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Parallel implicit solution methods are increas-
ingly important in aerodynamics and other fields
leading to large nonlinear systems with sparse Ja-
cobians. Several trends contribute to their impor-
tance. Multidisciplinary analysis and optimization
require rapidly achievable low residual solutions,
since individual component codes are often iterated
and their results differenced for sensitivities. Prob-
lems possessing multiple space or time scales moti-
vate implicit algorithms, and arise frequently in lo-
cally adaptive contexts and in dynamical contexts
such as aero-elasticity. Meanwhile, the demand for
resolution and prompt turnaround forces consider-
ation of parallelism, and, for cost effectiveness, the
high-latency, low-bandwidth parallelism available
from workstation clusters. An [ICASE program
in Newton-Krylov-Schwarz (NKS) solvers responds
to this need, in collaborations with academia, na-
tional laboratories (NASA and DOE), and industry
(Boeing and UTRC).

An NKS method combines a Newton-Krylov
(NK) method, such as nonlinear GMRES, with
a Krylov-Schwarz (KS) method, such as additive
Schwarz. The linkage is the Krylov method, whose
most important characteristic, from a computa-
tional point of view, is that information about the
underlying Jacobian needs to be accessed only in
the form of matrix-vector products in a relatively
small number of directions. NK methods are suited
for problems in which it is unreasonable to com-
pute or store an accurate full-basis representation
of the Jacobian. However, if the Jacobian is ill-
conditioned, the Krylov method will require an un-
acceptably large number of iterations. The system
can be transformed through the action of a precon-
ditioner whose inverse action approximates that of
the Jacobian, but at smaller cost. It is usually in
the choice of preconditioning that the battle for
low computational cost and scalable parallelism is
won or lost. In KS methods, the precondition-
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ing is introduced on a subdomain-by-subdomain
basis, providing well load-balanced data locality
for parallel implementations over a wide granular-
ity range. This paradigm is credited to Schwarz,
who in 1869 used it to prove existence of solutions
for elliptic problems on domains not lending them-
selves to separable coordinate systems. A two-grid-
level form of additive Schwarz (see ref. 2 for a
reference chain) provides a mesh-independent and
granularity-independent convergence raie in ellipti-
cally dominated problems, including nonsymmetric
and indefinite problems.

An encouraging application of NK technology
has arisen in collaborations with W. K. Ander-
son of the Computational Aerodynamics Branch
at NASA Langley. Anderson’s state-of-the-art
unstructured-grid Euler and Navier-Stokes codes
employ a solver common in form to that of many
implicit codes. Their objective is to solve the
steady-state conservation equations f(u) = 0 in
the pseudo-transient form %‘f + f(u) = 0, where the
time derivative is approximated by backwards dif-
ferencing, with a time step that ideally approaches
infinity, leaving the steady form of the equation. A
left-hand side matrix (not a true Jacobian) is cre-
ated, in whose construction computational short-
cuts are employed, and which may be stabilized by
a degree of first-order upwinding that would not
be acceptable in the discretization of the residual,
itself. We denote this generic distinction in the
update equation (2} by subscripting the residual
“high” and the left-hand side matrix “low”:

Jiowb® = — fuign (2)
Often, Jioy, is based on a low-accuracy residual:

D aflow
6t+ ou ’

where D is a scaling matrix. Inconsistency between
the left- and right-hand sides prevents the use of
large time steps, 6t. Using the built-in capability
to solve systems with Jj,,, as the preconditioning,
we replace (2) with

(Jiow ) Ihighbtt = —(J1ow) ™" Frighs (3)
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in which the action of Jyep on a vector is obtained
through directional differencing, namely

Trign(u)o = % [fhigh(ﬂI + hv) - fhigh(ul)] > (4)

where h is a small parameter. Since the operators

n both sides of (3) are consistently based on high-
order discretizations; time steps can be built up
to large values, recovering Newton’s method in the
limit.

The most effective solver to date for systems
based on .Ji,, is multigrid, typically V-cycle MG
on a family of non-nested coarser grids. However,
the construction of such a family is extremely time-
consuming in two dimensions and much more of
an art than- a science in three dimensional prob-
lems with complex, multiply connected geometry,
such as-a multiple-element airfoil. NKS methods
may permit solution of the fine-grid discretization
alone in comparable time, as illustrated for a two-
dimensional Navier-Stokes problem on an unstruc-
tured grid [ref. 1]in Fig. 1. The baseline method is
a single-grid point relaxation process. The second
method is MG with four non-nested coarse grids in
a FAS V-cycle. The third matrix-free NK method
uses ILU as a preconditioner and restarted GMRES
as the accelerator.
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Figure 1: Norm of steady-state residual vs. iter-
ations (left) and vs. Cray CPU time (right) for a
single grid Gauss-Seidel scheme (solid), a 4-V-cycle
multigrid scheme (dashed), and an NK scheme

(dotted).

The left plot of residual norm versus “outer iter-
ations,” shows that MG and NK can achieve close
to machine-zero residual reductions in vastly fewer
iterations than can single-grid relaxation. Since
each NK iteration involves a set of Krylov subit-
erations, it trails multigrid by a factor of about
1.5 in execution time, as shown in the right plot
of tesidual norm versus sequential time. A small
sequential time disadvantage is tolerable since the
NK method does all of ils computation without
user generation of coarse unstructured grids and
lends itself to easily parallelizable preconditioners.
This work has been extended to three-dimensional

problems in conjunction with E. J. Nielsen and R.
W. Walters of Virginia Tech.

Related projects include a two-level Schwarz pre-
conditioned version of Boeing’s TRANAIR [ref. 3],
a low Mach number combustion simulation based
on NKS (with D. A. Knoll and P. R. McHugh of
INEL), an unstructured Euler code parallelized on
the Paragon (with Venkatakrishnan of ICASE), an
Ethernet Sparcstation cluster implementation of a
KS solver for a structured-grid Fuler Jacobians
(with M. D. Tidriri of ICASE, W. D. Gropp of
Argonne, and J. S. Mounts (deceased) of United
Technologies), and an NS solver for a model full
potential equation parallelized on the SP2 (with
X.-C. Cai of UC-Boulder and Gropp).

A variety of CFBP applications are (or have
inner) nonlinear -elliptically-dominated problems
amenable to solution by NKS algorithms, which
are characterized by relatively low storage require-
ments {for an implicit method) and locally con-
centrated data dependencies. The main disadvan-
tage of NKS algorithms is the large number of
parameters that require tuning. Fach component
(Newton, Krylov, and Schwarz) has its own set
of parameters. Parametric tuning is important to
performance, but robust choices are not difficult.
Nonsymmetry, nonlinearity, and multicomponent
structure hinder theoretical development, but ex-
perimental development continues in a variety of
settings.
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