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Abstract. In this paper, we identify the scalability bottlenecks of an unstructured
grid CFD code (PETSc-FUN3D) by studying the impact of several algorithmic
and architectural parameters and by examining different programming models.
We discuss the basic performance characteristics of this PDE code with the help
of simple performance models developed in our earlier work, presenting primar-
ily experimental results. In addition to achieving good per-processor performance
(which has been addressed in our cited work and without which scalability claims
are suspect) we strive to improve the implementation and convergence scalability
of PETSc-FUN3D on thousands of processors.

1 Introduction

We have ported the NASA code FUN3D [1, 3] into the PETSc [4] framework using the
single program multiple data (SPMD) message-passing programming model, supple-
mented by multithreading at the physically shared memory level. FUN3D is a tetrahe-
dral vertex-centered unstructured mesh code originally developed by W. K. Anderson
of the NASA Langley Research Center for compressible and incompressible Euler and
Navier-Stokes equations. FUN3D uses a control volume discretization with a variable-
order Roe scheme for approximating the convective fluxes and a Galerkin discretization
for the viscous terms. In reimplementing FUN3D in the PETSc framework, our effort
has focused on achieving small time to convergence without compromising scalability,
by means of appropriate algorithms and architecturally efficient data structures [2].

The solution algorithm employed in PETSc-FUN3D is pseudo-transient
Newton-Krylov-Schwarz ( NKS) [8] with block-incomplete factorization on each sub-
domain of the Schwarz preconditioner and with varying degrees of overlap. This code
spends almost all of its time in two phases: flux computations (to evaluate conservation
law residuals), where one aims to have such codes spent almost all their time, and sparse
linear algebraic kernels, which are a fact of life in implicit methods. Altogether, four
basic groups of tasks can be identified based on the criteria of arithmetic concurrency,
communication patterns, and the ratio of operation complexity to data size within the
task. These four distinct phases, present in most implicit codes, are: vertex-based loops,
edge-based loops, recurrences, and global reductions. Each of these groups of tasks
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stresses a different subsystem of contemporary high-performance computers. Analy-
sis of PETSc-FUN3D shows that, after tuning, the linear algebraic kernels run at close
to the aggregate memory-bandwidth limit on performance, the flux computations are
bounded either by memory bandwidth or instruction scheduling (depending upon the
ratio of load/store units to floating point units in the CPU), and parallel efficiency is
bounded primarily by slight load imbalances at synchronization points [6, 7].

Achieving high sustained performance, in terms of solutions per second, requires
attention to three factors. The first is a scalable implementation, in the sense that time
per iteration is reduced in inverse proportion to the the number of processors, or that
time per iteration is constant as problem size and processor number are scaled propor-
tionally. The second is algorithmic scalability, in the sense that the number of iterations
to convergence does not grow with increased numbers of processors. The second factor
arises since the requirement of a scalable implementation generally forces parameter-
ized changes in the algorithm as the number of processors grows. However, if the con-
vergence is allowed to degrade the overall execution is not scalable, and this must be
countered algorithmically. The third is good per-processor performance on contempo-
rary cache-based microprocessors. In this paper, we only consider the first two factors
in the overall performance in Sections 3 and 4, respectively. For a good discussion of
the optimizations done to improve the per processor performance, we refer to our earlier
work [7, 6].

2 Large Scale Demonstration Runs

We use PETSc’s profiling and logging features to measure the parallel performance.
PETSc logs many different types of events and provides valuable information about
time spent, communications, load balance, and so forth, for each logged event. PETSc
uses manual counting of flops, which are afterwards aggregated over all the processors
for parallel performance statistics. In our rate computations, we exclude the initializa-
tion time devoted to I/O and data partitioning. Since we are solving large fixed-size
problems on distributed memory machines, it is not reasonable to base parallel scala-
bility on a uniprocessor run, which would thrash the paging system. Our base processor
number is such that the problem has just fit into the local memory.

Fig. 1 shows aggregate flop/s performance and a log-log plot showing execution
time for the 2.8 million vertex grid on the three most capable machines to which we
have thus far had access. In both plots of this figure, the dashed lines indicate ideal
behavior. Note that although the ASCI Red flop/s rate scales nearly linearly, a higher
fraction of the work is redundant at higher parallel granularities, so the execution time
does not drop in exact proportion to the increase in flop/s.

3 Implementation Scalability

Domain-decomposed parallelism for PDEs is a natural means of overcoming Amdahl’s
law in the limit of fixed problem size per processor. Computational work on each evalu-
ation of the conservation residuals scales as the volume of the (equal-sized) subdomains,
whereas communication overhead scales only as the surface. This ratio is fixed when
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Fig. 1. Gigaflop/s ratings and execution times on ASCI Red (up to 3072 2-processor nodes), ASCI
Pacific Blue (up to 768 processors), and a Cray T3E (up to 1024 processors) for a 2.8M-vertex
case, along with dashed lines indicating “perfect” scalings.

problem size and processors are scaled in proportion, leaving only global reduction
operations over all processors as an impediment to perfect performance scaling.

When the load is perfectly balanced (which is easy to achieve for static meshes)
and local communication is not an issue because the network is scalable, the optimal
number of processors is related to the network diameter. For logarithmic networks, like
a hypercube, the optimal number of processors, P , grows directly in proportion to the
problem size,N . For a d-dimensional torus network, P / N d=d+1. The proportionality
constant is a ratio of work per subdomain to the product of synchronization frequency
and internode communication latency.

3.1 Scalability Bottlenecks

In Table 1, we present a closer look at the relative cost of computation for PETSc-
FUN3D for a fixed-size problem of 2.8 million vertices on the ASCI Red machine, from
128 to 3072 nodes. The intent here is to identify the factors that retard the scalability.
The overall parallel efficiency (denoted by �overall) is broken into two components:
�alg measures the degradation in the parallel efficiency due to the increased iteration
count (Section 4) of this (non-coarse-grid-enhanced) NKS algorithm as the number of
subdomains increases, while �impl measures the degradation coming from all other non-
scalable factors such as global reductions, load imbalance (implicit synchronizations),
and hardware limitations.

From Table 1, we observe that the buffer-to-buffer time for global reductions for
these runs is relatively small and does not grow on this excellent network. The pri-
mary factors responsible for the increased overhead of communication are the implicit
synchronizations and the ghost point updates (interprocessor data scatters).
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Table 1. Scalability bottlenecks on ASCI Red for a fixed-size 2.8M vertex mesh. The precondi-
tioner used in these results is block Jacobi with ILU(1) in each subdomain. We observe that the
principle nonscaling factor is the implicit synchronization.

Number of Efficiency
Processors Its Time Speedup �overall �alg �impl

128 22 2,039s 1.00 1.00 1.00 1.00
256 24 1,144s 1.78 0.89 0.92 0.97
512 26 638s 3.20 0.80 0.85 0.94

1024 29 362s 5.63 0.70 0.76 0.93
2048 32 208s 9.78 0.61 0.69 0.89
3072 34 159s 12.81 0.53 0.65 0.82

Percent Times for Scatter Scalability
Total Data Application

Global Implicit Ghost Sent per Level Effective
Number of Reduc- Synchro- Point Iteration Bandwidth per
Processors tions nizations Scatters (GB) Node (MB/s)

128 5 4 3 3.6 6.9
256 3 6 4 5.0 7.5
512 3 7 5 7.1 6.0
1024 3 10 6 9.4 7.5
2048 3 11 8 11.7 5.7
3072 5 14 10 14.2 4.6

Interestingly, the increase in the percentage of time (3% to 10%) for the scatters
results more from algorithmic issues than from hardware/software limitations. With an
increase in the number of subdomains, the percentage of grid point data that must be
communicated also rises. For example, the total amount of nearest neighbor data that
must be communicated per iteration for 128 subdomains is 3.6 gigabytes, while for
3072 subdomains it is 14.2 gigabytes. Although more network wires are available when
more processors are employed, scatter time increases. If problem size and processor
count are scaled together, we would expect scatter times to occupy a fixed percentage
of the total and load imbalance to be reduced at high granularity.

The final column in Table 1 shows the scalability of the “application level effective
bandwidth” that is computed by dividing the total amount of data transferred by the
time spent in scatter operation. It includes the message packing and unpacking times
plus any contention in the communication. That is why it is far lower than the achiev-
able bandwidth (as measured by the “Ping-Pong” test from the message passing perfor-
mance (MPP) [10] tests) of the networking hardware. The Ping-Pong test measures the
point to point unidirectional bandwidth between any two processors in a communicator
group. It is clear that the Ping-Pong test results in Table 2 are not representative of the
actual communication pattern encountered in the scatter operation. To better understand
this issue, we have carried out the “Halo” test (from the MPP test suite) on 64 nodes
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Table 2. MPP test results on 64 nodes of ASCI Red. The Ping-Pong results measure the uni-
directional bandwidth. The Halo test results (measuring the bidirectional bandwidth) is more
representative of the communication pattern encountered in the scatter operation.

Message Bandwidth, MB/s
Length, KB Ping-Pong Halo

2 93 70
4 145 94
8 183 92

16 235 106
32 274 114

of the ASCI Red machine. In this test, a processor exchanges messages with a fixed
number of neighbors, moving data from/to contiguous memory buffers. For the Halo
test results in Table 2, each node communicated with 8 other nodes (which is a good es-
timate of the neighbors a processor in PETSc-FUN3D will need to communicate). The
message lengths for both these tests (Ping-Pong and Halo) have been varied between
2KB to 32 KB since the average length of a message in the runs for Table 1 varies from
23 KB to 3 KB as the number of processor goes up from 128 to 3072. We observe that
the bandwidth obtained in the Halo test is significantly less than that obtained in the
Ping-Pong test. This loss in performance perhaps can be attributed to the fact that a
processor communicates with more than one neighbor at the same time in the Halo test.
In addition, as stated earlier, the scatter operation involves the overhead of packing and
unpacking of messages at the rate limited by the achievable memory bandwidth (about
145 MB/s as measured by the STREAM benchmark [14]). We are currently investigat-
ing the impact of these two factors (the number of pending communication operations
with more than one neighbor and the memory bandwidth) on the performance of scatter
operation further.

3.2 Effect of Partitioning Strategy

Mesh partitioning has a dominant effect on parallel scalability for problems character-
ized by (almost) constant work per point. As shown above, poor load balance causes
idleness at synchronization points, which are frequent in implicit methods (e.g., at ev-
ery conjugation step in a Krylov solver). With NKS methods, then, it is natural to strive
for a very well balanced load. The p-MeTiS algorithm in the MeTiS package [12], for
example, provides almost perfect balancing of the number of mesh points per proces-
sor. However, balancing work alone is not sufficient. Communication must be balanced
as well, and these objectives are not entirely compatible. Figure 2 shows the effect of
data partitioning using p-MeTiS, which tries to balance the number of nodes and edges
on each partition, and k-MeTiS, which tries to reduce the number of noncontiguous
subdomains and connectivity of the subdomains. Better overall scalability is observed
with k-MeTiS, despite the better load balance for the p-MeTiS partitions. This is due
to the slightly poorer numerical convergence rate of the iterative NKS algorithm with
the p-MeTiS partitions. The poorer convergence rate can be explained by the fact that
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Fig. 2. Parallel speedup relative to 128 processors on a 600 MHz Cray T3E for a 2.8M vertex
case, showing the effect of partitioning algorithms k-MeTiS, and p-MeTiS.

the p-MeTiS partitioner generates disconnected pieces within a single “subdomain,”
effectively increasing the number of blocks in the block Jacobi or additive Schwarz
algorithm and increasing the size of the interface. The convergence rates for block it-
erative methods degrade with increasing number of blocks, as discussed in Section 4.

3.3 Domain-based and/or Instruction-level Parallelism

The performance results above are based on subdomain parallelism using the Message
Passing Interface (MPI) [9]. With the availability of large scale SMP clusters, different
software models for parallel programming require a fresh assessment. For machines
with physically distributed memory, MPI has been a natural and successful software
model. For machines with distributed shared memory and nonuniform memory access,
both MPI and OpenMP have been used with respectable parallel scalability. For clusters
with two or more SMPs on a single node, the mixed software model of threads within
a node (OpenMP being a special case of threads because of the potential for highly
efficient handling of the threads and memory by the compiler) and MPI between the
nodes appears natural. Several researchers (e.g., [5, 13]) have used this mixed model
with reasonable success.

We investigate the mixed model by employing OpenMP only in the flux calculation
phase. This phase takes over 60% of the execution time on ASCI Red and is an ideal
candidate for shared-memory parallelism because it does not suffer from the memory
bandwidth bottleneck (see next section). In Table 3, we compare the performance of
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Table 3. Execution time on the 333 MHz Pentium Pro ASCI Red machine for function evaluations
only for a 2.8M vertex case, comparing the performance of the hybrid (MPI/OpenMP) and the
distributed memory (MPI alone) programming models.

MPI/OpenMP MPI
Threads Processes
per Node per Node

Nodes 1 2 1 2

256 483s 261s 456s 258s
2560 76s 39s 72s 45s
3072 66s 33s 62s 40s

this phase when the work is divided by using two OpenMP threads per node with the
performance when the work is divided using two independent MPI processes per node.
There is no communication in this phase. Both processors work with the same amount
of memory available on a node; in the OpenMP case, it is shared between the two
threads, while in the case of MPI it is divided into two address spaces.

The hybrid MPI/OpenMP programming model appears to be a more efficient way
to employ shared memory than are the heavyweight subdomain-based processes (MPI
alone), especially when the number of nodes is large. The MPI model works with larger
number of subdomains (equal to the number of MPI processors), resulting in slower
rate of convergence. The hybrid model works with fewer chunkier subdomains (equal
to the number of nodes) that result in faster convergence rate and shorter execution time,
despite the fact that there is some redundant work when the data from the two threads
is combined due to the lack of a vector-reduce operation in the OpenMP standard (ver-
sion 1) itself. Specifically, some redundant work arrays must be allocated that are not
present in the MPI code. The subsequent gather operations (which tend to be memory
bandwidth bound) can easily offset the advantages accruing from the low latency shared
memory communication. One way to get around this problem is to use some coloring
strategies to create the disjoint work sets, but this takes away the ease and simplicity of
the parallelization step promised by the OpenMP model.

4 Convergence Scalability

The convergence rates and, therefore, the overall parallel efficiencies of additive Schwarz
methods are often dependent on subdomain granularity. Except when effective coarse-
grid operators and intergrid transfer operators are known, so that optimal multilevel
preconditioners can be constructed, the number of iterations to convergence tends to in-
crease with granularity for elliptically controlled problems, for either fixed or memory-
scaled problem sizes. In practical large-scale applications, however, the convergence
rate degradation of single-level additive Schwarz is sometimes not as serious as the
scalar, linear elliptic theory would suggest (e.g. see the 2nd column in Table 1). Its ef-
fects are mitigated by several factors, including pseudo-transient nonlinear continuation
and dominant intercomponent coupling. The former parabolizes the operator, endow-
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ing diagonal dominance. The latter renders the off-diagonal coupling less critical and,
therefore, less painful to sever by domain decomposition. The block diagonal coupling
can be captured fully in a point-block ILU preconditioner.

4.1 Additive Schwarz Preconditioner

Table 4 explores two quality parameters for the additive Schwarz preconditioner: sub-
domain overlap and quality of the subdomain solve using incomplete factorization. We
exhibit execution time and iteration count data from runs of PETSc-FUN3D on the
ASCI Red machine for a fixed-size problem with 357,900 grid points and 1,789,500
degrees of freedom. These calculations were performed using GMRES(20), one subdo-
main per processor (without overlap for block Jacobi and with overlap for ASM), and
ILU(k) where k varies from 0 to 2, and with the natural ordering in each subdomain
block. The use of ILU(0) with natural ordering on the first-order Jacobian, while apply-
ing a second-order operator, allows the factorization to be done in place, with or without
overlap. However, the overlap case does require forming an additional data structure on
each processor to store matrix elements corresponding to the overlapped regions.

From Table 4 we see that the larger overlap and more fill helps in reducing the total
number of linear iterations as the number of processors increases, as theory and intuition
predict. However, both increases consume more memory, and both result in more work
per iteration, ultimately driving up execution times in spite of faster convergence. Best
execution times are obtained for any given number of processors for ILU(1), as the
number of processors becomes large (subdomain size small), for zero overlap.

The execution times reported in Table 4 are highly dependent on the machine used,
since each of the additional computation/communication costs listed above may shift
the computation past a knee in the performance curve for memory bandwidth, commu-
nication network, and so on.

4.2 Other Algorithmic Tuning Parameters

In [7] we highlight some additional tunings (for  NKS Solver) that have yielded good
results in our context. Some subsets of these parameters are not orthogonal, but inter-
act strongly with each other. In addition, optimal values of some of these parameters
depend on the grid resolution. We are currently using derivative-free asynchronous par-
allel direct search algorithms [11] to more systematically explore this large parameter
space.

5 Conclusions

Unstructured implicit CFD solvers are amenable to scalable implementation, but care-
ful tuning is needed to obtain the best product of per-processor efficiency and parallel
efficiency. In fact, the cache blocking techniques (addressed in our earlier work) em-
ployed to boost the per-processor performance helps to improve the parallel scalability
as well by making the message sizes longer. The principle nonscaling factor is the
implicit synchronizations and not the communication. Another important phase is the
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Table 4. Execution times and linear iteration counts on the 333 MHz Pentium Pro ASCI Red
machine for a 357,900-vertex case, showing the effect of subdomain overlap and incomplete
factorization fill level in the additive Schwarz preconditioner. The best execution times for each
ILU fill level and number of processors are in boldface in each row.

ILU(0) in Each Subdomain
Number Overlap

of 0 1 2
Processors Time Linear Its Time Linear Its Time Linear Its

32 688s 930 661s 816 696s 813
64 371s 993 374s 876 418s 887

128 210s 1052 230s 988 222s 872

ILU(1) in Each Subdomain
Number Overlap

of 0 1 2
Processors Time Linear Its Time Linear Its Time Linear Its

32 598s 674 564s 549 617s 532
64 334s 746 335s 617 359s 551

128 177s 807 178s 630 200s 555

ILU(2) in Each Subdomain
Number Overlap

of 0 1 2
Processors Time Linear Its Time Linear Its Time Linear Its

32 688s 527 786s 441 — —
64 386s 608 441s 488 531s 448

128 193s 631 272s 540 313s 472

scatter/gather operation that seems limited more by the achievable memory bandwidth
than the network bandwidth (at least on ASCI Red). Given contemporary high-end ar-
chitecture, critical research directions for solution algorithms for systems modeled by
PDEs are (1) multivector algorithms and less synchronous algorithms, and (2) hybrid
programming models. To influence future architectures while adapting to current ones,
we recommend adoption of new benchmarks featuring implicit methods on unstruc-
tured grids, such as the application featured here.
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