his per-
sonal experiences: “I haven’t ever built missile

0740-7459/03/$17.00 © 2003 IEEE

nosecone software, so I don’t know what it is
like. ... If you write missile nosecone software,
you can decide for yourself whether XP might
or might not work.” The software we were de-
veloping was intended for aerothermal predic-
tions on nosecones of hypervelocity vehicles
(see the “Our Software Product” sidebar), so
we set out to decide for ourselves if XP could
work in such a research-oriented environment.
Here, we detail the six counter environments
as they apply to our project.

First, according to Beck, the “biggest barrier
to the success of an XP project” arises from an
insistence on complete up-front design rather
than just steering the project along the way. In
February 2002, NASA announced a $23.3 mil-
lion award to Carnegie Mellon University “to
improve NASA’s capability to create depend-
able software.” Two-week training courses in
the Software Engineering Institute’s Team and
Personal Software Processes have already be-
gun, complete with 750 pages of introductory
textbooks. The TSP assigns two-thirds of the
project time to requirements gathering, docu-
menting, and design. It does not allow coding,
with the possibility for steering, until the final
third of the project. Furthermore, significant
steering can trigger a “relaunch,” in which you
start the requirements and design processes all
over again. We used XP exclusively, avoiding
the institutional bias toward the PSP and TSP.

The second cultural practice at odds with
XP is big specifications. Langley’s ISO 9001
implementation includes a 45-page flowchart
for software quality assurance (LMS-CP-4754)
and a 17-page flowchart for software planning
and development (LMS-CP-5528), in which
only one of the 48 boxes, located 75 percent of
the way through, contains “Code and Test.”
At the risk of being ISO noncompliant, we ig-
nored the approved software process, deferring
the issue to when, or if, an ISO audit uncovers
the discrepancy.

Third, Beck observes that “Really smart
programmers sometimes have a hard time
with XP” because they tend to “have the hard-
est time trading the ‘Guess Right’ game for
close communication.” Not only do re-
searchers typically have doctoral degrees, but
the reward structure under which they operate
is based on peer review of the person’s stature
in the field. The Research Grade Evaluation
Guide* emphasizes individual stature over
team membership. We had to suppress our de-

The research value we aimed to deliver was a software test bed for eval-
uating the performance of a numerical scheme to solve a model advection-
diffusion problem. The model employs a multistage Runge-Kutta strategy for
temporal evolution with multigrid sequencing. The particular algorithmic re-
search feature is a strategy for the pointwise optimization of the Runge-
Kutta coefficients to achieve particular damping characteristics as a tool for
convergence acceleration.! For more information on the actual software
product,? contact the authors.

1. W.L Kleb, W.A. Wood, and B. van Leer, Efficient Multi-Stage Time Marching for Viscous
Flows via Local Preconditioning, Paper 99-3267, Am. Inst. Aeronautics and Astronautics,
1999.

2. W.A. Wood and W.L. Kleb, “Runge-Kutta Circular Advection Problem Solver,” NASA Tech
Briefs, vol. 26, no. 12, 2002, p. 38.

sire to be recognized for solo achievement and
believe that two people doing XP would be
more productive than the sum of our individ-
ual efforts.

Fourth, although adopting XP for large
teams has been a frequent subject of debate,
we faced the opposite problem—a small team
of only two people. Maintaining the distinct
roles of programmer, customer, recorder, and
coach was challenging. With very small teams,
the literature was unclear as to which tasks we
could safely perform solo and which would
rapidly degenerate into cowboy coding. In ad-
dition, with only two developers, we couldn’t
have the cross-fertilization benefit of rotating
partners. Plus, interpersonal conflicts were a
potential problem—if communication turned
to confrontation, there were no other team
members to play the role of mediator. Ad-
dressing these concerns required diligence in
delineating roles and a conscious decision to
stay focused on productive work. To rein in
cowboy coding, we used test-driven pair pro-
gramming exclusively when implementing fea-
tures. We also preferred pair programming
during refactoring but allowed solo refactor-
ing when scheduling conflicts precluded pair-
ing. However, we agreed not to break any ex-
isting tests or add any functionality.

Fifth, according to Beck, “Another technol-
ogy barrier to XP is an environment where a
long time is needed to gain feedback.” One
role of a government research center is to pur-
sue long-term, revolutionary projects. Devel-
opment cycles can last a decade, and the feed-
back loop on whether the project is headed in

May/June 2003 1EEE SOFTWARE 31

Figure 1. (a) The original 15 < 17 office layout: large, isolated
work spaces with desks separated by towering bookcases and
joined by a narrow aisle. (b) The refactored layout: small,
isolated work spaces with tables and a large common area
consisting of a Beowulf cluster, a pair programming station, a
conference table, and whiteboards. We can move the partition
at the upper right to further isolate a private work area, and
all three areas can now accommodate pair programming.

Figure 2. The pair programming station has two task chairs,

a 60-inch-wide Anthro AdjustaCGart, wireless keyboards and
mice, and two LCD displays supporting a merged 2560 < 1024-
pixel desktop. You can see the sustenance items—refrigerator,
microwave, fresh-air supply, and plants—on the right.

a fruitful direction is often measured in years.
XP prefers steering inputs on a days-to-weeks
time frame. We didn’t know if we could recast
long-term research goals into small, tangible

32 IEEE SOFTWARE http://computer.org/software

increments suitable to XP’s two-to-three-week
iteration cycles. Fortunately, in practice, al-
though the research feedback timescale re-
mains large, we successfully decomposed the
technical features into small iteration chunks
by following XP’s simple design practice.

Finally, Beck cautions against “senior peo-
ple with corner offices” because of the barriers
to communication. At research centers, senior
engineers typically have individual offices or
cubicles, and colleagues are spread over multi-
ple buildings at the local campus. Projects can
also involve collaboration with an off-site
coworker, such as a university professor. For
our experiment, we refactored our office cubi-
cal layout into a commons and alcoves® devel-
opment room (see Figure 1), with copious
marker board space and a pair programming
station. The pair programming station had si-
multaneous dual keyboard and mouse inputs
connected to a 16-processor Beowulf cluster
(see Figure 2).

Implementing XP practices

We made a serious effort to apply the 12 XP
practices by the book (see Table 1 for a sum-
mary of our experience). Due to the six cultural
conflicts just listed, eight of the 12 XP practices
presented implementation challenges.

On-site customer

The biggest challenge was the on-site cus-
tomer. XP places a premium on the cus-
tomer—developer relationship, requiring an on-
site customer. Both the customer and developer
have clearly defined roles with distinct respon-
sibilities, interacting on a daily basis. The cus-
tomer focuses the developer on the business
value, while the developer educates the cus-
tomer on the feasibility and cost of feature re-
quests. In the context of long-term research, the
technologies being explored might be immature
or uncertain, years removed from commercial
potential. In this situation, the funder is too far
removed from the research to serve as a suitable
customer. So, the researcher is essentially the
“customer” for his or her own development ef-
fort—at least for several years. What happens
to the balance of power between customer and
developer when they are the same person?

This was a significant concern for us, be-
cause we were primarily writing software for
our own use. With two team members, we de-
cided that, during the planning game, the indi-

XP practice Degree of adoption Comments
Planning game Full We followed it by the book.!
Small releases Full Two-week iterations worked well for a project of this scope.
Metaphor Full We used a naive metaphor because both players spoke the same jargon.
Simple design Full We accepted this with skepticism, but it made future optimization easier than expected.
Test-driven development Full Comprehensive test coverage is the key to agility.
Refactoring Full This was integral to test-driven development; we followed Refactoring: Improving the
Design of Existing Code,® often verbatim.
Pair programming Full We added new functionality only when working in pairs, improving source code readability.
Collective ownership Full We used CVS code control with no access restrictions.
Continuous integration Full We implemented four levels of automated tests with feedback ranging from seconds to hours.
Sustainable pace Partial Concurrent duties and nonoverlapping schedules made the pace difficult to sustain.
On-site customer Partial Our most difficult practice was very beneficial when implemented diligently. It can lead to loss of
focus if not followed.
Coding standards Full Code had to be mutually understandable to both members of the pair. Clarity, over

consistency, was the guideline.
|

vidual with the most to gain from using the
software would serve as the customer while
the other individual would serve as the devel-
oper. During coding, we both served as devel-
opers until questions arose, at which point one
of us answered the question in the customer
role. Switching roles proved challenging for
the individual performing dual jobs.

During the planning game, thinking of sto-
ries was difficult without simultaneously esti-
mating their cost. Communication was essen-
tial, and we had to make a conscious effort to
think in a goal-oriented way. Furthermore, the
customer had to remain focused on end results
rather than think of the developer’s work.
However, forcing a user-oriented viewpoint
helped focus the research effort, and although
difficult and uncomfortable, the explicit role
of customer during the planning game im-
proved the research project’s value. Even out-
side the context of XP, we recommend a plan-
ning game with a customer role for other
research projects as an effective focusing tool.

Simple design

Another potential showstopper was the re-
quirement for simple designs. Performance is
always an issue for numerical analysis, and
past experience with procedurally imple-
mented and speed-optimized algorithms has
verified the exponentially increasing cost of
changing the fundamental design of elaborate

codes. The lure of premature optimization for
the developer is strong, particularly in the ab-
sence of a business-value-oriented customer.

We accepted this practice with skepticism,
because poorly conceived numerical analysis al-
gorithms can be prohibitively time-consuming
to run. Our approach was to include perform-
ance measures in the acceptance tests to flag
excessive execution times and then to forge
ahead with the simplest design until the per-
formance limits were exceeded. Once we en-
countered a performance issue, we used a pro-
filer to target refactorings that would speed the
algorithms enough to pass the performance cri-
teria. The speed bottlenecks were not always
intuitive, and it became evident that premature
optimization would have wasted effort on ar-
eas that were not the choke points while still
missing the eventual culprits.”

Pair programming

Pair programming also appeared to be a
poor fit at first—it seemed a small team would
suffer from not being able to rotate pairs.
However, we actually achieved productivity
gains through pairing. The pair pressure effect
led to intense sessions that discouraged cutting
corners, and the constant code review pro-
duced cleaner, more readable code that was
much easier to modify and extend. Also, even
though we each had over 20 years worth of
programming experience, there was still some

May/June 2003

IEEE SOFTWARE

33

Work effort for two-week iterations over
two release cycles

Iteration Total
1.1 1.2 1.3 2.1 2.2 2.3
Estimated hours 19 14 15 8 17 29 102
Actual hours 22 8 8 8 30 18 94
Velocity 1 2 2 1 0.5 1.5 1

34

IEEE SOFTWARE

cross-fertilization of tricks and tips that accel-
erated individual coding rates.

Collective ownership

The collective code ownership practice con-
flicted with our established practices in the
field and conflicted with the promotion crite-
ria. We didn’t experience any problems, but
we don’t yet know the long-term impact of not
having sole code ownership with regard to
promotion potential. However, we anticipate
that the more prolific research output enabled
by XP will more than compensate for the loss
of single code ownership in terms of profes-
sional prestige.

Sustainable pace

XP’s 40-hour week was problematic, though
perhaps for an inverse reason as encountered in
programming shops. We had only about 10
hours per week mutually available for joint
programming, with the rest of the time ab-
sorbed by responsibilities for other tasks or un-
available owing to conflicting schedules. We
thus negotiated pair programming time during
daily stand-up meetings, and we always added
new functionality during joint sessions in a test-
driven format. With the pair-created tests serv-
ing as a safety net, we allowed solo refactoring
to increase the rate of progress. Also, we occa-
sionally conducted disposable spikes and frame-
work support on our own.

Test-driven development

Testing, perhaps ironically for a scientific re-
search community, was not commonly done at
the unit level prior to this project, and it also
wasn’t clear what would be the appropriate
granularity for tests. However, we implemented
four levels of fully automated testing. We wrote
unit tests using an xUnit framework for each
class. We ran the collection of all unit tests

http://computer.org/software

along with an instantiation of the algorithms
devoid of the user interface as the integration
test, running in a matter of seconds. Smoke
tests, running in under a minute, exercised
complete paths through the software, including
the user interface. Full stress tests, which took
hours, included acceptance tests, performance
monitoring, distributed processing, and numer-
ical proofs of the algorithms for properties such
as positivity and order of accuracy. We could
initiate all levels of testing at any time and au-
tomatically executed all forms nightly.

Metaphor

We conducted a search for a system
metaphor and eventually selected the naive
metaphor, as no other analogy seemed suit-
able. The naive metaphor worked well, since
both the customer and developer (often the
same person) spoke the same jargon.

Continuous integration

Continuous integration conflicted with the
traditional approach of implementing algo-
rithms in large chunks. We addressed this by
assembling a dedicated integration machine
and by crafting scripts to automate develop-
ment and testing tasks. The planning game
and simple design helped pare implementa-
tions down to small chunks suitable for fre-
quent integration.

The pilot project consisted of two release
cycles, each subdivided into three two-week it-
erations, for a total project length of 12
weeks. Table 2 lists the estimated and actual
pair time spent working on stories and tasks
for each iteration. The times reported do not
include time spent on the planning game (usu-
ally two hours at the start of each iteration).
The overall average velocity for the project
was approximately one, and the average time
per week spent on development was approxi-
mately eight hours.

The measured velocities show variations in
the work pace from twice as fast as expected
to half speed. For the first iteration, the actual
time to code the selected features took about
as long as we expected. For the next two iter-
ations, our proficiency improved such that we
completed tasks in about half the time ex-
pected. By iteration 2.1 (first iteration of sec-
ond release cycle), we incorporated the im-

proved work rate into our predictions of task
times, halving the times that would have been
predicted for the first cycle, so that although
the “velocity” dropped to one, the actual work
pace was remaining constant.

During iteration 2.2, the velocity dropped
dramatically to one-half. We had become
overly confident and sloppy. The tasks were
not well defined during the planning game and
the task times were not well estimated. The
process of breaking requirements down into
specific tasks during the planning game is a
key part of system designing in XP, and we
struggled with the poor design. Although we
could sense during the iteration that the rate
of progress had slowed, the velocity measure-
ment clearly made the productivity drop visi-
ble, and the short iteration cycle kept the
problem from dragging on. We took the plan-
ning game more seriously for the final itera-
tion and productivity improved.

We produced 2,545 lines of Ruby code for
an average of 27 lines per hour (productivity of
a pair, not an individual). A breakdown of the
types of code written shows that the average
pair output was the implementation of one
method with an associated test containing six
asserts every 45 minutes. This productivity in-
cludes design and is for fully integrated, refac-
tored, tested, and debugged code. Our prior
performance on similarly scoped projects not
developed using XP has shown an average pro-
ductivity of 12 lines per hour, or 24 lines per
hour for two workers. However, this historical
productivity is for designed and integrated, but
not tested, code. Furthermore, a subjective
opinion of code clarity shows a strong prefer-
ence toward the pair-developed code.

Of the total software written, 912 lines
were for production code, 1,135 lines were for
test code, and 498 lines were for testing scripts
and development utilities. The production
code contains 120 method definitions, exclu-
sive of attribute accessor methods. The auto-
mated test code, both unit and acceptance,
contain 128 specific tests implementing 580 as-
sertions. A prior, non-XP project we performed
implementing comparable functionality re-
quired 2,144 lines of code, approximately
twice as large as the current production code.
We attribute the reduction in lines of code per
functionality to merciless refactoring, the con-
cisely expressive nature of the dynamically
typed Ruby language, and the continuous code

Productivity measures

Total Per pair-hour?
Production code Lines 912 10
Functions 120 1.3
Test code Lines 1135 12
Tests 128 14
Assertions 580 6
Utility scripts Lines 498 5

aTotal pair output per hour is the sum of this column, and includes design, keyboarding, and debugging time.

review inherent in pair programming. Table 3
summarizes our productivity results.

Our results indicate that the XP approach
to software development is approximately
twice as productive as similar historical proj-
ects we’ve undertaken. This study imple-
mented functionality at the historical rate but
also supplied an equal amount of supporting
tests, which are critical to the research effort’s
scientific validity and were not included in the
historical productivity rates. Furthermore, the
functional code base is about half as many
lines of code as expected, and the code’s read-
ability was much improved. Continual refac-
toring, emergent design, and constant code re-
view, as provided by XP, are largely responsible
for the improved code aesthetics.

ur pilot project’s evaluation endorses

using XP for mission-critical software

development at NASA’s Langley Re-
search Center. Currently, XP practices are be-
ing adopted by the High-Energy Flow Solver
Synthesis project, which has been in progress
for three years and employs 10 to 15 people
(see http://hefss.larc.nasa.gov). The HEFSS
legacy code contains over 500,000 lines of
Fortran90, a procedural language that is more
challenging to apply agile development meth-
ods to than is an object-oriented language
such as Ruby. Full XP techniques are being
used with Ruby for a variety of maintenance,
support, and testing tasks: Fortran templating,
automated generation of complex arithmetic
code versions, generalized Fortran unit testing
framework development, continuous regres-
sion suite automation, and release, installa-
tion, and configuration scripting.

May/June 2003 1EEE SOFTWARE

35

About the Authors

William A. Wood is a researcher in the Aerothermodynamics Branch of the NASA Lang-
ley Research Center. His research interests include reentry aerothermodynamics. He received
his PhD in aerospace engineering from Virginia Tech. He is a member of the American Inst. of
Aeronautics and Astronautics. Contact him at william.a.wood@nasa.gov.

William L. Kleb is a researcher in the Aerothermodynamics Branch of the NASA Lang-
ley Research Center. His research interests include reentry aerothermodynamics. He is also a
PhD candidate in aerospace engineering at the University of Michigan. He is a member of the
American Inst. of Aeronautics and Astronautics. Contact him at williom.| kleb@nasa.gov.

Although the HEFSS team’s transition to
the XP development model is not fully com-
plete, response from the participants has been
favorable. Adhering to XP practices enhanced
the development pace, bug trapping, and
maintenance tasks. The prior software devel-
opment process was not well defined and did
not track progress metrics, precluding a quan-
tifiable statement about the benefits of XP
adoption for HEFSS. @

References
1. D. Thomas and A. Hunt, Programming Ruby: The

Pragmatic Programmer’s Guide, Addison-Wesley, 2001.
2. Y. Matsumoto, Ruby in a Nutshell: A Desktop Quick

Reference, O’Reilly & Associates, 2002.

3. K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

4. Workforce Compensation and Performance Service: Re-
search Grade Evaluation Guide, Transmittal Sheet TS-

23, Office of Personnel Management, Washington,
D.C., 1976; www.opm.gov/fedclass/gsresch.pdf.

5. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern
Language: Towns, Buildings, Construction, Center for

Environmental Structure, Oxford Univ. Press, 1977.

6. M.

Fowler, Refactoring: Improving the Design of Exist-

ing Code, Addison-Wesley, 1999.

7. E.M. Goldratt and J. Cox, The Goal: A Process of On-
going Improvement, 2nd ed., North River Press, 1992.

For more information on this or any other computing topic, please visit our

Digital Library at http://computer.org/publications/dlib.

PREMIER U[E
IEEE o
SECURITY &4 11T:14
B o Clotanme M Don’t run
the risk!
Be secure.

d Order your charter

subscription today.

ms oecond=Hand *
= Secrets®™ . 17

COMPUTER
SOCIETY

©IEEE

http://computer.org/security

Q IEEE Cs}:{@TER
SOCIETY

IEEE Security & Privacy

Ensure that your networks operate safely and provide critical
services even in the face of attacks. Develop lasting security
solutions, with this new peer-reviewed publication. Top security
professionals in the field share information you can rely on:

Wireless Security

Securing the Enterprise
Designing for Security
Infrastructure Security
Privacy Issues

Legal Issues

Cybercrime

Digital Rights Management
Intellectual Property Protection and
Piracy

The Security Profession

PRIVAGY

Building Confidence in a Networked World

36 IEEE SOFTWARE http://computer.org/software

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

