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a b s t r a c t

We present a new local-in-time discrete adjoint-based methodology for solving design

optimization problems arising in unsteady aerodynamic applications. The new methodol-

ogy circumvents storage requirements associated with the straightforward implementa-

tion of a global adjoint-based optimization method that stores the entire flow solution

history for all time levels. This storage cost may quickly become prohibitive for large-scale

applications. The key idea of the local-in-time method is to divide the entire time interval

into several subintervals and to approximate the solution of the unsteady adjoint equations

and the sensitivity derivative as a combination of the corresponding local quantities com-

puted on each time subinterval. Since each subinterval contains relatively few time levels,

the storage cost of the local-in-time method is much lower than that of the global methods,

thus making the time-dependent adjoint optimization feasible for practical applications.

Another attractive feature of the new technique is that the converged solution obtained

with the local-in-time method is a local extremum of the original optimization problem.

The new method carries no computational overhead as compared with the global imple-

mentation of adjoint-based methods. The paper presents a detailed comparison of the glo-

bal- and local-in-time adjoint-based methods for design optimization problems governed

by the unsteady compressible 2-D Euler equations.

Ó 2010 Elsevier Inc. All rights reserved.

1. Introduction

The continuous growth of computer power and the development of efficient and accurate computational tools now at-

tract more attention to design optimization of unsteady flows. The time-dependent optimization problems arise in many

aerodynamic applications including optimal design of helicopter rotors and turbomachinery blades, flutter and vibration

control, noise reduction, active and passive flow control, etc. These problems can be formulated as minimization/maximiza-

tion of appropriate cost functionals (e.g., lift, drag, torque, etc.) and can be solved by utilizing optimal control theory.

Among various optimization techniques available in the literature, adjoint-based gradient methods have recently grown

in popularity, rapidly becoming one of the most widely used algorithms for solving a variety of steady and unsteady opti-

mization problems. The adjoint methodology is particularly attractive for aerodynamic shape/design optimization problems

that are characterized by the presence of a large number of design variables, yet relatively few constraints. In contrast to a

classical forward mode differentiation approach whose computational cost is directly proportional to the number of design
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variables, the adjoint methodology has the advantage of computing the cost functional gradients at a fixed expense

independent of the number of design variables. Although the adjoint-based methods have been successfully used for prob-

lems of optimal design within the steady-state aerodynamics [1–4], applications of the adjoint formulation to time-

dependent optimal design problems are still lacking. One of the main reasons why the time-dependent optimization has

not been practically used in real-life aerodynamic applications is the storage cost involved. Straightforward global

implementations of the discrete unsteady adjoint formulation require that the entire flow solution history should be

available during the reverse time integration of the adjoint equations. For realistic 3-D design optimization problems, these

storage requirements can quickly become prohibitive. For example, the storage cost of a typical discretization of the 3-D

unsteady Reynolds Averaged Navier–Stokes (URANS) equations on a grid with 105 points per processor, which are integrated

over 1000 time steps, is of the order of O(10) Gb. Note that the storage cost may be significantly higher if a finer grid

and more time levels are required to resolve the unsteady flow dynamics, and one stores not only the flow variables and grid

coordinates, but also the grid velocities, face normals, control volumes, etc.

Several strategies aimed at circumventing these storage requirements have been developed and reported in the literature.

All thesemethods can be divided into two groups. The first group ofmethods is ‘‘exact” in the sense that the primal and adjoint

solutions computed using these methods exactly satisfy the corresponding equations of the original adjoint formulation. The

most straightforward exact approach is to store the entire flow solution history to a hard disk (e.g., see [5–7]) and then use it

during the reverse time integration of the adjoint equations. Note that for large-scale problems that are nonperiodic in time

and require a very large number of time steps to integrate the governing equations, the storage and input/output costs may

become prohibitively expensive. Another technique that provides a partial remedy to the storage problem is based on various

checkpointing procedureswhich are performed either statically [8] or dynamically [9]. For this class ofmethods, the flow vari-

ables are stored only at so-called checkpoints whose number is much smaller than the total number of time steps required for

integration of the primal and adjoint equations. During the backward-in-time integration of the adjoint equations, the re-

quired flow solution on each time subinterval between (k ÿ 1)th and kth checkpoints is recomputed by using the previously

stored flow solution at the (k ÿ 1)th checkpoint as an initial condition. As a result, the flow solution should be stored only over

a small time subinterval [Tkÿ1,Tk] and at all checkpoints, thus significantly reducing the overall storage cost. However, asmen-

tioned in [8,9], the computational cost increases by a factor of 2–3 because of the additional solves of the primal equations.

The key idea of the second group of methods is to reduce the storage cost by constructing sufficiently accurate approx-

imations of either the original optimization problem or the corresponding governing equations. As a result, a solution

obtained using these approximate techniques is suboptimal, i.e., not necessarily an extremum of the original time-depen-

dent optimization problem. Among various suboptimal techniques, we would like to mention receding horizon control

[10–12], system reduction [13–17], and nonlinear frequency domain methods [18,19]. The receding horizon techniques

replace the original time-dependent optimization problem formulated on the entire time interval (the full time horizon)

with a sequence of local optimal control problems defined on each time subinterval. Each of the subinterval problems, which

are solved sequentially, consists of only a few (possibly one) time steps, so that its storage cost is much lower than that of the

original unsteady optimization problem. This approach has been successfully used for optimal control problems governed by

the 2-D incompressible Navier–Stokes equations. In [10], the receding horizon method is used for controlling the unsteady

flow around a cylinder. Bewley et al. [11] use the receding horizon technique to re-laminarize the turbulent flow in a chan-

nel. In [12], Hou and Yan prove that the receding horizon method with distributed controls is stable for problems with a

tracking-type functional governed by the 2-D incompressible Navier–Stokes equations. Note that the receding horizon tech-

niques cannot be directly used for solving shape/design optimization problems. These methods compute only the local sen-

sitivity derivative, while the global sensitivity derivative over the entire time interval of interest, which is required for

solving the optimal design problems, is not available.

Another suboptimal approach that can significantly reduce the storage and computation costs is based on reduced-order

or low-dimensional models of the original high-fidelity approximation of the Euler/Navier–Stokes equations. In [13], Tang

et al. use a proper orthogonal decomposition (POD) reduced-order model based on a snapshot basis to control the unsteady

wake flow around a cylinder. Hinze and Kunisch [14] present a POD-based boundary control technique that iteratively up-

dates the low-order model and apply it to control the unsteady flow near a cylinder. In [15], two POD-based design optimi-

zation methods are used for inverse design of various airfoil shapes. POD modes and their Lagrangian sensitivities with

respect to the shape variables are used to derive the POD basis to approximate a class of solutions over a range of design

parameter values in [16]. This POD-based methodology is then applied to solving the two-dimensional flow past a square

over a range of incidence angles. Modifications to the conventional POD procedure based on nonlinear projection for com-

puting flow solutions are presented and demonstrated on several inverse design problems in [17]. Though POD-based re-

duced-order models can in principle drastically reduce the overall storage and CPU costs, their accuracy and

consequently efficiency strongly depend on how well the POD basis represents the designed set of solutions. This problem

associated with a proper selection of snapshots becomes a real challenge for essentially nonlinear compressible flows with

shocks and contact discontinuities.

For periodic or quasi-periodic flows, the dimensionality of the corresponding unsteady discrete optimization problem can

be reduced by expanding the flow solution in a Fourier series in time, thus reformulating the original optimization problem

in the frequency domain. In [18], a gradient method based on the discrete adjoint equations and the corresponding boundary

conditions in the frequency domain has been developed. This approach significantly reduces the storage and computation

costs of the shape optimization of a 3-D wing oscillating at a constant frequency. An adjoint-based optimization procedure
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based on the time-spectral formulation is developed and used for the analysis and shape design of helicopter rotors in for-

ward flight in [19]. Similar to optimization techniques based on the POD reduced-order models, the time-spectral methods

are suboptimal. Moreover, these methods are applicable only to time-periodic problems, and their efficiency strongly de-

pends on the number of Fourier modes required to accurately approximate the solution of the unsteady governing equations.

In this paper, we present a new local-in-time discrete adjoint-based optimization methodology that combines the best

features of both groups of methods outlined above. Similar to the suboptimal techniques, the new methodology tremen-

dously reduces the overall storage cost by approximating the original adjoint equations on a set of local time subintervals,

so that each subinterval involves only a few (possibly one) time steps. The distinctive features of the new local-in-time ad-

joint-based optimization algorithm are (1) the ability of the new method to converge to a local minimum of the original un-

steady optimization problem; and (2) the fact that there is no additional computational overhead as compared with the

global-in-time methods. Furthermore, since the global sensitivity derivative is evaluated at each optimization iteration of

the new technique, it can be directly used for solving both optimal control and design optimization problems.

The rest of the paper is organized as follows. In Section 2, we present the discrete time-dependent optimization problem.

Section 3 presents the conventional global-in-time adjoint-based method. The new local-in-time adjoint-based optimization

method is introduced in Section 4. In Section 5, we validate the proposed time-dependent optimization methodology and

evaluate its efficiency for three design optimization problems governed by the 2-D compressible Euler equations. We draw

conclusions in Section 6.

2. Discrete design optimization problem

We consider a class of time-dependent design optimization problems governed by discretized unsteady flow equations

written in the following form:

Q n ÿ Q nÿ1

Dt
þ Rn ¼ 0; ð1Þ

where Q ¼
R
V
UdV , U is a vector of the conserved variables, V is a control volume, R is the spatial undivided (by volume) flux

residual, Dt is a time step, and superscript n denotes a time level number. The above discrete formulation (1) is very general

and can be directly applied to the unsteady Euler or Reynolds-averaged Navier–Stokes equations [7]. In Eq. (1), the time

derivative is approximated by using the implicit first-order backward-difference (BDF-1) formula; 2nd- and 3rd-order

BDF formulae can also be used in the present formulation with minor modifications [7]. The governing (1) are discretized

on a mesh which is given by the following equation:

GðXn;DÞ ¼ 0; ð2Þ

where Xn is a mesh at time level n and D is a vector of the design variables. This time-dependent grid equation can easily

adopt static, rigidly moving, and deforming meshes. For static grids considered in this paper, the grid X in Eq. (2) is indepen-

dent of time, and the same grid equation is used for all time levels.

The discrete time-dependent optimization problem is formulated as follows:

min
D2Da

FobjðDÞ; FobjðDÞ ¼
PN

n¼1

f nðD;Q n;XnÞDt;

subject to Eqs:ð1Þ and ð2Þ;

8
><
>:

ð3Þ

where D is a vector of the design variables, Da is a set of admissible design parameters, which depends on specifics of the

target physical system and ensures the existence of a solution of the optimization problem, N is the total number of time

steps, Q is the solution of the unsteady flow Eq. (1), Fobj is an objective functional. The minimization problem (3) is very gen-

eral and directly applicable to both active flow control and aerodynamic design optimization of unsteady flows.

To reduce the complexity of the optimization problem (3), without loss of generality, it is assumed that the objective

functional Fobj is a scalar quantity. In the present analysis, fn in Eq. (3) is defined as follows:

f n ¼
X

j2Cc

Cn
j ÿ Ctarget

j

� �nh i2
; ð4Þ

where Cj is an aerodynamic quantity such as the lift or the pressure coefficient on a controlled boundary surfaceCc, C
target
j is a

given target value of Cj. Thus, Fobj given by Eqs. (3) and (4) is a matching-type functional.

3. Global-in-time adjoint-based optimization method

The discrete time-dependent optimization problem (3) is solved by the method of Lagrange multipliers which is used to

enforce the governing Eq. (1) as constraints. The discrete Lagrangian functional is defined as follows:

LðD;Q ;X;Kf ;KgÞ ¼
XN

n¼0

f nDt þ
XN

n¼1

K
n
f

h iT Q n ÿ Q nÿ1

Dt
þ Rn

 !
Dt þ K

0
f

h iT
ðQ 0 ÿ Q inÞ þ

XN

n¼0

K
n
g

h iT
Gn
Dt; ð5Þ
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where Kf and Kg are flow and grid Lagrange multipliers (adjoint variables), respectively, time levels n = 0 and n = N corre-

spond to times t = 0 and t = Tfinal, Q
in is an initial condition for the flow (1), fn is given by Eq. (4), and Rn = R(Qn,Xn,D) is

the spatial undivided residual.

The sensitivity derivative is obtained by differentiating the Lagrangian with respect to D, which yields

dL

dD
¼
XN

n¼0

@f n

@D
Dt þ

XN

n¼1

½Kn
f �

T @R
n

@D
Dt þ

XN

n¼1

½Kn
f �

T ÿ ½Knþ1
f �T

Dt
þ ½Kn

f �
T @R

n

@Q n þ
@f n

@Q n

 !
@Q n

@D
Dt

þ
K

0
f

h iT
ÿ K

1
f

h iT

Dt
þ @f 0

@Q 0

0
B@

1
CA

@Q 0

@D
Dt ÿ K

0
f

h iT @Q in

@D
þ
XN

n¼1

@f n

@Xn þ K
n
f

h iT @Rn

@Xn þ K
n
g

h iT @Gn

@Xn

� �
@Xn

@D
Dt

þ
XN

n¼0

½Kn
g �

T @G
n

@D
Dt þ @f 0

@X0
þ K

0
g

h iT @G0

@X0

 !
@X0

@D
Dt; ð6Þ

where KN+1 = 0. In the above equation and throughout the paper, we use the following notations. The derivative of a scalar

c 2 R with respect to a column vector a 2 Rm, @c/@a, is the row vector: @c
@a1

; . . . ; @c
@am

h i
, and the derivative of a column vector

b 2 Rl with respect to a column vector a 2 Rm is the l �m matrix:

@b

@a
¼

@b1
@a1

. . .

@b1
@am

.

.

.

.

.

.

.

.

.

@bl
@a1

. . .

@bl
@am

2
6664

3
7775:

For aerodynamic design optimization problems, the number of design variables is typically very large. Therefore, the com-

putation of @Qn/@D and @Xn/@D is extremely expensive in terms of the CPU time, because it requires as many solves of the

flow and grid equations as the total number of the design variables involved. To eliminate the @Qn/@D and @Xn/@D terms from

the sensitivity derivative, their coefficients on the right-hand side of Eq. (6) are set equal to zero, thus leading to the follow-

ing adjoint equations for determining the flow adjoint variables:

1
Dt
K

N
f þ @RN

@QN

h iT
K

N
f ¼ ÿ @fN

@QN

h iT
; for n ¼ N;

1
Dt

K
n
f ÿ Knþ1

f

� �
þ @Rn

@Qn

h iT
K

n
f ¼ ÿ @f n

@Qn

h iT
; for 2 6 n 6 N ÿ 1;

1
Dt

K
0
f ÿ K1

f

� �
¼ ÿ @f 0

@Q0

h iT
; for n ¼ 1;

8
>>>>><
>>>>>:

ð7Þ

and the grid adjoint variables:

@Gn

@Xn

� �T
K

n
g ¼ ÿ @Rn

@Xn

� �T
K

n
f ÿ @f n

@Xn

h iT
; for 1 6 n 6 N;

@G0

@X0

h iT
K

0
g ¼ ÿ @f 0

@X0

h iT
; for n ¼ 0:

8
><
>:

ð8Þ

The main advantage of the adjoint formulation is that at each optimization iteration, the adjoint Eqs. (7) and (8) are inde-

pendent of D and should be solved once regardless of the number of the design variables. Equations (7) and (8) represent

linear systems of equations for the flow and grid adjoint variables, respectively. The flow adjoint equations do not depend

on Kg. Therefore, the systems of Eqs. (7) and (8) are weakly coupled and can be solved sequentially. Once the solution of the

flow adjoint equations at the nth time level is available, then Kn
f is substituted into Eq. (8) which is solved to determine the

grid adjoint variables Kn
g at the same time level.

In contrast to the primal flow Eq. (1), the first term in each Eq. (7) approximates the negative time derivative, thus indi-

cating that the unsteady flow adjoint equations have to be integrated backward in time. Therefore, the flow solution Qn,

which is used for computing the matrix @Rn

@Qn

h iT
and the vector @f n

@Qn

h iT
in Eq. (7), must be available for all time levels during

the backward-in-time integration of the flow adjoint equations. For the global time-dependent adjoint-based method, the

entire flow solution history for all time levels is stored during the forward sweep in time. As a result, the storage cost of

the time-dependent adjoint formulation is much higher than that of the steady state adjoint formulation.

With the flow and grid adjoint variables found from Eqs. (7) and (8), the sensitivity derivative is calculated as follows:

dL

dD
¼
XN

n¼0

@f n

@D
Dt þ

XN

n¼1

K
n
f

h iT @Rn

@D
Dt þ

XN

n¼0

K
n
g

h iT @Gn

@D
Dt ÿ K

0
f

h iT @Q in

@D
: ð9Þ

Aminimum of the functional given by Eq. (5) is found by the steepest descent method in which each step of the optimization

cycle is taken in the negative gradient direction
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Diþ1 ¼ Di ÿ di
dL

dD

� �T

i

; ð10Þ

where di is an optimization step size which is chosen adaptively [22], i is a steepest descent iteration number, D is a vector of

the design variables. The sensitivity derivative dL/dD in Eq. (10) is computed using Eq. (9) which requires the solution of the

flow and grid adjoint Eqs. (7) and (8). When the flow and grid adjoint equations are integrated backward in time, the sen-

sitivity derivative at each time step is computed and added to its value at the previous time step. At n = 0, the complete sen-

sitivity derivative vector is available and used in Eq. (10) for updating the vector of design variable Di+1. Then, the entire

optimization cycle is repeated until either jF iþ1
obj ÿ F i

objj < �1 or kdL/Dik < �2, where �1 and �2 are given tolerances and k � kis
an appropriate norm. The above procedure can be summarized in the form of the following global-in-time (GT) adjoint-

based algorithm:

Algorithm 1. Global-in-time (GT) adjoint-based method

(1) Choose D1 and set i = 1.

(2) Solve Eq. (1) forward in time for Q0, . . . ,QN and store Qn, 1 6 n 6 N.

(3) Solve Eqs. (7) and (8) backward in time for Kn
f and Kn

g , 1 6 n 6 N.

(4) Evaluate dL
dD

using Eq. (9).

(5) Choose di and update Di+1 using Eq. (10).

(6) If jF iþ1
obj ÿ F i

objj > �1 and kdL/Dik > �2, set i = i + 1 and go to step 2; otherwise stop.

This GT algorithm possesses the following property. Namely, if the objective functional is defined to be zero on the entire

time interval of interest except the final time level, i.e., Fobj = fNDt, then the corresponding flow and grid adjoint variables

exponentially decay to zero in reverse time. This property is a direct consequence of a similarity between the homogeneous

flow adjoint Eq. (7) and error equations. Indeed, assuming that Q is the exact solution of the semi-discrete flow equations

Qt + R(Q) = 0 and e is a solution error caused by a small perturbation of the initial condition, we have

@ðQ þ eÞ
@t

þ RðQ þ eÞ ¼ 0: ð11Þ

Linearizing the above equation with respect to Q yields

@e

@t
þ @R

@Q
e ¼ 0: ð12Þ

The homogeneous flow adjoint equations obtained from Eq. (7) by setting @fn/@Qn = 0 for all n 6 N ÿ 1 are similar to a first-

order approximation of the transposed error equation (12). The linear Eqs. (7) and (12) can be integrated in time, thus lead-

ing to the following matrix exponential solutions: exp (ÿ[@R/@Q]t)e0 and expðÿ½@R=@Q �TðT final ÿ tÞÞKN
f for the error and flow

adjoint vectors, respectively. For strongly stable numerical schemes, all eigenvalues of the Jacobian matrix ÿ@R/@Q and its

transpose ÿ[@R/@Q]T are located in the left half of the complex plane. Therefore, the numerical error and the flow adjoints

exponentially decay in forward and reverse times, respectively. For the flow adjoints, the decay is expected to be strong, be-

cause the time derivative of the flow adjoint vector approaches zero at t? 0, as follows from the last equation in Eq. (7) with

@f0/@Q0 = 0. From Eq. (8) with @fn/@Xn = 0 for 1 6 n 6 N ÿ 1 it follows that the exponential decay of the flow adjoint vector to

zero in reverse time results in a similar decay of the grid adjoint vector. Thus, the major contributions of the flow and grid

adjoints to the sensitivity derivative come from the final time levels, dominating contributions from intermediate and initial

time levels. Numerical results corroborating the above estimates are presented in Section 5.

4. Local-in-time adjoint-based optimization method

As has been mentioned in the foregoing section, at each iteration of the GT method, the flow equations are integrated

forward in time while the adjoint equations are integrated backward in time over the entire time interval considered. Since

the adjoint operators in Eqs. (7) and (8) depend on Qn and Xn, the solution of the flow problem and the corresponding com-

putational grid in the GT algorithm are stored for all time levels over which the optimization problem is solved. For realistic

3-D optimization problems, these storage requirements can quickly become prohibitive. This motivates us to consider local-

in-time strategies to reduce the storage cost of the GT method presented in Section 3.

We begin by dividing the entire time interval into K subintervals such that 0 = T0 < � � � < TK = NDt = Tfinal, where Tk =Dt Nk,

K 6 N, and Dt is a constant time step used for integrating the primal and adjoint equations. In general, this partitioning can

be chosen so that each subinterval contains one or several time steps of the time-marching scheme used for solving the gov-

erning equations. The main idea of the proposed strategy is based on the observation that the global sensitivity derivative

given by Eq. (9) can be represented as a sum of local sensitivity derivatives defined on each time subinterval. That is

dL

dD
¼
XK

k¼1

dL
k

dD
; ð13Þ
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where the local Lagrangian functionals are given by

Lk ¼

PNk

n¼Nkÿ1þ1

f nDt þ
PNk

n¼Nkÿ1þ1

K
n
f

h iT
QnÿQnÿ1

Dt
þ Rn

� �
Dt; for 2 6 k 6 K;

PN1

n¼0

f nDt þ P
N1

n¼1

K
n
f

h iT
QnÿQnÿ1

Dt
þ Rn

� �
Dt þ K

0
f

h iT
Q 0 ÿ Q in
� �

; for k ¼ 1:

8
>>><
>>>:

ð14Þ

In this section, without loss of generality, the grid terms are omitted for simplicity.

The adjoint equations corresponding to the local Lagrangian functionals, Lk for 1 6 k 6 K, can be derived by using the same

adjoint-based approach described in the foregoing section. Differentiating each local Lagrangian, Lk, with respect to D and

taking into account the contribution from Lk+1 yields the following flow adjoint equations on subinterval (Tkÿ1,Tk]:

1
Dt

K
Nk

f ÿ KNkþ1

f

� �
þ @RNk

@QNk

h iT
K

Nk

f ¼ ÿ @fNk

@QNk

h iT
; for n ¼ Nk;

1
Dt

K
n
f ÿ Knþ1

f

� �
þ @Rn

@Qn

h iT
K

n
f ¼ ÿ @f n

@Qn

h iT
; for Nkÿ1 þ 1 6 n 6 Nk ÿ 1;

1
Dt

K
0
f ÿ K1

f

� �
¼ ÿ @f 0

@Q0

h iT
; for n ¼ 0;

8
>>>>><
>>>>>:

ð15Þ

where Kn
f is the solution of the flow adjoint equations defined for Nkÿ1 < n 6 Nk. The presence of the K

Nkþ1

f term in Eq. (15)

indicates that the system of adjoint equations on subinterval (Tkÿ1,Tk] is coupled with the system of adjoint equations de-

fined on the next subinterval (Tk,Tk+1]. In fact, Eq. (15) for 1 6 k 6 K represents a set of coupled systems of adjoint equations

on the entire time interval [0,Tfinal], which is equivalent to the original adjoint Eq. (5). As a result, the flow solution for all

time levels has to be available when these adjoint Eq. (15) for 1 6 k 6 K are integrated backward in time.

To reduce the storage cost, we decouple the set of (15) for 1 6 k 6 K by approximating KNkþ1

f as eKf , thus leading to the

following local-in-time adjoint equations defined on (Tkÿ1,Tk]:

1
Dt

bKNk

f ÿ eKf

� �
þ @RNk

@QNk

h iT bKNk

f ¼ ÿ @fNk

@QNk

h iT
; for n ¼ Nk;

1
Dt

bKn
f ÿ bKnþ1

f

� �
þ @Rn

@Qn

h iT bKn
f ¼ ÿ @f n

@Qn

h iT
; for Nkÿ1 þ 1 6 n 6 Nk ÿ 1;

1
Dt

bK0
f ÿ bK1

f

� �
¼ ÿ @f 0

@Q0

h iT
; for n ¼ 0;

8
>>>>><
>>>>>:

ð16Þ

where bKn
f is an approximation of the corresponding adjoint solution Kn

f . The last equation in Eq. (16) is used only on the first

subinterval [T0,T1] corresponding to k = 1.

It should be noted that the partitioning of the entire time interval into subintervals does not alter the solution of the flow

equations. Indeed, the flow equations are integrated forward in time beginning from n = 0 that corresponds to the initial con-

dition of the original flow problem. The flow solution obtained at the end of the first time subinterval, QN1 , is used as an ini-

tial condition for the second subinterval, and so on. In the case that a second- or higher order backward difference (BDF)

scheme is employed for discretization of the time derivative, flow solutions at the corresponding number (depending on

the BDF scheme used) of time levels of the previous subinterval are employed to continue the integration of the governing

equations on the current time subinterval. The result is that the flow solution obtained in this manner is identical to that

computed on the entire time interval [0,Tfinal] by using a single sweep in time.

With the local flow adjoint variables bKn
f satisfying Eq. (16), the local sensitivity derivative on each subinterval (Tkÿ1,Tk] is

calculated as follows:

dbLk

dbD
¼

PNk

n¼Nkÿ1þ1

@f n

@bD
Dt þ PNk

n¼Nkÿ1þ1

bKn
f

h iT
@Rn

@bD
Dt; for 2 6 k 6 K;

PN1

n¼0

@f n

@bD
Dt þ P

N1

n¼1

bKn
f

h iT
@Rn

@bD
Dt ÿ bK0

f

h iT
@Q in

@bD
; for k ¼ 1:

8
>>><
>>>:

ð17Þ

By analogy with Eq. (13), the approximate global sensitivity derivative, dbL
dbD
, is computed as

dbL
dbD

¼
XK

k¼1

dbLk

dbD
: ð18Þ

Once the global sensitivity derivative is available at the last Kth time subinterval, the vector of design variables is updated by

using the steepest descent method

bDiþ1 ¼ bDi ÿ di
dbL
dbD

" #T

i

: ð19Þ

Similar to the GT method, the steepest descent iterations are repeated until either F iþ1
obj ÿ F i

obj

���
��� < �1 or kdbL=bDik < �2, where �1

and �2 are user-specified tolerances and k � kis an appropriate norm.
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Comparing Eqs. (15) and (16), the following observation can be made. If eKf in Eq. (16) is set equal to zero, then each local

system of adjoint Eq. (16) defined on a given time subinterval (Tkÿ1,Tk] is independent of the other adjoint equations defined

on [0,Tkÿ1] [ (Tk,Tfinal]. Thus, the local systems of adjoint Eq. (16) can be solved sequentially starting from the first time sub-

interval (k = 1) and marching forward one subinterval by another up to k = K. Within each subinterval (Tkÿ1,Tk], the local ad-

joint equations (16) are integrated backward in time. Although the systems of local adjoint equations (16) defined on k and

k + 1 time subintervals are decoupled if eKf ¼ 0, they cannot be solved simultaneously because each system of adjoint equa-

tions requires the flow solutions to be available on the same time subinterval. The local sensitivity derivatives calculated on

each subinterval using Eq. (17) are then summed up to give the global sensitivity derivative on the entire time interval

[0,Tfinal], as shown in Fig. 1. Note that the flow adjoints obtained with the local Eq. (16) for 1 6 k 6 K and the corresponding

approximate total sensitivity derivative given by Eq. (18) are, in principle, not equal to those given by Eqs. (7) and (9), i.e.,
bKf – Kf and dbL=dbD – dL=dD on (Tkÿ1,Tk], where Kf denotes the solution of the global flow adjoint Eq. (7). Though dbL=dbD is

only an approximation to dL/dD given by Eq. (9), this approach reduces the storage cost by a factor of K as compared with the

GT algorithm. Indeed, since the local adjoint equations on each time subinterval (Tk,Tk+1] can be solved independently of the

adjoint equations defined on the other subintervals, only the flow solutions for the current subinterval, QNkÿ1þ1; . . . ;QNk , have

to be stored, thus drastically reducing the storage cost. Further in the paper, this algorithm with eKf ¼ 0 is referred as a sim-

plified local-in-time (SLT) method.

Another observation based on the comparative analysis of Eqs. (7), (9) and (16), (17) is that the entire set of systems of

local adjoint Eq. (16) for 1 6 k 6 K is identical to the global adjoint Eq. (15) and consequently to Eq. (7), if eKf in Eq. (16) is set

to be K
Nkþ1

f . In spite of the fact that this approach provides complete consistency of the local and global adjoint equations, it

destroys the locality of the adjoint Eq. (16) and therefore requires the same full storage as the GT method.

These considerations suggest that eKf in Eq. (16) should be chosen such that it preserves the locality of each system of

adjoint equations defined on subinterval (Tkÿ1,Tk] and provides a good approximation of K
Nkþ1

f . To satisfy these constraints,

we propose to choose eKf as

ðeKf Þi ¼ K
Nkþ1

f

� �
iÿ1

; ð20Þ

where i is a design iteration number. In other words, the required vector of adjoint variables at time level Nk + 1 is taken from

the previous iteration of the steepest descent method (19). This local-in-time (LT) adjoint-based strategy for solving the min-

imization problem (3) and (4) is summarized in the form of the following algorithm:

Algorithm 2. Local-in-time (LT) adjoint-based method

(1) Choose bD1, and K; set k = 1, i = 1, bKNkþ1

f

� �
0
¼ 0 for 1 6 k 6 K, and dbL

dbD
¼ 0.

(2) Solve Eq. (1) for QNkÿ1þ1; . . . ;QNk forward in time on (Tkÿ1,Tk]; store Qn for Nkÿ1 + 1 6 n 6 Nk.

(3) If i 6 is set eKf ¼ 0, otherwise eKf ¼ bKNkþ1

f

� �
iÿ1

, where is is a user-defined number of iterations.

(4) Solve Eq. (16) backward in time for bKNkÿ1þ1

f ; . . . ; bKNk

f ; store bKNkÿ1þ1

f .

(5) Evaluate dbLk
dbD

by using Eq. (17).

(6) Set dbL
dbD

¼ dbL
dbD

þ dbLk
dbD

.

(7) Set k = k + 1, if k 6 K go to step 2; otherwise continue.

(8) Calculate bDiþ1 using Eq. (19).

(9) If jF iþ1
obj ÿ F i

objj > �1 and kdbL=dbDik > �2 set k = 1, i = i + 1, dbL
dbD

¼ 0 and go to step 2; otherwise stop.

The above choice of eKf given by Eq. (20) significantly reduces the storage cost as compared to the GT method. Indeed, for

the LT method, the flow solution should be stored only at those time levels that belong to the current time subinterval
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. . . . .0

N

dL
2
/dDdL

1
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K-1
/dD dL

K
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0
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. . . . .

2 K-11

Adjoint equations

dL/dD = dL
1
/dD + ... + dL

K
/dD

Q
N
... Q

N
Q
0
... Q

N
Q
N
... Q

N
KK-11 21

Fig. 1. A sketch of the local-in-time adjoint-based algorithm.
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(Tkÿ1,Tk]. In addition, flow adjoint solutions at K ÿ 1 time levels from the previous optimization cycle, bKNkþ1

f

� �
iÿ1

for

1 6 k 6 K ÿ 1, should also be stored, as follows from Eq. (20). Therefore, the overall storage cost of the LT algorithm is

O(K + N/K) flow variables versus O(N) flow variables required for the GT method. Since K + N/K achieves its minimum value

at K ¼
ffiffiffiffi
N

p
, the storage cost of the LT algorithm can be minimized if the number of time subintervals K is set equal to

ffiffiffiffi
N

p
,

where N is the total number of time levels. For K ¼
ffiffiffiffi
N

p
, the total storage cost of the LT algorithm is

ffiffiffiffi
N

p
=2 times less than

that of the GT algorithm. The savings are even more significant when dynamic grids are involved.

In addition to the significant storage savings, another key advantage of the LT algorithm is that upon convergence, the set

of local-in-time adjoint equations becomes identical to the original adjoint Eq. (7), thus providing full consistency between

the local and global methods. In other words, the converged solution obtained with LT method is a local minimum of the

original optimization problem (3). Indeed, assuming that for all time levels n the LT method convergences to the machine

zero after i* iterations, one can immediately conclude that bKn
f

� �
i�ÿ1

¼ bKn
f

� �
i�
¼ bKn

f , thus leading to eKf ¼ bKNkþ1

f

� �
i�ÿ1

¼

bKNkþ1

f

� �
i�
¼ bKNkþ1

f for n = Nk+1. Since the term eKf in Eq. (16) converges to bKNkþ1

f for 1 6 k 6 K ÿ 1, the result is that the set

of the local adjoint equations defined on each time subinterval converges to the original system of adjoint Eq. (7), provided

that the adjoint operators in both systems are the same. Note that if initial values of the design variables for the GT algorithm

are set equal to the converged optimal values obtained with the LT method, then the adjoint operators in Eq. (7) are identical

to those in Eq. (16). Therefore, the local and global adjoint equations at the extremum point are identical to each other, and

one can immediately conclude that the solution of the local-in-time adjoint Eq. (16) is equal to the solution of the global

adjoint Eq. (7), thus leading to the equivalence of the corresponding sensitivity derivatives. Taking into account the fact that

at the extremum obtained with the LT method, dbL=dbD vanishes, the true sensitivity derivative, dL/dD, evaluated at the same

point in the design space by using the GT algorithm is equal to dbL=dbD and therefore vanishes as well. It implies that the solu-

tion obtained with the LT method is optimal with respect to the original optimization problem Eq. (3). Note that in principle,

the GT and LT algorithms may converge to different local extrema of the optimization problem Eq. (3). What is important,

however, that the solutions computed with both the GT and LT algorithms are local minima of the original optimization

problem. It should also be noted that for all test problems presented in the next section, the LT method converges to the

same solution obtained with the GT counterpart.

Another attractive feature of the new LT algorithm is that it has the same complexity per optimization cycle as the GT

method. Indeed, for the LT algorithm, the flow equations and the corresponding adjoint equations on (Tkÿ1,Tk], 1 6 k 6 K

at each optimization iteration are solved only once. Since there is no overlap between time subintervals, the total number

of time steps, over which the LT equations are integrated, is equal to that used for integration of the original adjoint Eq. (7) in

the GT algorithm.

The LT algorithm can be directly used for solving both time-dependent optimal control problems whose control variables

depend on time and design optimization problems whose design variables are independent of time. This is one of the main

advantages of the LT method over the receding horizon technique and its variants (e.g., see [10–12,14]) which are applicable

only to optimal control problems, but cannot be directly used for design optimization. Another principle difference between

these techniques is that the solution computed with the LT method is a local minimum of the optimization problem (3),

while the corresponding solution obtained with any receding horizon technique is only suboptimal with respect to the ori-

ginal minimization problem.

5. Numerical results

We consider design optimization problems governed by the 2-D unsteady Euler equations for supersonic flows in a chan-

nel with a bump to evaluate the performance of the new local-in-time method. For all test problems considered, the final

time, Tfinal, is set to be 1, and the freestream Mach number is given by

MðtÞ ¼ 2þ 0:1 cosð17pt=9Þ: ð21Þ

Since the freestream Mach number oscillates in time, the entire flowfield is unsteady. The aerodynamic coefficient in Eq. (4)

is chosen to be the time-dependent pressure coefficient at the lower boundary of the computational domain. The bump

shape is described by the following equation:

y ¼ d1w1ðxÞ þ d2w2ðxÞ þ d3w3ðxÞ;

where wl(x), 1 6 l 6 3 are given polynomials satisfying the requirement that the leading and trailing edges of the bump con-

tinuously meet the straight lower wall on either side of the bump. Three coefficients d1, d2, and d3 are design variables, i.e.,

D = [d1,d2,d3]
T.

The governing equations are discretized by using a first-order, node-centered, finite-volume scheme [20] on structured

quadrilateral grids. The inviscid fluxes at cell interfaces are computed using the upwind scheme of Roe [21]. At each time

step, the nonlinear discrete flow equations are solved by Newton’s method. For each test, the residuals of the 2-D Euler equa-

tions and the corresponding adjoint equations are driven below 10ÿ12. The governing equations are integrated over 9 time

steps with the nondimensional time step equal to 1/9. Along with the LT method, the SLT version of this algorithm with

N.K. Yamaleev et al. / Journal of Computational Physics 229 (2010) 5394–5407 5401



Author's personal copy

eKf ¼ 0 in Eq. (16) is also considered in the present analysis. For all test problems considered, the number of time subintervals

used in the LT and SLT algorithms is set equal to 3 and 9, respectively, and the parameter is in the LT method is set to 3. For

the SLT algorithm, only the local unsteady flow solution on a current time subinterval is held in the operating memory. For

the LT method, in addition to the flow solution on the current subinterval, the adjoint variables eKNkþ1

f for 1 6 k 6 K ÿ 1 are

also held in the operating memory, while for the GT method, the entire flow solution history for all time levels is stored. The

derivatives of R and fwith respect to Q and D, which are required to form the adjoint equations and the sensitivity derivative,

are calculated by using the complex variable technique developed by Lyness and Moler [23].

First, we validate the implementation of the GT method and compare sensitivity derivatives obtained with the GT algo-

rithm and a forward mode differentiation based on the complex variables approach [23]. The key advantage of the complex

variables technique is that for sufficiently small values of the complex step size, this method provides the sensitivity deriv-

ative with the machine accuracy, which can be used for validation of the adjoint formulation. For the forward mode differ-

entiation, the complex step size is chosen to be 10ÿ10. Note that at each optimization cycle, the forward mode differentiation

technique solves the flow problem as many times as the total number of design variables, while the adjoint-based method

requires one solve of the Euler and corresponding adjoint equations per optimization cycle, regardless of the number of the

design variables. Table 1 shows the sensitivity derivatives computed with the forward mode differentiation and adjoint

methods. As expected, the discrepancy is of the order of round-off error, thus validating the implementation and accuracy

of the GT method.

Next, we evaluate the performance of the GT, LT, and SLT methods for the time-dependent design optimization problem

(3) and (4) when the target flow is feasible. The feasibility of the target flow implies that there exists a set of design variables

in the design space, that recovers the target flow precisely. Note that the value of the objective functional at the extremum is

zero, and the optimal design variables are expected to be equal to their exact target values. This problem is well suited for

evaluation of the performance of optimization methods, because the exact solution is known and the objective functional

vanishes at the extremum. The target pressure coefficient is obtained by solving the unsteady 2-D Euler equations with

the design variables chosen to be d1 = 0.05, d2 = 0.03, and d3 = 0.01. The initial value of each design variable is set to be zero,

thus initially, there is no bump on the lower wall. The optimization is stopped when the absolute value of the objective func-

tional becomes smaller than 10ÿ5.

Convergence histories of the objective functional obtained with all three algorithms are presented in Fig. 2. Overall, the

GT, LT, and SLT methods demonstrate very similar convergence rates. For each method, the value of the objective functional

rapidly decreases over the first five iterations, dropping down by almost two orders of magnitude. Then, the convergence

rate slows down, and the objective functional gradually decreases until it becomes less than the specified tolerance. Fig. 3

shows convergence histories of all three design variables during the optimization. The most important conclusion that

can be drawn from this comparison is that the GT, LT, and SLT methods converge to the same solution. From this standpoint,

the solutions obtained with LT and SLT algorithms are optimal with respect to the original optimization problem (3). It

should also be noted that all the design variables converge to their target values. From the comparisons presented above

it follows that the LT and SLT methods converge to the same optimal solution computed with the GT method, while reducing

the storage cost by a factor of 1.5 and 4, respectively. For a larger number of time steps, the storage savings may be consid-

erably higher. As has been pointed out in the foregoing section, the storage cost of the SLT algorithm is independent of the

number of time steps and equal to 3 units, where one unit corresponds to memory that is required to store one flow solution

vector at each grid point. Note that the SLT method requires the same storage as the steady state adjoint formulation. The

storage cost of the GT method is N + 3 units and directly proportional to the total number of time intervals, N, while the stor-

age cost of the LT method is K + N/K + 2 units, where K is the total number of time subintervals used.

We now evaluate the performance of the LT and SLT methods for minimization of the objective functional defined on a

time interval that is smaller than [0,Tfinal]. For this test problem, it is assumed that the objective functional involves only the

solution at the terminal time Tfinal, i.e.

Fobj ¼
X

j2Cc

CN
j ÿ Ctarget

j

� �N� �2
Dt: ð22Þ

The target pressure distribution in Eq. (22) is chosen in the same manner as in the previous test problem. Therefore, the tar-

get flow is feasible, and the optimization problem has at least one global minimum. Clearly, this problem is more challenging

for the SLT method. Indeed, the SLT method takes into account only the contribution of the last time interval to the sensi-

tivity derivative, while for the GT and LT methods, the adjoint variables at each time level are nonzero; thus, each time sub-

interval makes a nonzero contribution to the global sensitivity derivative. Fig. 4 shows convergence histories obtained with

Table 1

Sensitivity derivatives computed with the adjoint formulation and the forward mode differentiation based on the complex variable technique.

dL
dD1

dL
dD2

dL
dD3

Adjoint formulation ÿ10.5059070229186 ÿ12.2910025055155 ÿ12.8094954127715

Complex variables ÿ10.5059070229196 ÿ12.2910025055174 ÿ12.8094954127741

5402 N.K. Yamaleev et al. / Journal of Computational Physics 229 (2010) 5394–5407



Author's personal copy

the global and both local algorithms for the minimization problem with the objective functional defined by Eq. (22). As fol-

lows from Fig. 5, all three methods converge to the global extremum of the minimization problem, demonstrating similar

convergence rates. It takes 42 design cycles to reduce the objective functional by four orders of magnitude by using the

LT method, while the SLT and GT algorithms require 36 and 37 iterations, respectively.

Despite that for the SLT method, contributions from all time levels except the last one are neglected, its solution and con-

vergence rate are very close to those obtained with GT and LT algorithms. This is not surprising, because as has been shown

at the end of Section 3 for this test problem, each component of the sensitivity derivative vector and the flow adjoint vari-

ables decay to zero in reverse time. Figs. 6 and 7 demonstrate this property of the sensitivity derivatives and adjoint variables

computed with the GT algorithm for the objective functional given by Eq. (22). The result is that the contribution from the

last time interval is dominant, which explains why the SLT method provides a good approximation of the total sensitivity

derivative. Fig. 7 also shows that the adjoint variables computed with the GT and LT algorithms agree very well over the en-

tire time interval considered, which corroborates our analysis presented in Section 4. Note that for the SLT method, the ad-

joint equations should be solved only at the final time level, thus reducing the computational cost as compared with the GT

and LT algorithms.

For the third test problem, the target bump shape is set to y = sin4(p(x ÿ 1)), which is outside of the design space. As a

result, the target flow is infeasible, and the value of the objective functional at the optimum is not equal to zero. Fig. 8 shows
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convergence histories of the objective functional obtained with the GT, LT, and SLT algorithms. Overall, each optimization

method reduces the value of the objective functional more than an order of magnitude.

During the first 15 design cycles, the LT method provides the fastest reduction in the objective functional among all three

methods. By 25th design cycle, all the methods provide similar values of the objective functional and show practically the

same convergence behavior thereafter. Convergence histories of all three design variables are depicted in Fig. 9. Despite the

fact that each design variable changes dramatically during the design, both the SLT and LT methods demonstrate the con-

vergence behavior that is very similar to that of the GT algorithm. As in the previous test cases, the GT, LT, and SLT algorithms

converge to the same solution, which again indicates that this solution is optimal with respect to the original minimization

problem. The comparison of the computed, target and initial lift coefficients are shown in Fig. 10. The relative difference be-

tween the initial lift coefficient and its target value is of the order of O(1). In spite of the fact that the target flow is infeasible,

the lift coefficients computed with all three optimization techniques agree reasonably well with the target lift coefficient

over the entire time interval considered. Furthermore, the lift coefficients obtained with the GT, LT, and SLT algorithms

are almost indistinguishable from each other, which indicates that all three methods converge to the same solution.
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Fig. 4. Convergence histories of the objective functional computed with the GT, LT, and SLT adjoint-based methods for the second test problem.
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6. Conclusions

The new local-in-time adjoint-based method for design optimization of unsteady flows has been developed. In contrast to

the global-in-time (GT) algorithm that stores the flow solution for all time levels, the new algorithm sequentially solves the

local adjoint equations on each time subinterval to form the global sensitivity derivative. Two different implementations of

the local-in-time method have been considered. The first, simplified (SLT) implementation neglects the coupling between

neighboring time subintervals. Since each set of local adjoint equations is integrated backward in time over only a small time

subinterval, the storage cost of the SLT method is of the order of O(N/K) flow variables, where N is the total number of time

intervals and K is the number of time subintervals. In the limit, each time subinterval can consist of a single time step, thus,

the storage cost can be reduced to the level of the steady state adjoint formulation. For the second, more general implemen-

tation of the local-in-time (LT) method, the term that couples the local sets of adjoint equations defined on neighboring time

subintervals is retained and taken from the previous optimization iteration. The storage cost of the LT method is O(N/K + K)

versus O(N) flow variables required for the GT method. For the LT method, the optimal number of time subintervals is
ffiffiffiffi
N

p
,

thus leading to the storage cost that is
ffiffiffiffi
N

p
=2 times less than that of the conventional counterpart. The most distinctive
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feature of the LT algorithm is that its solution is a local minimum of the original optimization problem, which is not neces-

sarily the case for the SLT method. Furthermore, for the LT method, the number of operations per optimization cycle is equal

to that of the GT algorithm, thus leading to the same CPU cost. For all test problems considered, the GT, LT, and SLT methods

provide practically the same convergence rate and converge to the same local minimum of the original time-dependent opti-

mization problem. These properties of the LT method open new avenues for solving a broad spectrum of realistic large-scale

design optimization problems arising in various unsteady aerodynamic applications.
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