
AIAA 95-1740

1

Implicit/Multigrid Algorithms for Incompressible Turbulent
Flows on Unstructured Grids

W. Kyle Anderson,* Russ D. Rausch,† Daryl L. Bonhaus‡
NASA Langley Research Center, Hampton, Virginia 23681

Summary

An implicit code for computing inviscid and viscous incompressible flows on unstructured grids is described. The foundation of the
code is a backward Euler time discretization for which the linear system is approximately solved at each time step with either a point
implicit method or a preconditioned Generalized Minimal Residual (GMRES) technique. For the GMRES calculations, several tech-
niques are investigated for forming the matrix-vector product. Convergence acceleration is achieved through a multigrid scheme that
uses non-nested coarse grids that are generated using a technique described in the present paper. Convergence characteristics are
investigated and results are compared with an exact solution for the inviscid flow over a four-element airfoil. Viscous results, which
are compared with experimental data, include the turbulent flow over a NACA 4412 airfoil, a three-element airfoil for which Mach
number effects are investigated, and three-dimensional flow over a wing with a partial-span flap.

*Senior Research Scientist, Aerodynamic and Acoustic Methods
Branch, Fluid Mechanics and Acoustics Division, Member AIAA.

†Research performed while a Resident Research Associate,
National Research Council. Currently Senior Engineer, Lockheed
Engineering and Sciences Company, Member AIAA.

‡Research Scientist, Aerodynamic and Acoustic Methods
Branch, Fluid Mechanics and Acoustics Division, Member AIAA

Copyright © 1995 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-free
license to exercise all rights under the copyright claimed herein for
Governmental purposes. All other rights are reserved by the copy-
right owner.

Introduction
In the past decade, much progress has been made in devel-

oping computational techniques for predicting flow fields
about complex configurations. These techniques include both
structured- and unstructured-grid algorithms. The accuracy
and efficiency of these codes is now such that computational
fluid dynamics (CFD) is routinely used in the analysis and
improvement process of existing designs and is a valuable
tool in experimental programs and in the design of new con-
figurations.

Many existing codes referred to above have been devel-
oped in support of the aircraft industry and, therefore, solve
the compressible flow equations because of the need to han-
dle the important effects associated with transonic Mach
numbers. However, many important problems, such as those
in the automobile industry and in biomechanics, are inher-
ently incompressible and must be treated appropriately.

With the success and wide availability in recent years of
the compressible codes, these codes have naturally been con-
sidered for use with incompressible flows by simply lowering
the Mach number to minimize compressibility effects. Unfor-
tunately, as the Mach number is successively decreased to-
ward zero, the performance of the compressible codes in
terms of both convergence rate and accuracy suffers greatly.
In Ref. 52, Volpe demonstrated the poor performance of com-
pressible flow codes under these conditions, particularly for
Mach numbers below approximately 0.1.

To overcome the difficulties associated with use of com-
pressible codes, excellent progress has been made in the use
of local preconditioners to extend the applicability of these
codes to low Mach numbers. Several examples of this tech-
nique, as well as the necessary theory, can be found in
Refs. 13, 18, 24, 47, 48, 49, and 54. Preconditioning is indeed
a viable means of extending the applicability of compressible

flow codes to the low-Mach-number range and continues to
be an area of active research. A computer code that utilizes
this technique has the added benefit of being able to handle
both compressible and incompressible flows. This technique
has been applied to both steady-state and time-dependent
flows; for time-dependent flows, however, a subiterative pro-
cess is required to maintain time accuracy.

Another available method of extending a compressible
flow code for use at zero Mach number is the method of arti-
ficial compressibility first introduced by Chorin.14 In this ap-
proach, a pseudo-time derivative of pressure is added to the
continuity equation, which allows the continuity equation to
be advanced in a time-marching manner, much the same as
the momentum equations. Artificial compressibility has been
successfully applied by several researchers for both steady-
state and time-dependent flows (e.g., Refs. 12, 21, 32, 35, 36,
43, and 44). When the temperature field is not required, this
technique offers an advantage over preconditioning methods
in that the energy equation is not solved; therefore, the effi-
ciency of the algorithm is enhanced both in terms of computer
time and reduced memory. The reduction in memory is par-
ticularly significant for implicit codes on unstructured grids
because the storage associated with the time linearization of
the fluxes is reduced by the square of the local block size, or
roughly 40 percent. As with preconditioning, the use of this
method for time-dependent flows requires a subiterative pro-
cedure to obtain a divergence-free velocity field at each time
step.

Recently, unstructured grids have been explored for CFD
problems (e.g., Refs. 1, 5, 6, 10, 26, and 28). This approach
has several advantages over structured grids for problems that
involve complex geometries and flows. The biggest advan-
tage is the reduction in time needed to generate grids within a
complex computational domain. Another advantage is that
unstructured grids lend themselves to adaptive-grid methods
because new nodes can be added to a localized region of the
mesh by modifying a small subset of the overall grid data
structure. Although the unstructured-grid approach enjoys
these advantages over structured grids, flow solvers that uti-
lize it suffer from several disadvantages. These primarily in-
clude a factor of 2-3 increase in memory requirements and
computer run times on a per grid point basis.

The purpose of the current work is to extend the unstruc-
tured-grid compressible flow code described in Refs. 1, 2,
and 10 to incompressible flows. The extension provides a
code that can be used in the design of airplanes, ships, auto-
mobiles, pumps, ducts, and turbomachinery. The extension
also provides a tool for studying Mach-number effects on

2

high-lift airfoils because of the existence of both incompress-
ible and compressible flow codes with similar levels of nu-
merical accuracy that can be run on identical grids. The cur-
rent code is a node-based upwind implicit code that uses
multigrid acceleration (in two dimensions) to reduce the com-
puter time required for steady-state computations. In this ex-
tension, the artificial compressibility approach is used. The
choice of this technique over preconditioning is based prima-
rily on the desire to reduce memory requirements and com-
puter time by reducing the number of equations.

 In the remainder of the paper, the governing equations are
given, and the basic solution algorithm is described. Although
both two- and three-dimensional results are shown in the pa-
per, the description of the equations, algorithms, and bound-
ary conditions are limited to two-dimensional flow to con-
serve space. Results are presented to demonstrate the
incompressible code. Inviscid flow results for a four-element
airfoil are compared with an exact solution and are used for
examining the effects of various parameters on the conver-
gence behavior. Viscous, turbulent flow results for the NACA
4412 airfoil are compared with experimental data, as well as
with results from a well-known structured-grid compressible
code run at a low Mach number. In addition, results are pre-
sented for a three-element airfoil to study the effects of com-
pressibility. These results are compared with results from an
unstructured-grid compressible code and with experimental
data. Finally, three-dimensional turbulent computations are
shown for a wing with a partial-span flap.

Governing Equations
The governing equations are the incompressible Navier-

Stokes equations augmented with artificial compressibility.
These equations represent a system of conservation laws for a
control volume that relates the rate of change of a vector of
average state variables to the flux through the volume sur-
face. The equations are written in integral form as

(1)

where is the outward-pointing unit normal to the control
volume . The vector of dependent state variables and the
inviscid and viscous fluxes normal to the control volume
and are given as

(2)

(3)

(4)

where is the artificial compressibility parameter; and
are the Cartesian velocity components in the and direc-
tions, respectively; is the velocity normal to the surface of
the control volume, where

(5)

and is the pressure. The shear stresses in Eq. (4) are given
as

(6)

where and are the laminar and turbulent viscosities, re-
spectively, and is the Reynolds number.

Solution Algorithm
The baseline flow solver is an implicit upwind algorithm in

which the inviscid fluxes are obtained on the faces of each
control volume with a flux-difference-splitting scheme. For
the current algorithm, a node-based scheme is used in which
the variables are stored at the vertices of the grid and the
equations are solved on nonoverlapping control volumes that
surround each node. The viscous terms are evaluated with a
finite-volume formulation that is equivalent to a Galerkin type
of approximation for these terms. The solution at each time
step is updated with the linearized backward Euler time-dif-
ferencing scheme. At each time step, the linear system of
equations is approximately solved with either a point implicit
procedure or the Generalized Minimal Residual (GMRES)
method. Details of the flux-difference-splitting scheme and
the time-advancement scheme are given below.

Finite-Volume Scheme
The solution is obtained by dividing the domain into a fi-

nite number of triangles from which non-overlapping control
volumes are formed by the “dual” mesh described in Refs. 1
and 5. The inviscid fluxes are evaluated on the faces of the
control volumes with a flux-difference-splitting scheme simi-
lar to that used in Refs. 21, 32, 35, and 43.

The inviscid fluxes on the boundaries of the control vol-
umes are given by

(7)

where is the numerical flux, is the flux vector given in
Eq. (3), and are the values of the dependent variables
on the left and right side of the boundary of the control vol-
ume, and

(8)

where is a diagonal matrix whose elements are the eigen-
values of the flux Jacobian, , and are given by

(9)

and

(10)

The matrices of right and left eigenvectors are given by

q

V
t∂

∂q
f i n̂⋅

Ω∂
∫° ld f v n̂⋅ ld

Ω∂
∫°–+ 0=

n̂
V q

f i
f v

q
p

u

v

=

f i n̂⋅
βΘ

uΘ nx p+
vΘ ny p+

=

f v n̂⋅
0

nxτxx nyτxy+
nxτxy nyτyy+

=

β u v
x y

Θ

Θ nxu nyv+=

p

τxx µ µt+() 2
Re
------ux=

τyy µ µt+() 2
Re
------vy=

τxy µ µt+() 1
Re
------ uy vx+()=

µ µt
Re

Φ 1
2--- f q+ n̂;() f q- n̂;()+() 1

2--- Ã q+ q-–()–=

Φ f
q+ q-

Ã T̃ Λ̃ T̃
1–=

Λ̃
Ã

λ1 Θ=
λ2 Θ c+=
λ3 Θ c–=

c Θ2 β+=

3

(11)

(12)

where is a shear velocity perpendicular to and equal to

(13)

In Eqs. (7)-(12), the ~ represents quantities evaluated with av-
eraged values of the left and right states. The values of the left
and right states and are evaluated with a Taylor series
expansion about the central node of the control volume, so
that the data on the face is given by

(14)

where is the vector that extends from the central node to the
midpoint of each edge and is the gradient of the depen-
dent variables at the node and is evaluated with a least-
squares procedure.1,3,7

Since the right and left eigenvectors given in Eqs. (11) and
(12) contain the variable (and therefore), the steady-state
solution has a dependency on , where larger values corre-
spond to increased dissipation.32 Numerical experiments have
indicated that this influence is small for values of below
approximately 100. Also, since large values of correspond
to large values of , if is chosen to be very large, there is a
wide disparity in the magnitudes of the eigenvalues. This dis-
parity could lead to slow convergence rates in much the same
manner as when a compressible flow solver is used at very
low freestream Mach numbers. For these reasons, all the re-
sults obtained in this paper use a of 10.

Time-Advancement Scheme
The time-advancement algorithm is based on the linearized

backward Euler time-differencing scheme, which yields a lin-
ear system of equations for the solution at each time step:

(15)

where is the vector of steady-state residuals,
represents the change in the dependent variables, and

(16)

The solution of this system of equations is obtained with ei-
ther a fully vectorizable point implicit Gauss-Seidel
procedure1,3 or a preconditioned GMRES procedure.37

When using the Gauss-Seidel procedure, the solution of the
linear system is obtained by a relaxation scheme in which

 is obtained through a sequence of iterates
that converge to . To clarify the scheme, is first
written as a linear combination of two matrices that represent
the diagonal and off-diagonal terms:

(17)

The simplest iterative scheme for obtaining a solution to
the linear system of equations is a Jacobi type of method in
which all off-diagonal terms (i.e.,) are taken to
the right-hand side of equation (15) and are evaluated with the
values of from the previous subiteration level . This
scheme can be represented as

(18)

The convergence rate of this process can be slow but can be
accelerated somewhat by using the latest values of as
soon as they are available. This can be achieved by adopting a
Gauss-Seidel type of strategy in which all odd-numbered
nodes are updated first, followed by the solution of the even-
numbered nodes. This procedure can be represented as

(19)

where is the most recent value of , which
will be at subiteration level for the odd-numbered nodes
that have been previously updated and at level for the even-
numbered nodes.

Although the use of this algorithm offers improvement over
the Jacobi iteration strategy, the convergence of the linear
system can still be slow, particularly on fine grids. Fortu-
nately, full convergence of the linear system is not necessary
to provide a robust algorithm that remains stable at time steps
much larger than an explicit scheme. In fact, if the residual is
not linearized accurately, then solving the linear system be-
yond truncation error of the non-linear equation is a waste of
resources because the Newton type of convergence that is
normally obtained as the time step is increased is lost. Numer-
ical experiments over a wide range of test cases for both vis-
cous and inviscid flow indicate that 15–20 subiterations at
each time step is adequate. The memory requirements for this
scheme are dominated by the storage of the flux Jacobians as-
sociated with the linearization of the fluxes on each edge. In
the present implementation, two matrices are stored on each
edge and are associated with the linearization of the flux with
the states on the right and left sides of the face. In two dimen-
sions, each matrix is so that a total of 18 storage loca-
tions are required for each edge. In three dimensions, the ma-
trices are each so that 32 storage locations are required
for every edge in the mesh. In equation (19), the multiplica-
tion of the off-diagonal terms in the matrix by the correspond-
ing values of is computed by looping over the edges
in the mesh and multiplying the flux Jacobians by the current
values of . Note that when the Gauss-Seidel scheme is
used as described above, only the dependency of the flux on
the nodes that lie at each end of an edge are included; thus, the
linearization of the second-order residual is only approximate
and would only be exact if the flux were computed with a
first-order-accurate scheme. The convergence of the subitera-
tive procedure is greatly enhanced by smaller time steps,
which results in larger diagonal contributions. Therefore, a
compromise must be made to allow Courant-Friedrichs-Lewy
(CFL) numbers that are small enough for good convergence
of the linear system but large enough to provide good conver-
gence of the nonlinear system. Experiments have shown that
although computations with CFL numbers of 500 or more re-
main stable, the best convergence in terms of computer time
for the Navier-Stokes equations is achieved for more moder-
ate CFL numbers between 100 and 200.

When the Gauss-Seidel scheme is used, practical applica-
tion has shown that replacing the exact linearization of the

T QT R
0 c Θ c–()– c Θ c+()
ny– nxc nyφ– nxc nyφ+()–

nx nyc nxφ+ n– yc nxφ+
= =

T 1– R 1– Q=

φ
c2----–

φΘnx nyc2+
c2------------------------------–

φ– Θny nyc2+
c2---------------------------------

1
2c2-------- Θ c+()

2c2------------------nx
Θ c+()
2c2------------------ny

1
2c2-------- Θ c–()

2c2-----------------nx
Θ c–()
2c2-----------------ny

=

φ Θ

φ nxv nyu–=

q+ q-

qface qnode q r⋅∇+=

r
∇q

c β
β

β
β

c β

β

A[]n ∆q{ }n r{ }n=

r{ }n ∆q{ }

A[]n V
∆t
-----I

q∂
∂r+=

∆q{ }n ∆q{ }i

∆q{ }n A[]n

A[]n D[]n O[]n+=

O[]n ∆q{ }

∆q{ }i i

D[]n ∆q{ }i 1+ r{ }n O[] ∆q{ }i–[]=

∆q{ }

D[]n ∆q{ }i 1+ r{ }n O[] ∆q{ } i 1+() i⁄–[]=

∆q{ } i 1+() i⁄ q∆
i 1+

i

3 3×

4 4×

∆q{ }

∆q{ }

4

fluxes with an approximate linearization can provide a signif-
icant increase in robustness, particularly on highly stretched
grids used for turbulent flow calculations. This increase in ro-
bustness is due to the loss of diagonal dominance often asso-
ciated with the exact linearizations. For this reason, when the
Gauss-Seidel scheme is used, the linearizations are based on
linearizing Eq. (7) with treated as constant matrix.

As an alternative to the above procedure, the GMRES37

method can also be used. Note that this procedure only re-
quires the formation of the product of with a column
vector and does not require the explicit inversion of .

In the present work, three methods are used to form the ma-
trix-vector product required for GMRES. In the first method,
the flux Jacobian matrices, stored on each edge, are formed
from the data that lies at the end point of the edge. This basic
procedure is the same as that described above for the Gauss-
Seidel algorithm and is equivalent to an exact linearization of
a spatially first-order-accurate scheme.

The second technique that can be used to form the matrix-
vector product is the use of a finite-difference approach4,23,29

(20)

where is the residual evaluated by using per-
turbed state quantities. In this study, is a scalar quantity
chosen so that the product of with the root mean square
(RMS) of is the square root of “machine zero:”

(21)

The choice of is based on keeping the perturbation to the
dependent variables in Eq. (20) at a small and consistent level
independent of the size of the mesh. Note, however, that the
value of will not necessarily be small but will actually in-
crease as the mesh size increases. This relationship can be
seen by examining the variation of with increasing mesh
size. Because the norm of is always unity, the RMS value
of is determined solely by the inverse of the number of un-
knowns in the mesh. In this case, as the mesh size increases, a
corresponding decrease occurs in the size of each element of

; as a result, as the mesh size gets larger, a corresponding
increase occurs in the magnitude of . The selection of in
this manner is computationaly efficient and is much more ef-
fective than chosing a technique that results in a small value
of . In the latter case, practical application has shown that
the level of convergence that can be obtained depends greatly
on the size of the mesh and often fails to converge to machine
zero.31 This may be attributable to the fact that, because is
forced to be small, the size of the perturbation decreases as
the mesh size increases. Eventually, the perturbation is essen-
tially zero so that the matrix-vector product that is computed
with Eq. (20) is inaccurate. By computing with Eq. (21),
consistent convergence to machine zero is obtained indepen-
dent of the mesh size. Note that for the incompressible equa-
tions, the values of are reasonably well scaled in that the
size of a typical element of is order one. If the magnitude of
these variables is substantially different, then a more appro-
priate choice of would be to require the product of with a
typical size of an element of to be roughly the square root
of machine zero multiplied by a typical size of an element of

.
In Eq. (20), if the computation of the residuals is the same

as that used for the right-hand side of Eq. (15), then the result-
ing matrix-vector product will match that obtained by using
the exact linearizations of the second-order system, to within
round off. If the same procedure is used, then the vectors
computed in the Krylov subspace are essentially equal to
those computed using the full linearization of the higher-order

residuals; however, the need to compute and store the matrix
is eliminated.

The final method used to evaluate the matrix-vector prod-
uct was introduced recently by Barth8. In this method, the ele-
ments of the flux Jacobians are still stored along each edge in
the same manner as when the exact linearization to the first-
order scheme is used. However, rather than simply forming
the linearizations from the data at the nearest neighbors, the
flux Jacobians are formed from data that are extrapolated to
the cell faces with a least-squares linear reconstruction proce-
dure. In addition, the elements of are “reconstructed” with
the same linear reconstruction procedure. Using the method
of Ref. 8, the effect of the exact linearization of the second-
order spatial residual is computed by using the same amount
of storage that is required for the linearizations of the first-
order scheme.

The preconditioning step for the GMRES procedure is done
with one or more iterations of a point Gauss-Seidel procedure
or an incomplete lower/upper (LU) decomposition20 in which
no fill in is allowed (i.e., ILU(0)). Note that only one iteration
of the Gauss-Seidel procedure is equivalent to “block diago-
nal” preconditioning. In all cases, the preconditioning is ap-
plied to the left. When GMRES is used with ILU(0) as the
preconditioner, the nonzero terms in the matrix are stored in a
compressed-row storage format,17 and the nodes in the mesh
are reordered with a reverse-Cuthill-McKee algorithm16 to
cluster nonzero terms along the diagonal. In addition, the for-
ward and back substitution steps, which must be conducted
each time the preconditioner is applied, have been fully vec-
torized with a level-scheduling algorithm.38 Vectorization is
accomplished by keeping a list of all edges that contribute to
the nodes in a given level and coloring those edges to allow
vectorization. Numerical experiments with the level-schedul-
ing algorithm indicate that the computer time required for the
forward and backward substitutions is reduced by a factor of
approximately 3.3 in two dimensions and by a factor of ap-
proximately 2.8 in three dimensions. A similar process has
been used in Ref. 51.

The memory required for each of the above methods of
solving the linear system is an important consideration for the
practical usability of the schemes. As already discussed, the
largest demand on memory for the Gauss-Seidel scheme
comes from the storage of the Jacobians on each edge. For the
GMRES algorithms, the storage can vary significantly, de-
pending on what methodology is used for computing the ma-
trix-vector product and what type of preconditioning is used.
When one or more iterations of the Gauss-Seidel scheme are
used for preconditioning, the Jacobians stored along each
edge can be used for both the matrix-vector product and the
preconditioning step. Therefore, this part of the overall stor-
age requirement is the same as for the Gauss-Seidel scheme
(used alone) in that the Jacobians are essentially stored only
once. Note that when ILU(0) is used as a preconditioner, the
flux Jacobians that contribute to the global matrix
(which is subsequently decomposed into approximate lower
and upper triangular matrices) are formed with the same stor-
age requirements as required with only nearest neighbors. In
this way, even when the matrix-vector product matches that
obtained by linearizing the second-order spatial discretiza-
tion, the preconditioner corresponds to a lower order linear-
ization. With the exception of the finite-difference technique,
the use of ILU(0) preconditioning requires that the elements
of the matrix be stored essentially twice; once to compute the
matrix-vector product and once for the incomplete LU de-
composition. Additional storage is required to store the vec-
tors in the Krylov subspace and is given by the dimension of
the subspace times the total number of unknowns in the mesh.
Although this storage can be nontrivial with a large Krylov
subspace, it is typically approximately one-third of that re-
quired for the storage of the nonzero matrix elements.

Ã

A[]
ν j A[]

Aν j

r q εν j+() r q()–
ε

--≈

r q εν j+()
ε

ε
ν j

ε mz ν j RMS⁄=

ε

ε

ε
ν j

ν j

ν j
ε ε

ε

ε

ε

q
q

ε ε
ν j

q

ν j

A[]

5

Boundary Conditions
The boundary conditions on the wall correspond to tan-

gency conditions for inviscid flows and to no-slip conditions
for viscous flows. In the far field, a locally one-dimensional
characteristic type of boundary condition is used, similar to
that described in Refs. 32 and 44. By considering the linear-
ized inviscid one-dimensional equations (where x is assumed
to be the coordinate normal to the boundary),

(22)

where

Equation (22) can be diagonalized using a similarity transfor-
mation to yield a decoupled system of equations

(23)

where represents a vector of characteristic variables

. (24)

The second eigenvalue is always positive and if it is
assumed that the normal to the far-field boundary points out-
ward, is the same on the boundary as in the interior of the
mesh. In a similar manner, is always negative; there-
fore, is the same on the boundary as in the free stream.
The relationship between the value of on the boundary de-
pends on whether or not the flow is into or out of the domain;
for inflow, the value on the boundary is the same as in the free
stream; for outflow it is the same on the boundary as in the in-
terior. These relationships provide three equations in three un-
knowns that can be solved for the pressure, the normal veloc-
ity, and the tangential velocity on the far-field boundary:

(25)

where the subscript r on the right-hand side of Eq. (25) refers
to data taken from outside the domain for inflow and from in-
side the domain for outflow. Also, the subscript i indicates
data taken from inside the domain, and indicates data
taken from outside the domain, which includes a point-vortex
correction to account for lift.45 In the current study, note that
the values taken as reference conditions (those taken as con-
stant in obtaining Eq. (25)) are evaluated at free-stream condi-
tions to facilitate the linearization of the fluxes on the far-field
boundary.

For all boundary nodes, both on the solid boundaries and in
the far field, the boundary conditions are not explicitly set but
are obtained through the solution process in the same manner
as the points interior to the domain. The only distinction be-
tween boundary nodes and an interior node is that the enforce-
ment of the boundary condition is reflected in the flux calcu-
lation on the boundary and the appropriate linearization is
taken into account on the left-hand side of Eq. (16). In this
way, a fully implicit treatment of the boundary conditions is
achieved.

Convergence Acceleration Techniques
To accelerate the convergence to a steady state, a multigrid

algorithm is employed.10 The algorithm is similar to that in
Ref. 28 in that a full approximation scheme11 is employed, the
coarser grids are not directly obtained from to the finest one,
and both V and W cycles can be used. The primary difference
between the present implementation and that of Ref. 28 is at
the boundaries for the interpolation of variables from one grid
to another. In the present implementation, nodes that lie “in-
side” a body such as an airfoil, as well as those contained in a
tagged set of nodes near the surfaces, are translated to main-
tain the distance to a wall instead of relying on an underlying
structured grid to obtain the necessary translations. Further
details of the present implementation can be found in Ref. 10.

Turbulence Modeling
For the current study, the one-equation turbulence model of

Spalart and Allmaras is used.41 At each time step, the equation
for the turbulent viscosity is solved separately from the flow
equations, which results in a loosely coupled solution process
that allows for the easy interchange of new turbulence mod-
els. The equations are solved with a backward Euler implicit
scheme similar to that used for the flow variables. For the ap-
plications in the current work, the linear system is solved at
each time step by using 12 subiterations of the Gauss-Seidel
procedure. Following the recommendations of Ref. 41 the lin-
earizations of the production and destruction terms should be
modified to ensure positive eddy viscosity throughout the
computation. The modification eliminates the possibility of
obtaining Newton-type convergence for the turbulence model.
Although this problem can possibly be remedied by using the
full linearizations in the later stages of convergence, in the
current work the modifications to these terms are kept intact
throughout the entire computation. On solid surfaces, the de-
pendent variable (related to the eddy viscosity) is set to zero;
in the far field, it is extrapolated from the interior for the out-
flow and taken to be free stream for the inflow. For the spatial
discretization, first-order upwind differencing is used for the
convective terms, and the higher order derivatives are evalu-
ated in the same manner as for the flow solver. The gradients
required for the production terms are not evaluated with the
least-squares procedure; rather, Green’s theorem is used.
Green’s theorem is used because numerical experiments have
shown that although the least-squares procedure is essential
for accurately determining data on boundaries of control vol-
umes for stretched grids, its use for computing actual gradi-
ents can be inaccurate.1 Failure to properly evaluate these
terms often leads to an inaccurate calculation of the eddy vis-
cosity.

Two-Dimensional Grid Generation
Before proceeding to the results, a brief description of the

methodology used for computing both viscous and inviscid
grids in two dimensions is given. The two-dimensional grids
for this study were constructed with an in-house grid-genera-
tion program known as TRI8IT.34 This program triangulates a
multiply-connected domain using an incremental point inser-
tion and a local edge-swapping algorithm. The TRI8IT pro-
gram is capable of generating grids suitable for both inviscid
and viscous CFD applications because it can generate both
isotropic and highly stretched triangles.

The TRI8IT grid-generation process starts by defining the
boundaries of the computational domain. Domain boundaries
are characterized by simple closed curves that are composed
of one or more segments; each segment is a smooth curve that
can be splined independently. The boundaries are defined in
an input file by a list of sequential grid points or by a list of
sequential knots for a parametric cubic spline. When a list of
knots is specified, grid points are smoothly distributed along
splined segments of the boundary curve with user-specified

td
dq A

xd
dq+ 0=

A
q∂

∂ f i=

t∂
∂w Λ

x∂
∂w+ 0=

w

w
w1

w2

w3

φo p ΘoΘ+() co
2φ–

p Θo co+()Θ+
p Θo co–()Θ+

==

Θ c+

w2
Θ c–

w3
w1

φo φoΘo co
2–

1 Θo co+ 0
1 Θo co– 0

pb

Θb

φb

φo pr φoΘoΘr co
2φr–+

pi Θo co+()Θi+
p∞ Θo co–()Θ∞+

=

∞

6

parameters to control the point distribution. The spacing pa-
rameters for each segment consist of spacing values at se-
lected knot locations and an integer value that specifies the
total number of points for the segment. Together, these pa-
rameters provide control over the boundary point distribution.
Once the boundary point distribution has been determined, a
single large triangle, which is used as the initial triangle for
the triangulation algorithm, is generated to encompass the en-
tire domain. By using the single triangle as the initial triangu-
lation, boundary points along each segment are sequentially
inserted into the triangulation by connecting grid lines from
the point to the vertices of the triangle in which the point is lo-
cated. After the point is inserted, edge swapping is performed
to locally optimize the triangulation around the new grid
point. In the present algorithm, the optimization criterion is
based on interior angles of neighboring triangles; edges are
swapped to minimize the maximum angles in the local trian-
gulation. This local optimization procedure is discussed in
more detail by Barth in Ref. 9. Figure 1 illustrates the point
insertion and local edge-swapping algorithm. When boundary

grid points are inserted, edge swapping is used to align grid
edges with the boundary curve. After the domain boundaries
are inserted, triangles outside the computational domain, such
as triangles inside the airfoil boundaries or outside the far-
field boundary, are removed from the grid. Figure 2 shows a
view of the triangulation near the surface of the airfoil before
and after the triangles have been removed. After undesirable

triangles have been excluded from the grid, the next step of
the grid-generation process is to insert field points to produce
a grid of isotropic triangles. The TRI8IT program provides
several techniques to generate field points. One technique is
the approach of Holmes and Snyder;22 in this approach, the
field points are inserted into a triangulation to continually re-
duce the cell aspect ratios. Figure 3(a) shows a grid generated
with the technique of Holmes and Snyder. Although grids
generated with this approach are sometimes coarse, they pro-
vide a sufficient framework for constructing contours that are
used to generate the stretched triangulations.

Stretched triangulations are constructed once the domain
has been discretized into triangles. The process for generating
a stretched triangulation involves several steps. The first step
uses the current triangulation (of isotropic triangles) as a
framework for constructing contours of a field variable
(Fig. 3(b)). In this application, the field variable contoured is
a measure of the distance from the field point to the nearest
point on the airfoil surface. Level curves (contours) of the dis-
tance field variable are constructed with three user-specified
parameters, which govern the geometric stretching and spac-
ing between contour levels. The three specified parameters
are: normal spacing at the airfoil surface , outer boundary
distance, and the total number of level curves (contours).
With these user-specified parameters, a stretching value is
determined for a geometric stretching function in which the
stretching value controls the spacing between contour levels.
For example, the spacing between contour levels and

 is controlled by

where is an integer number for each level curve that in-
creases incrementally from zero at the surface to at the
outer boundary. Figure 4 illustrates the geometric stretching
between the distance function contour lines. After the level

curves have been determined, the triangulation of isotropic
triangles is discarded and a new triangulation of stretched tri-
angles is started. In a manner similar to the generation of the
discarded triangulation, airfoil boundary points are inserted
into an initial single triangle that encompasses the domain.
After the airfoil points have been inserted, field points are in-
serted along level curves by projecting points outward from
one level curve to the next. This projection process begins at
the airfoil boundary () and ends at the last level curve
(). The projection process involves construction of an out-
ward-pointing normal vector for each grid point on the current
level curve (). This normal vector is used to project the grid

Fig. 1. Point insertion and local edge swapping.

Fig. 2. Triangles inside airfoil boundaries are removed.

(a) Insert point. (b) Connect vertices. (c) Swap edges.

(a) Before. (b) After.

Fig. 3. An isotropic triangulation and distance function
contours for advanced EET airfoil.

Fig. 4. Geometric stretching between level curves.

∆η0

r

∆η ηi
ηi 1+

∆ηi 1+ r∆ηi=

i
N

(a) Isotropic triangulation. (b) Level curves.

η

ξ
∆η0

r∆η0

r2∆η0

r3∆η0

η0
ηN

ηi

7

Fig. 5. Sequence of three grids for Advanced EET airfoil.

(a) Fine. (b) Medium. (c)Coarse.

point from the current level curve to the next level curve
(), where the location of the projected point is deter-
mined by the point of intersection of the normal vector and
the next level curve. After all points have been projected to
the level curve, the smoothness of the point distribution
along the level curve is evaluated. If the spacing be-
tween a pair of points along the curve is large in comparison
with the spacing between neighboring pairs of points, addi-
tional points are added in the coarse region. Similarly, if the
spacing between a pair of points is small in comparison with
the spacing between neighboring pairs of points or small in
comparison with the spacing between level curves ,
then points will be removed. Only after a smooth distribution
along the level curve is obtained will the potential grid points
be inserted into the new triangulation. Thus, after points are
projected from the airfoil boundary to the first level curve,
they are in turn projected outward to the next level curve and
inserted. This process continues until the last level curve is
reached. As seen in Fig. 5, the resulting grids obtain a very
“structured” appearance.

A Perl53 script is used to automate the entire process, in-
cluding the generation of the sequence of coarser grids for
multigrid applications. After splining the surfaces, the user is
prompted to input the normal spacing at the airfoil boundary,
the distance to the outer boundary, the number of level curves,
and the number of coarser grids desired. The approach
adopted for generating the coarser grids involves the removal
of every other grid point from the boundary distribution and
of every other level curve from the distance function con-
tours. Figure 5 shows a sequence of three grids for the ad-
vanced Energy-Efficient Transport (EET) airfoil.

Results
Results are presented below for four cases. The first case is

an inviscid case for which an exact solution exists. This case
is used to compare the convergence rate of various options in
the code. The remaining three cases include two two-dimen-
sional viscous test cases, as well as an initial result for three-
dimensional viscous computations. For each of the tests cases,
the value of the artificial compressibility parameter is set to
10. All results have been obtained on a Cray Y/MP computer
located at the NASA Langley Research Center, with the ex-
ception of the three-dimensional case, which utilized the Cray
C-90 located at the Numerical Aerodynamic Simulator
(NAS).

Four-Element Airfoil of Suddhoo-Hall
The first case considered is an inviscid flow over a four-el-

ement airfoil for which an exact potential flow solution is

available.40 This case is used to examine the convergence be-
havior of many of the available options to evaluate the effi-
ciency in terms of both computer time and memory. The
many possible combinations of options (e.g., multigrid, mesh
sequencing, techniques for solving the linear system, methods
for forming the matrix-vector product, and preconditioning)
make selection of the “best” strategy for all cases difficult, if
not impossible. However, the intent here is only to examine
some effects of different parameters on the solution time and
the memory required in order to arrive at a good strategy that
can be used successfully for a wide array of cases.

Figure 6 shows the grid used for this case, which consists
of 25,862 nodes and 50,213 triangles, with 512 nodes on the
surface of the main element and 312 nodes on the surface of
each of the remaining elements. The grid has been generated
with the method described previously.

The computed pressure distribution is compared with the
exact incompressible solution in Fig. 7. The agreement be-
tween the computed and the exact solution is good for each of
the elements.

As previously mentioned, the solution for this case has
been obtained with several variations of input parameters.
These parameters include the technique used to solve the lin-
ear system, multigrid acceleration, mesh sequencing, and var-
ious other parameters necessary for use with GMRES (e.g.,
the dimension of the Krylov subspace, the tolerance for solv-
ing the linear system, and the number of cycles to apply). An

ηi 1+

ηi 1+
ηi 1+

∆ηi 1+

Fig. 6. Grid for four-element airfoil case of Suddhoo and Hall.

8

overall summary of the results is given in Table 1. Here, and
in the discussion that follows, each set of parameters is re-
ferred to by a case number that is given in the first column of
the table. The results are primarily organized according to the
technique used to obtain an approximate solution to the linear
system. For the calculations obtained with GMRES, the re-
sults are then grouped according to how the matrix-vector
product is calculated. When GMRES is used, additional infor-
mation is supplied in regard to the number of search direc-
tions, the convergence tolerance for the linear system, the
number of GMRES cycles, and the type of preconditioner em-
ployed. For all calculations given in the table, the CFL num-
ber has been either ramped linearly over 50 iterations or is
tied to the change in the pressure so that as the solution con-
verges the CFL number increases proportionally. In all cases,
however, the maximum CFL number is limited to that shown
in the table. In addition, although most cases were run to ma-
chine zero, for the present study the time required for conver-
gence is considered to be that necessary to achieve a 6-order-
of-magnitude reduction in the residual.

Figures 8 and 9 are convergence histories for a few selected
results from the table. Figure 8 shows convergence for cases
in which the exact linearizations of the fluxes are not used.
These correspond to cases 1-13 in the table and are referred to
here as non-Newton type schemes. Results for which the
exact linearizations are used correspond to cases 14 through
22 and are referred to as Newton-type schemes. Note that, al-
though formation of the matrix-vector product with the finite-
difference methodology is not exact because of round-off er-
rors, the matrix-vector product is considered to be exact for
the present purposes.

In Fig. 8, several results for the non-Newton schemes are
shown. Here, the single-grid (nonmultigrid) results for which
the point iterative method is used to solve the linear system at
each time step are referred to as the “baseline” scheme, de-

noted in the table as case 1. For this scheme, 15 Gauss-Seidel
subiterations are used at each global time step, and the CFL
number is linearly ramped from 10 to 200 over 50 global iter-
ations. The residual for this case drops 6 orders of magnitude
in about 540 iterations and takes approximately 600 seconds
on the Cray Y/MP

Also shown in the figure are results obtained with one cycle
of GMRES with ILU preconditioning, where the dimension
of the Krylov subspace is 12 and the tolerance is set to 0.1.
The CFL number for this case has been allowed to go as high
as 50,000 and is increased as the solution converges. Here, the
residual drops much faster; only 142 iterations are required to
obtain the convergence criteria. For this case, the computer
time is reduced over the baseline scheme; approximately 419
seconds are required to reach the convergence criteria. In the

Fig. 7. Comparison of computed and exact pressure distribution
for four-element airfoil of Suddhoo and Hall.

C p

C p

x c⁄

x c⁄

x c⁄

x c⁄

Slat Main

First flap Second flap

Fig. 8. Convergence history for non-Newton schemes for four-
element airfoil of Suddhoo and Hall.

Fig. 9. Convergence history for Newton-type schemes for four-
element airfoil of Suddhoo and Hall.

Baseline (1)

GMRES/ILU (12)

Three-level V-cycle (2)

GMRES/ILU

Four-level W-cycle (4)
three-level V-cycle (13)

Exact linearization (19)

Mesh sequencing:
Exact linearization (21)
Finite-difference (16)

Three-level V-cycle:
Exact linearization (22)

Finite-difference (15)

9

table, results are shown in cases 5 and 6 that are identical to
the previously described case, except that a smaller tolerance
is placed on solving the linear system and more GMRES cy-
cles are allowed to achieve the specified level of convergence
of the linear system. A comparison of cases 5 and 6 with case
12 clearly shows that a more converged solution to the linear
system requires a substantial increase in the time needed to
reach convergence. Because in these cases the linearization of
the residual is approximate, the fast convergence associated
with Newton’s method is lost; as a result, using large time
steps and obtaining a good level of convergence of the linear
system are a waste of time.

Also shown in Fig. 8 are results obtained with multigrid ac-
celeration. Cases 2 and 4 indicate results obtained with a
three-level V cycle and a four-level W cycle, respectively.
Here, the linear system is solved at each time step with the
Gauss-Seidel scheme. For the three-level V cycle, 15 subiter-
ations of the Gauss-Seidel iterative scheme are used, whereas
for the W cycle only 5 subiterations are used. In general, the
number of subiterations can be reduced with a W cycle. This
trend is also observed when more coarser grids are used. For
both the V-cycle and W-cycle cases, the computer time re-
quired to reduce the residual by 6 orders of magnitude is sig-
nificantly decreased over the baseline scheme; the V cycle re-
quires 158 seconds, and the W cycle requires only 70 seconds.
Similar results are also shown in the figure for the case in
which GMRES with ILU preconditioning has been used in
conjunction with multigrid. The number of iterations to reach
convergence is less for this case than for the three-level V cy-
cle; however, as seen in the table approximately 40 percent
more computer time is required.

In Fig. 9, results are shown for schemes in which the exact
linearizations are used. The residual history with the finite-
difference methodology for forming the matrix-vector prod-
uct and that of Ref. 8 are identical. This is not surprising be-
cause each method is essentially exact. Note that in cases 15
and 19, although the number of iterations required for conver-
gence is substantially reduced over the baseline scheme, the
computer time required is somewhat higher. For these cases,
approximately 20 global iterations are required to obtain an
initial 2-order-of-magnitude reduction in the residual. A fur-
ther reduction of 4 orders of magnitude requires only 3 to 5 it-
erations because fast convergence is obtained when the solu-
tion is close enough to the root. To reduce the time required,
mesh sequencing has been used, where 5 iterations are con-
ducted on a coarse grid of only 2052 nodes. This solution is
then interpolated to a finer grid of 7044 nodes, where 10 addi-
tional iterations are done. Finally, the solution is interpolated
to the finest grid, on which the computation is concluded. The
effect of this in terms of iterations is seen from Fig. 9 to be not
particularly dramatic. However, the computer times listed in
the table indicate that a factor-of-3 reduction in computer time
can be achieved by doing more of the initial work on the
coarser grids.

The last curve shown in Fig. 9 represents case 22, in which
the exact linearizations are used in conjunction with GMRES
and ILU preconditioning as well as with multigrid accelera-
tion. For these calculations, 12 search directions are used, and
the tolerance on the linear system is only 0.1. The figure
shows that significantly fewer iterations are required to obtain
a 6-order-of-magnitude reduction in the residual over the non-
multigrid results, although “machine-zero” is achieved in ap-
proximately the same number of iterations as before. Table 1
indicates that the computer time required is 90 seconds, which
is substantially less than the time required for the solutions
obtained with mesh sequencing. Note that case 17 in the table
is similar to case 22, except that the matrix-vector product has
been formed with the finite-difference method given in
Eq. (20). However, the maximum CFL number in this case is
only 10,000 rather than 50,000, which was used in case 22.

This is because when a CFL number of 50,000 is used, the
convergence of the finite-difference method stalled. Although
this technique requires less memory than the method of
Ref. 8, it appears to be somewhat more sensitive to parameter
variations.

Based on the results in Table 1 and Figs. 8 and 9, several
conclusions can be reached. First, the performance of
GMRES can depend greatly on the choice of parameters.
Also, the Newton schemes require fewer iterations to obtain
convergence when compared with the non-Newton schemes.
However, by examining the computer times in the table, the
fastest convergence in terms of iterations does not necessarily
correspond to the lowest computer time. In all cases, regard-
less of the technique that is used to solve the linear system and
whether exact linearizations are used, the use of coarser grids
either through mesh sequencing or multigrid acceleration of-
fers a reduction in computer time over any method in which
only one grid is used. In addition, although fast convergence
in terms of both iteration count and computer time can be ob-
tained with the full linearization in conjunction with GMRES,
this technique does not result in less computer time than the
simpler combination of multigrid in which the Gauss-Seidel
scheme is used to obtain an approximate solution to the linear
system. In addition, the use of GMRES comes at the expense
of increased memory over the simpler scheme. For this rea-
son, the remaining results shown in this paper are all obtained
using the Gauss-Seidel scheme and multigrid acceleration.

Although not shown, similar experiments to those de-
scribed above have been conducted for both laminar and tur-
bulent flows with no significant change in the results. For tur-
bulent flows, however, only the non-Newton schemes have
been investigated because the turbulence model is decoupled
from the flow equations so that convergence rates associated
with Newton’s method are not possible. Also, multiple grids,
in which different techniques are used for each grid, are im-
plemented in the codes; however, this technique has not been
investigated in depth. However, as previously mentioned, the
reason for examining the different schemes is to arrive at a
methodology that achieves a good balance between memory
and computer time and can be used for practical problems.

NACA 4412 Airfoil
The next case considered is the viscous flow over a NACA

4412 airfoil; the results are compared with the experimental
data obtained in Ref. 15. The flow conditions include an angle
of attack of , a Reynolds number of 1.52 million
(based on the chord length of the airfoil), and a free-stream
velocity for the test of approximately 60 m.p.h.

. Comparisons of the computed results and ex-
perimental data are shown in Figs. 10 and 11 for computa-
tions with the present (incompressible) code and with a well-
known compressible code (CFL3D)46 run at a free-stream
Mach number of . The grid used for the unstructured in-
compressible computations consists of 22,595 nodes with a
spacing at the wall of approximately normalized to
the chord of the airfoil; a partial view is shown in Fig. 12.
The grid used for the computation with CFL3D is a 361×113
C mesh with similar spacing at the wall. Figure 10 shows a
comparison of the computed and experimental pressure distri-
butions. The computations generally agree well with each
other; however, a discrepancy with the experimental data oc-
curs toward the aft end of the airfoil. Velocity profiles are
shown in Fig. 11 for the two computations, as well as for the
experimental results. Again, the computations agree well but
show a discrepancy with the experimental results in the sepa-
rated region toward the aft end of the upper surface. Compu-
tations have been conducted with the same turbulence model
in Refs. 30 and 50 that show similar results.

13.87°

M∞ 0.07≈()

0.2

5 10 6–×

10

Advanced Energy Efficient Transport (EET) 3-Element Airfoil
The last two-dimensional case examined is the flow over a

three-element airfoil that has undergone extensive testing in
the Low Turbulence Pressure Tunnel (LTPT) located at
NASA Langley Research Center.25 The cases considered here
examine the influence of the free-stream Mach number on so-
lutions over a wide range of angles of attack and the suitabil-
ity and consequences of assuming incompressibility. In the
following results, computations are obtained with the incom-
pressible and the compressible code. The results are com-
pared with experimental data at two free-stream Mach num-
bers to examine the effects of compressibility and to assess
the ability of the codes to accurately predict trends due to
Mach-number variations. For the first Mach number of 0.15,

the assumption of incompressibility is expected to be accept-
able; at the relatively high Mach number of 0.26, compress-
ibility effects are quite important. All results are obtained for
a Reynolds number of .

The fine grid used for the computations consists of 70,686
nodes with normal spacing at the wall of , based on a
reference chord of the airfoil with the elements retracted. This
grid was generated with the same procedure used for the
NACA 4412 airfoil, which is shown in Fig. 5. The conver-
gence history for the incompressible code in terms of CPU
time on a Cray Y/MP is shown in Fig. 13 for the four com-
puted angles of attack of , , , and . For each re-
sult, a three-level V cycle has been used, and the CFL number
has been linearly ramped from 10 to 200 over the first 100 it-
erations. Although not shown, the convergence histories for
the compressible code are similar but the compressible code
requires approximately 30 percent more computer time. This
difference is simply because three equations are solved with
the incompressible code; the compressible code solves four
equations. In addition, for the compressible code at a Mach
number of 0.26, a flux limiter was used at the highest angle of
attack because of a reasonably strong shock wave on the slat.
The figure shows that the computer time required to obtain
steady lift increases with angle of attack; the time ranges from
approximately 12 minutes for the lowest angle of attack to
about 30 minutes for the highest. For the two lower angles of
attack, the residual drops steadily; for the two higher angles,
the residual essentially stalls. By examining details of the so-
lution at intervals 50 iterations apart, this has been traced to a
small level of unsteadiness in the solution located underneath
the slat, where the upper surface and lower surfaces join. Al-
though not apparent from the grid shown in Fig. 5, this junc-
ture is not sharp but has a small finite thickness, as do the
trailing edges of the slat, main element, and flap. Because of
the small size of this area, the effect of the unsteadiness on the
overall lift is only in the fourth significant digit and is, there-
fore, not noticeable in Fig. 13.

Pressure distributions on each element are shown for an
angle of attack of in Fig. 14. A summary of the lift coef-
ficients on the individual elements as well as for the total con-
figuration is shown in Fig. 15 for incompressible computa-
tions compared with both experimental data and compressible
computations at a Mach number of 0.15. It is seen from the
figures that the agreement between the computations and ex-
periment is quite good for both the lift values and the pressure
distributions. Furthermore, an examination of the pressure
distributions over the elements shows little difference be-
tween the incompressible solutions and the compressible so-
lutions at a freestream Mach number of 0.15. Although differ-
ences between the incompressible and compressible solutions

Fig. 10. Comparison of computed and experimental pressure dis-
tributions for NACA 4412 airfoil with and

.

Fig. 11. Velocity profiles for NACA 4412 airfoil with
and .

α 13.87°=
Re 1.52 106×=

α 13.87°= Re 1.52 106×=

Fig. 12. Unstructured grid for computations on NACA 4412 air-
foil.

9 106×

2 10 6–×

0° 8° 16° 22°

16°

Fig. 14. Pressures for three-element airfoil at a Mach number of 0.15 compared with incompressible and compressible computations.

11

are difficult to discern from the pressure distributions, the in-
compressible solution exhibits slightly lower magnitudes in
the pressure coefficients on the elements. This difference
leads to a correspondingly lower lift, particularly on the main
element. Nevertheless, at this Mach number, the incompress-
ible assumption does not compromise the overall solution in
terms of the agreement with experimental results.

Figures 16 and 17 compare the incompressible and com-
pressible computations with the experimental data at Mach
number of 0.15 and 0.26. Fig. 16 shows a dramatic difference
in the experimental data at the two different Mach numbers.
Over most of the range of angles-of-attack, the higher Mach
number conditions yield a higher lift value on the main ele-
ment with a corresponding increase in the total lift for the con-
figuration. However, at an angle of attack of , it is appar-
ent that the experimental lift value is past the angle of attack
for maximum lift and that this trend has been accurately com-
puted. An examination of the computational results indicates
that at the higher free-stream Mach number, a shock wave is
present on the leading edge of the slat and that the Mach num-
ber ahead of the shock is approximately . This reasonably

Fig. 13. Convergence history for incompressible-flow codes for
three-element airfoil at several angles of attack with

.Re 9 106×=

Fig. 15. Comparison of experimental lift and computed lift versus
angle of attack for incompressible and compressible flow solu-
tions.

22o

1.4

Fig. 17. Pressure distribution for three-element airfoil at a Mach numbers of 0.15 and 0.26 compared with computational results.

12

strong shock causes the flow over much of the upper sur-
face of the slat to separate and a much thicker wake be-
hind the slat is obtained over that of both the lower Mach
number and incompressible computations. Although not
shown, examination of the skin frictions shows that the
boundary layer on the main element, as well as the flap is
fully attached.

In Fig. 17, the computed incompressible and com-
pressible pressure distributions are compared with exper-
imental data at both Mach numbers at an angle-of-attack
of . The comparison between the computational and
experimental results is good and the trends are accurately
predicted. The suction peak on both the slat and main ele-

Fig. 16. Comparison of experimental lift versus angle of attack
with incompressible- and compressible- flow solutions at two dif-
ferent Mach numbers.

16°

ment indicates a lower pressure coefficient for the higher
freestream Mach number.

Three Dimensions: Wing with Partial Span Flap
Three-dimensional turbulent computations are shown

below for the flow about a wing with a partial span flap. This
geometry has been recently studied experimentally in the
Ames wind tunnel39 with computations reported in
Ref. 27. For this geometry, the gap and overlap between the
flap and the wing is and respec-
tively. Here, is the distance from the chord line of the main
wing to the highest point on the flap, is the distance be-
tween the leading edge of the flap and the trailing edge of the
main wing, and is the reference chord. A depiction of the
geometry as well as the surface grid used in the calculations is
shown in Fig. 18. The grid has been generated with the tech-
nique described in reference 33 includes the wind-tunnel ceil-
ing and floor as well as the side walls. The grid consists of
549,176 nodes and 3,179,640 cells with a normal spacing at
the wall of nondimensionalized by the chord of the
unflapped portion of the wing. The angle of attack is and
the Reynolds number is . The computation for this
case has been performed on the Cray C-90 located at the Nu-
merical Aerodynamic Simulator (NAS).

For this calculation, the backward-Euler scheme has been
used in which the linear system is approximately solved using
the point Gauss-Seidel method. Multigrid acceleration is not
currently incorporated into the three-dimensional code and is
therefore not used. The convergence history for this case is
not shown, but the residual has been reduced by 3 1/2 orders
of magnitude in 250 iterations and requires approximately 4.5
hours of computer time. A comparison of pressure distribu-
tions at four locations along the wing span is shown in
Fig. 19. Note that in these comparisons, the flap has been ro-
tated back to a zero degree deflection and then translated rear-
ward to separate it from the main wing. The agreement be-
tween the computed pressure distributions is fairly good for
all four span stations. The variation in pressure distributions
due to spanwise location on the wing are well predicted, how-
ever, it appears that more grid resolution is required for ob-
taining the suction peaks.

7 ′ 10× ′

g c⁄ 0.019= o c⁄ 0.004=
g

o

c

1 10 5–×
10°

3.7 6×10

13

Concluding Remarks
An implicit multigrid code for computing incompressible

turbulent flows on unstructured grids is described. Results are
presented to examine the effectiveness of several of the avail-
able options included in the code and to demonstrate the accu-
racy of the code for several test cases by comparing with ex-
perimental data. It is shown that while fast convergence in
terms of iterations can be obtained using Newton-type solv-
ers, the most effective way of reducing computer times is
through the use of multiple grids. When using a Newton-type
solver, mesh sequencing can be used to obtain an initial solu-
tion on coarser meshes which is then interpolated to the finest
mesh. However, multigrid acceleration used in conjunction
with a simpler “non-Newton” solver that requires signifi-
cantly less memory exhibits the fastest convergence for the
test case. Viscous turbulent flow results for the NACA 4412
airfoil are shown and compare well with experimental data
and with results from a well established structured-grid com-
pressible code. A study is conducted to examine compress-
ibility effects for a three-element airfoil by comparing incom-
pressible and compressible computational results with
experimental data. The results show that the incompressible
computations compare well with compressible computations
as well as experimental data at a low freestream Mach number
of 0.15. However, when comparing to experimental data at a
freestream Mach number of 0.26, significant effects due to
compressibility effect are observed in the experimental data
which are well predicted using the compressible flow solver
but are not accounted for using the incompressible assump-
tion. Finally, three-dimensional turbulent computations are
shown for a wing with a partial span flap that exhibit good
agreement with experiment.

Also described and demonstrated is a two-dimensional grid
generation procedure for generating good quality highly
stretched grids for viscous computations. The grid generation
procedure is automated through the use of a Perl script, and is
robust and extremely easy to use.

Acknowledgments
The authors would like to thank Shahyar Pirzadeh for gen-

erating the mesh for the wing with the partial-span flap as
well as Jim Ross and Bruce Storms at the NASA Ames Re-
search center for supplying the experimental data for this
case. The experimental data for the 3-element airfoil is sup-
plied by John Lin and Betty Walker of the Low Turbulence
Pressure Tunnel located at the Langley Research Center. In
addition, the authors would like to thank V. Venkatakrishnan
and David Keyes for valuable discussions pertaining to this
work.

References
 1Anderson, W. K. and Bonhaus, D. L., “An Implicit Upwind Algo-

rithm for Computing Turbulent Flows on Unstructured Grids,” Com-
puters and Fluids, Vol. 23, No. 1, 1994, pp. 1-21.

 2Anderson, W. K., and Bonhaus, D. L., “Navier-Stokes Computa-
tions and Experimental Comparisons for Multielement Airfoil Con-
figurations,” AIAA-93-0645, 1993.

 3Anderson, W. K., “Grid Generation and Flow Solution Method
for Euler Equations on Unstructured Grids,” NASA TM 4295, 1992.

 4Brown, P. N. and Saad, Y., “Hybrid Krylov Methods for Nonlin-
ear Systems of Equations,” SIAM J. Sci. Stat. Comput., Vol. 11, No.
3, May 1990, pp. 450-481,

 5Barth, T. J. and Jespersen, D. C., “The Design and Application of
Upwind Schemes on Unstructured Meshes,” AIAA-89-0366, 1989.

 6Barth, T. J., “Numerical Aspects of Computing Viscous High
Reynolds Number Flows on Unstructured Meshes,” AIAA 91-0721,
1991.

 7Barth, T. J., “A 3-D Upwind Euler Solver for Unstructured
Grids,” AIAA 91-1548-CP, 1991.

 8Barth, T. J. and Linton, S. W., “An Unstructured Mesh Newton
Solver for Compressible Fluid Flow and its Parallel Implementa-
tions,” AIAA 95-0221, 1995.

Fig. 18. Surface triangulation for wing with partial span flap.

Fig. 19. Comparison of span station pressure distributions for
wing with partial-span flap; Experimental conditions ,

, and .

0.170.470.530.83

M∞ 0.2=
α 10.0°= Re 3.7 106×=

14

 9Barth, T. J., “Steiner Triangulation for Isotropic and Stretched El-
ements,” AIAA 95-0213, 1995.

 10Bonhaus, D. L., “An Upwind Multigrid Method for Solving Vis-
cous Flows on Unstructured Triangular Meshes,” M.S. Thesis,
George Washington University, 1993.

 11Brandt, A., “Multilevel Adaptive Computations in Fluid Dynam-
ics,” AIAA J., Vol. 18, No. 10, Oct. 1980, pp. 1165-1172.

 12Cao, H. V. and Kusunose, K., “Grid Generation and Navier-
Stokes Analysis for Multi-Element Airfoils,” AIAA 94-0748, 1994.

 13Choi, Y. H. and Merkle, C. L., “The Application of Precondition-
ing in Viscous Flows,” J. Comp. Phys., Vol. 105, 1993, pp. 207-233.

 14Chorin, A. J., “A Numerical Method for Solving Incompressible
Viscous Flow Problems,” J. Comp. Phys., Vol. 2, Aug. 1967, pp. 12-
26.

 15Coles, D. and Wadcock, A. J., “Flying-Hot-Wire Study of Flow
Past an NACA 4412 Airfoil at Maximum Lift,” AIAA Journal, Vol.
17, No. 4, April 1979.

 16Cuthill, E. and McKee, J., “Reducing the Band Width of Sparse
Symmetric Matrices.” Proc. ACM National Conference, 157 (1969).

 17George, A. and Liu, J. W., Computer Solution of Large Sparse
Positive Definite Systems, Prentice Hall Series in Computational
Mathematics, Englewood Cliffs, N. J., 1981.

 18Godfrey, A. G., “Topics on Spatially High-Order Accurate
Methods and Preconditioning of the Navier-Stokes Equations with Fi-
nite-Rate Chemistry,” Ph.D. Thesis, Virginia Polytechnic Institute
and State University, 1992.

 19Golub, G. H. and Van Loan, C. F. “Matrix Computations,” John
Hopkins University Press, 1991.

 20Hackbusch, W., Iterative Solution of Large Sparse Systems of
Equations, Springer-Verlag, New York, 1994.

 21Hartwich, P. M. and Hsu, C., “An Implicit Flux-Difference Split-
ting Scheme for Three-Dimensional, Incompressible Navier-Stokes
Solutions to Leading Edge Vortex Flows,” AIAA 86-1839-CP, 1986.

 22Holmes, D. G. and Snyder, D. D. “The Generation of Unstruc-
tured Triangular Meshes Using Delaunay Triangulation,” Numerical
Grid Generation in Computational Fluid Mechanics ‘88, (S. Sen-
gupta, J. Hauser, P. R. Eiseman, and J. F. Thompson, eds.), Pineridge
Press, 1988, pp. 643-652.

 23Johan, Z. and Hughes, J. R., “A Globally Convergent Matrix-
Free Algorithm for Implicit Time-Marching Schemes Arising in Fi-
nite Element Analysis in Fluids,” Computer Methods in Applied Me-
chanics and Engineering, Vol. 87, 1991, pp. 281-304.

 24Jorgenson, P. C. E., and Pletcher, R. H., “An Implicit Numerical
Scheme for the Simulation of Internal Viscous Flows on Unstructured
Grids,” AIAA 94-0306, 1994.

 25Lin, J. C. and Dominick, C. J., “Optimization of an Advanced
Design Three-Element Airfoil at High Reynolds Numbers,” AIAA
95-1858, 1995.

 26Marcum, D. L. and Agarwal, R., “A Three-Dimensional Finite
Element Navier-Stokes Solver with Turbulence Model for Un-
structured Grids,” AIAA 90-1652, 1990.

 27Mathias, D. L., Roth, K. R., Ross, J. C., Rogers, S. E., and Cum-
mings, R. M., “Navier-Stokes Analysis of the Flow About a Flap
Edge,” AIAA 95-0185, 1995.

 28Mavriplis, D., “Turbulent Flow Calculation using Unstructured
and Adaptive Meshes,” Int. J. Numer. Meth. Fluids, Vol. 13, 1991.

 29McHugh, P. R. and Knoll, D. A., “Comparison of Standard and
Matrix-free Implementations of Several Newton-Krylov Solvers,”
AIAA Journal, Vol. 32, No. 12, 1994, pp. 2394-2400.

 30Mentor, F. R., “Zonal Two-Equation Turbulence Models
for Aerodynamic Flows,” AIAA 93-2906, 1993.

 31Nielsen, E. Anderson, W. K., Walters, R., and Keyes, D., “Appli-
cation of Newton-Krylov Methodology to a Three-Dimensional Un-
structured Euler Code,” AIAA 95-1733.

 32Pan, D. and Chakravarty, S., “Unified Formulation for Incom-
pressible Flows,” AIAA 89-0122, 1989.

 33Pirzadeh, S., “Viscous Unstructured Three-Dimensional Grids
by the Advancing-Layers Method,” AIAA 94-0417, 1994

 34Rausch, R. D., “TRI8IT: An Unstructured-Grid Generation Pro-
gram for Two-Dimensional Domains,” Report in preparation.

 35Rogers, S. E. and Kwak, D., “An Upwind Differencing Scheme
for the Time-Accurate Incompressible Navier-Stokes Equations,”
AIAA 85-2583-CP, 1985.

 36Rogers, S. E., “Progress in High-Lift Aerodynamic Calcula-
tions,” AIAA 93-0194, 1993.

 37Saad, Y., and Schultz, M. H., “GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems,”
SIAM J. Sci. Stat. Comput., Vol. 7, 1986.

 38Saad, Y., “Krylov Subspace Methods on Supercomputers,”
SIAM J. Sci. Stat. Comput., Vol. 10, No. 6, 1989, pp. 1200-1232.

 39Storms, Bruce, L. and Ross, James C., “An Experimental Study
of a Simple Wing with a Part-Span Flap,” NASA TM in preparation.

 40Suddhoo, A., and Hall, I. M., “Test Cases for the Plane Potential
Flow Past Multi-Element Airfoils,” Aeronautical Journal, Dec. 1985.

 41Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence
Model for Aerodynamic Flows,” AIAA 92-0439, 1992.

 42Taylor, L. K., “Unsteady Three-Dimensional Incompressible Al-
gorithm Based on Artificial Compressibility,” Ph.D. Thesis, Missis-
sippi State University, 1991.

 43Taylor, L. K. and Whitfield, David L., “Unsteady Three-Dimen-
sional Incompressible Euler and Navier-Stokes Solver for Stationary
and Dynamic Grids,” AIAA-91-1650, 1991.

 44Taylor, L. K., Busby, J. A., Jiang, M. Y., Arabshahi, A., Sreeni-
vas, K., and Whitfield, D. L., “Time Accurate Incompressible Navier-
Stokes Simulation of the Flapping Foil Experiment,” Presented at the
Sixth International Conference on Numerical Ship Hydrodynamics,
Aug. 2-5, 1993.

 45Thomas, J. L. and Salas, M. D., “Far-Field Boundary Conditions
for Transonic Lifting Solutions to the Euler Equations,” AIAA Jour-
nal, Vol. 24, No. 7, July 1986.

 46Thomas, J., Krist, S., and Anderson, W. K., “Navier-Stokes
Computations of Vortical Flows Over Low-Aspect-Ratio Wings,”
AIAA Journal, vol. 28, no. 2,1990, pp. 205-212.

 47Turkel, E., “Preconditioned Methods for Solving the Incom-
pressible and Low Speed Compressible Equations,” J. Comp. Phys.,
Vol. 72, 1987, pp. 277-298.

 48Turkel, E., “Review of Preconditioning Methods for Fluid Dy-
namics,” ICASE Report No. 86-14, 1986.

 49Van Leer, B., Lee, W., and Roe, P., “Characteristic Time-Step-
ping or Local Preconditioning of the Euler Equations,” AIAA 91-
1552-CP, 1991.

 50Vatsa, V. N., Sanetrik, M. D., Parlette, E. B., Eiseman, P., and
Cheng, Z., “Multi-block Structured Grid Approach for Solving Flows
over Complex Aerodynamic Configurations,” AIAA-94-0655, 1994.

 51Venkatakrishnan, V. and Mavriplis, D. J., “Implicit Solvers for
Unstructured Meshes,” J. of Comp. Phys., Vol. 105, No. 1, June,
1993, pp. 83-91.

 52Volpe, G., “On the Use and Accuracy of Compressible Flow
Codes at Low Mach Numbers,” AIAA-91-1662, 1991.

 53Wall, Larry, Programming Perl, O’Reilly & Associates, 1990.
 54Weiss, J. M. and Smith, W.A., “Preconditioning Applied to Vari-

able and Constant Density Time-Accurate Flows on Unstructured
Meshes,” AIAA 94-2209, 1994.

k ε–

k ω–

aNumbers in this column indicate the following
0 indicates exact linearization of first-order system (nearest neighbors).
1 indicates Newton-Krylov method (finite difference of residual).
2 indicates exact linearizations for higher order system with method of reference 8.

Case
number

Linear
Solver

Matrix-
Vector
product

a
CFL1/
CFL2

Ramp of
CFL

Search
Directions

GMRES
Cycles Tolerance ILU

Gauss-
Seidel

iterations CPU Comment

1 GS NA 10/200 linear/50 NA NA NA NA 15 598 Baseline

2 GS NA 10/200 linear/50 NA NA NA NA 15 158 3-level V-
cycle

3 GS NA 10/200 linear/50 NA NA NA NA 10 114 3-level W-
cycle

4 GS NA 10/500 linear/50 NA NA NA NA 5 70 4-level W-
cycle

5 GMRES 0 100/50K 12 10 0.001 1 NA 1469

6 GMRES 0 100/50K 12 3 0.001 1 NA 761

7 GMRES 0 10/200 linear/50 10 3 0.1 0 1 660 Diagonal
precondition

8 GMRES 0 10/200 12 1 0.1 1 NA 629

9 GMRES 0 10/200 linear/50 10 3 0.1 1 NA 626

10 GMRES 0 10/50K 12 1 0.1 0 3 365 GMRES
stalled

11 GMRES 0 10/200 12 1 0.1 0 3 519

12 GMRES 0 10/50K 12 1 0.1 1 NA 419

13 GMRES 0 10/50K 12/12/12 1/1/1 0.1 1 NA 226 GMRES/
multigrid

14 GMRES 1 100/50K 20 15 0.001 1 NA 995

15 GMRES 1 100/50K 12 10 0.001 1 NA 793

16 GMRES 1 100/50K 12/12/12 3/3/10 0.001 1 NA 281 Mesh
sequencing
with 3 grids

17 GMRES 1 20/10K 12 1 0.1 1 NA 118 Multigrid/
Newton-
Krylov

18 GMRES 2 100/50K 20 15 0.001 1 NA 762

19 GMRES 2 100/50K 12 10 0.001 1 NA 612

20 GMRES 2 100/50K 12 3 0.001 1 NA 323

21 GMRES 2 100/50K 12/12/12 3/3/10 0.001 1 NA 217 Mesh
sequencing
with 3 grids

22 GMRES 2 100/50K 12 1 0.1 1 NA 90 Multigrid
with exact

linearizations

Table 1 Effect of varying parameters on computer time required to reduce residual 6 orders of magnitude for4-element airfoil of Suddhoo and Hall.

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

p∆

15

