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This paper describes an innovative, efficient actuating blade model to capture the unsteady motion of a
rotating system within Computational Fluid Dynamics (CFD) methods, with application to wind turbine
blades. Each blade planform is modeled via a cloud of sources that move independently during the sim-
ulation to provide rotation of the blade as well as optional motion such as blade flexibility (aeroelasticity)
and active controls (flaps, morphing, adaptive shapes). The model can be implemented into structured or
unstructured methods that span the gamut from full potential to Large Eddy Simulations (LES), and it
does not require the use of overset grids. A key feature of this model is the development of a highly effi-
cient parallelized kd-tree algorithm to determine the interactions between actuator sources and grid
nodes. Computational evaluation of the method successfully demonstrates its capability to predict root
and tip vortex location and strength compared to an overset Navier–Stokes methodology on an identical
background grid, and further improvements in the solution are shown by the use of grid adaptation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating systems are abundant in engineering fluid dynamics
applications. A few examples include wind turbines, propellers, ro-
tors, compressors, and jet engines. Wind turbines represent one
type of rotating system that has gained incredible interest in recent
years due to the push towards alternative energy sources. Despite
their relatively simple appearance, horizontal-axis wind turbines
(HAWTs) operate in an aerodynamic environment that is challeng-
ing to model. Due to the atmospheric boundary layer, there can be
considerable variation in wind speed between the top and bottom
of the rotor disc. If the turbine is not facing directly into the wind,
there will be yaw error and the blade loads will vary cyclically as
they rotate. All wind turbines have some kind of yaw control, but
the wind direction can vary too quickly for the controller to main-
tain zero yaw. At high wind speeds, even in axial flow, the blades
may be stalled.

Though Computational Fluid Dynamics (CFD) has made signifi-
cant inroads as a research tool in wind turbine aerodynamics [1–3],
simple, inexpensive methods are still the workhorses in design and
aeroelasticity applications [4]. These can range from blade element
momentum (BEM) theory methods [5] to more accurate but still
inexpensive vortex methods [6]. BEM methods provide basic
insight into turbine flows, but only under the simplest conditions:
constant wind speed with zero yaw error. BEM methods operate
under the independence principle, in which the aerodynamics of
each airfoil section along the blades are computed independently
of neighboring sections [7]. As a result BEM methods completely
neglect spanwise flow and other three dimensional (3-D) effects,
which have been shown to result in significant lift augmentation
and stall delay, especially near the blade roots [8]. Vortex methods
such as prescribed wake models [9] can capture some unsteady ef-
fects, but like BEM methods, lack the ability to handle 3-D effects.
As a result, both typically underpredict torque, even when they
incorporate a 3-D correction [10]. Designs based on such simula-
tions can result in structures that succumb to fatigue sooner that
expected [11,12].

CFD techniques can mitigate many of the inaccuracies from the
simplifying assumptions for wind turbine analysis methods. There
are currently four broad classes of recent CFD improvements that
can be applied to improve wind turbine design and analysis tools.
The first class is based on hybrid Reynolds-Averaged Navier–Stokes
(RANS)–Large Eddy Simulation (LES) methods, where improved
turbulence models can improve the prediction of unsteady, sepa-
rated flows. RANS and LES usually apply the concept of overset
grids, which introduce the ability to treat the relative motion be-
tween rotor and its support structure. Source-based methods,
including actuator disks and actuator lines, can provide physics-
based characterizations of wind turbine wakes while reducing
computational expense associated with modeling the blades, and
do not require overset grids. As wind turbine blades continue to
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increase in size, coupling between CFD and computational struc-
tural dynamics (CSD) methodologies to capture the aeroelastic re-
sponse of the rotor blades becomes increasingly important.

The momentum source technique is one approach to managing
complexity and computational expense in simulations of wind tur-
bines. Actuator disc methods, based on momentum theory, seek to
model the effects of a rotor on the surrounding flowfield without
the need to model the physical rotor. Since the flow over the rotor
blades produces lift and drag forces on the blades, there must be
another force equal in magnitude and opposite in direction acting
on the flow. This reaction force can be included in the underlying
CFD model in two ways. It can be implemented in a manner similar
to a boundary condition. A special permeable boundary surface is
embedded in the mesh, with the flow velocity constrained to be
continuous through the surface while the pressure is discontinu-
ous. Alternatively, those forces can be included as body forces in
the Navier–Stokes equations. The body force approach offers addi-
tional flexibility over the pressure discontinuity. Since no surface is
needed in the grid, the position of the disc can change, allowing
different choices of the tip path plane on the same grid. In either
case, the blades themselves are neglected. The pressure disconti-
nuity or body forces provide the same effects on the flowfield as
rotating blades, but in a time-averaged sense. Without modeling
the blades directly, CFD simulations can either use fewer grid
points, speeding their execution compared to more detailed meth-
ods, or place more points in the turbine wake gaining greater mod-
eling fidelity.

CFD with actuator discs has seen widespread use in both the
rotorcraft and wind industries [13–16]. For a good review of actu-
ator disc techniques, largely from the perspective of structured-
grid CFD, see Ref. [17]. O’Brien implemented unsteady actuator
disc and blade techniques in the unstructured solver FUN3D
and compared those against fully overset techniques on several
geometries, demonstrating that an actuator disc can significantly
improve predictions of helicopter fuselage loads [18,19]. While
actuator disc methods provide a good approximation of the influ-
ence of the rotor, the fact that they lack discrete blades means
that they model the rotor in an azimuthally averaged fashion.
This makes them unsuitable for cases with yaw error since the ro-
tor wake varies azimuthally, as well as radially. O’Brien demon-
strated that an actuator disc acts as a elliptic wing and
generates the roll-up of two tip vortices in the near wake, but
they cannot capture the helical vortex wake associated with
rotating blade systems, which an actuator-blade method was able
to predict [19].

To address this issue for wind turbines, Sørensen et al. applied a
variant of the actuator-blade method, known as an actuator-line
method, whereby the blades are modeled by filaments or lines of
sources along which body forces act [20,21]. These body forces
are typically derived from a BEM method that uses tabulated airfoil
data. In this approach, the unsteady effect on the flowfield by indi-
vidual blades can be included in the analysis while still avoiding di-
rect CFD modeling of the blade surfaces and their associated
boundary layers. Sørensen et al. applied this actuator line method
to a 500 kW Nordtank turbine and achieved good agreement with
the experimental power curve for pre-stall wind speeds. Above
about 12 m/s, where that particular rotor is stalled, they over-pre-
dicted power because using airfoil data implicitly ignores the
three-dimensional effects present in the stalled regime.

The actuator line method has also been applied with good re-
sults by Mikkelsen, who compared it against an axisymmetric
actuator disc approach and used it to validate some of the funda-
mental assumptions of traditional BEM methods [22]. Whereas
Sørensen et al. used a code that solves the Navier–Stokes equations
in vorticity–velocity form, Mikkelsen employed the incompressible
code EllipSys3D [23,24], which solves in pressure–velocity form.
This latter method permits the inclusion of solid boundaries like
the turbine tower.

The EllipSys3D code was also used by Ivanell et al., who evalu-
ated the vortical wake structures produced by the actuator line
method [25]. In that work, the actuator lines were fixed in the grid,
and the effects of blade rotation were applied via a boundary con-
dition, which allowed them to use an efficient steady-state formu-
lation. While this significantly decreases computational expense, it
renders the method unsuitable for yawed cases. In addition, the
azimuthal boundary condition was also periodic, so a N-bladed ro-
tor could be modeled in only 1=N revolutions. Again, this precludes
the application of the method to any case that does not have a peri-
odic solution, which are the cases primary configurations of
interest.

O’Brien’s actuator blade method was originally applied to heli-
copter rotor-fuselage interaction problems using an unstructured
CFD code [18,19]. The key difference between actuator line and
actuator blade methods is that in the former, each blade consists
of a single line of sources. To avoid discontinuities, each source’s
loading is distributed over multiple grid points using a ‘‘regulariza-
tion function’’ that makes a source’s influence at a distance r away
from it scale with er2 . Conversely, the actuator blade method of
O’Brien uses a rectangular array of sources for each blade, provid-
ing a continuous influence without the need for a regularization
function (though smaller discontinuities in loading do still exist
at the outlines of the blade). A rectangular array of sources also
provides the means to vary the local angle of attack (a key input
to the underlying blade element model) with chord. It should be
noted, however, that the results presented here use a local angle
of attack that is constant along the chord but still varying along
the span.

Though they are undoubtably easier to apply to complex geom-
etries, source cloud actuator methods like that of O’Brien [19] suf-
fer from one significant drawback. In order to apply body forces
from the actuator sources to the flow, it is necessary to know
which grid node (or cell centroid for a cell-centered code) is closest
to each actuator source. This entails some sort of nearest neighbor
search procedure. In actuator disc cases or actuator line/blade
cases in which the sources are fixed in the grid (perhaps because
the equations are being solved in a rotating frame), this search
can be performed as a one-time pre-processing step. In this in-
stance, the cost of the search algorithm is not of paramount impor-
tance. However, if the sources move in relation to the inertial grid,
the search must be repeated at each time step.

In a structured grid, there is a regular structure in memory that
mimics planar spatial structures, making it readily efficient to
search through a range of grid indices. In an unstructured grid, a
much more general search procedure is required. With the excep-
tion of O’Brien’s work, the actuator methods discussed thus far
have been implemented within structured CFD methods. O’Brien’s
implementation for unstructured grids performs an exhaustive
nearest-neighbor search by looping over all the grid nodes to find
the node associated with a single source, and then repeating that
loop for all the other sources. The exhaustive search represents an-
other significant expense in addition to the usual computational
overhead associated with storing and accessing connectivity infor-
mation in an unstructured grid, so a better search algorithm is nec-
essary for practical engineering applications.

In this paper, an efficient method for modeling rotating systems
in engineering fluid dynamics applications is presented. The meth-
od is demonstrated using a wind turbine model for validations.
This paper documents the adaption of the actuator blade model
using clouds of sources that relocate in an inertial background grid
that can include other stationary objects such towers and other
turbines (with or without moving blades). In particular, details of
a parallel search algorithm are included, as this implementation
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is mandatory to ensure the cost-effectiveness of the method is
comparable to other source-based approaches. Performance and
wake correlation with a full overset CFD simulation on an identical
background grid are provided to demonstrate the ability of the
algorithm. Finally, grid adaptation is performed to show how the
wake preservation can be improved in an efficient manner using
this modeling framework.
2. FUN3D code

FUN3D is NASA Langley’s code for solving the Navier–Stokes
equations on mixed element unstructured grids [26,27]. It can
solve both compressible and incompressible flows, the latter
achieved via Chorin’s method of artificial compressibility [28].
The spatial solution is resolved via an implicit node-centered fi-
nite-volume formulation. Steady flows are solved using a first or-
der backward Euler scheme, while time accurate simulations are
integrated with a second order backward differentiation formula
(BDF). By default, the inviscid fluxes are evaluated using Roe
upwinding. The viscous fluxes are always evaluated using a
scheme that is equivalent to a central difference formulation. The
resulting linear system is solved using a point-implicit red–black
Gauss–Seidel scheme. A number of turbulence methods are avail-
able, including Spalart–Allmaras, Menter kx-SST and Detached
Eddy Simulation (DES) models.

The overset grid option can be exercised through the DiRTlib
(Donor Receptor Transaction Library) [29] and SUGGAR (Struc-
tured, Unstructured, and Generalized Grid AssembleR) [30] li-
braries. With structured grids, overset methods provide a means
for handling geometric complexity. Since the unstructured grids
in FUN3D are already amenable to complex geometries, overset
methods are primarily used to resolve moving body problems.
FUN3D has been applied and validated for a very wide range of
moving body applications, including rotorcraft and wind turbines
[19,31–33].
3. Actuator blade algorithm

O’Brien demonstrated that an actuator blade methodology can
provide a reasonable approximation of the unsteady loads on a
helicopter fuselage due to the rotor wake [19,34]. As discussed ear-
lier, these methods model the influence of the rotor on the flow-
field by adding source terms to the Navier–Stokes equations that
act as body forces. The local lift is estimated using the linear esti-
mate of the lift coefficient:

ClðaÞ ¼ Claða� a0Þ þ Cl0 ð1Þ

which was shown by O’Brien to be sufficient for the actuator meth-
odologies. If desired, the source array representation of the blade
could be used to vary the local value of a along the chord in order
to model morphing blades or flaps for active control, for example.
In this study, however, a is represented as constant along the chord.
The lift curve slope as well as parameters such as maximum and
minimum lift coefficient can be input into the solver in order to
match the characteristics of the rotor blade being used. Unlike actu-
ator line methods, the actuator blade does not require averaging of
the source data to prevent singularities. Inflow velocity is taken
from the grid node nearest to each source on the leading edge of
each actuator blade. The twist of the blade can be set using a linear
variation or interpolated by the solver from a table lookup file. Tak-
ing into account the inflow velocity and the blade twist, the effec-
tive angle of attack is computed at each radial location. The local
lift coefficient is computed at each spanwise source, and the lift
and drag forces are determined using Eq. (2) at each successive ra-
dial location. The sectional lift and drag are then distributed evenly
over all the sources at each spanwise location, so that there is no
variation of these parameters in the chordwise direction. However,
there is variation in the radial direction because the local angle of
attack varies radially.

DL0 ¼ 1=2 � Cl � q � V2
Total � c � Dr

DD0 ¼ 1=2 � Cd � q � V2
Total � c � Dr

ð2Þ

The actuator blade portion of one time step of the solution be-
gins by computing the new positions of the actuator sources. These
sources rotate through the mesh in clouds that reproduce the
approximate blade planform as shown in Fig. 1. Then a search is
done to find the nearest neighboring mesh vertex to each source.
Since each processor stores all of the actuator sources, but only a
subset of the mesh, a source may actually lie outside the mesh par-
tition. In that case, the source’s true nearest neighbor actually lies
on another partition. To deal with that situation, the processors ex-
change the distance they computed from each source to its nearest
vertex. If another processor has a smaller distance, that source is
marked as belonging to another partition, and its influence is not
included on that processor. This ‘‘multiple partition check’’ can
be handled with an efficient MPI_Reduce operation. Following that
check, the state variables at the vertex associated with each source
are used to computed the local effective angle of attack. That angle
of attack is then applied in a blade element model to compute
source strengths. Finally those source strengths are added to the
residual and Jacobian, and the linear system is solved. A more com-
plete discussion of this overall process can be found in Ref. [19].

The baseline actuator blade implementation [34] resolved the
source-to-node association through a nearest neighbor search.
Originally, a straightforward exhaustive search was applied to
demonstrate the concept. This method computes the distance be-
tween each source and each mesh vertex, resulting in an operation
count of OðNvNsÞ, where Ns is the number of actuator sources, and
Nv is the number of mesh vertices resident on a particular proces-
sor. In a typical case, Nv might range from 30,000 to 200,000, and
Ns will be on the order of 2000 sources per blade. Thus, for some
configurations, this search can become a very expensive operation.
Indeed, O’Brien found that the cost of an actuator blade solution
using this implementation can quickly approach the cost of a solu-
tion with overset blades [34], rendering it not useful for engineer-
ing applications. Thus, a new search algorithm was necessary, as is
discussed in Section 4.
4. Kd-tree search algorithms

Nearest neighbor searches have been thoroughly studied in the
computer science literature, and many search algorithms exist that
are faster than the exhaustive search described above, at least in
three dimensions. Space-partitioning methods are a class of algo-
rithms in which the set of points being searched is recursively di-
vided into smaller subsets. The divided set may be represented by
a tree-based data structure such as an octree or a kd-tree. The latter
is known to be one of the best data structures for nearest neighbor
searches in two or three dimensions [35]. In general, a kd-tree
nearest neighbor query has Oðlog NÞ complexity, where N is the
number of nodes in the tree [36].
4.1. Tree construction and nearest neighbor queries

For purposes of actuator source-to-node association, a node of a
kd-tree contains a list of at most mv mesh vertices, including the
vertices’ array indices and their positions in space, as well as point-
ers to left and right child nodes. Each tree node also has a split
direction, d, and a split point,~s. All vertices in the left child have



(a) Complete rotor (b) Close-up of tip

Fig. 1. Actuator sources (blue) embedded in mesh. Each source must be associated with the nearest mesh vertex. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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pd 6 sd, and all vertices in the right child have pd > sd, where~p is a
vertex’s position in space.

Kd-trees are constructed recursively, so the construction proce-
dure proceeds identically at any depth in the tree. The process be-
gins with a node being passed a list of nv mesh vertices (at the
beginning, all vertices are passed to the root node). If nv 6 mv , all
of the vertices are inserted into the node’s list, and control returns
to the parent node. If nv > mv , the vertices are sorted by their posi-
tion in the split direction, d. Once sorted, the lower half of the ver-
tices are sent to the left child, and the upper half are sent to the
right child. The median point alone is inserted into the current
node. The split direction alternates through the tree, so that if a
node is split in direction, d, its two children are split in the
mod(d,3) + 1 direction (assuming 1-based indexing).

To demonstrate this concept, consider the following list of six 2-
D vertices: ð4;7Þ, ð9;6Þ, ð5;4Þ, ð2;3Þ, ð7;2Þ, ð8;1Þ. Assume mv ¼ 1,
meaning that only one vertex may be stored in each tree node,
and that the initial split direction is x. First, the list is sorted in
the x-direction. The median of the list is ð7;2Þ and is inserted into
the root node of the tree (Fig. 2a). That vertex becomes the split
point for the root node. The nodes to the left of ð7;2Þ are now
sorted in the y-direction. The median of that sublist is ð5;4Þ, which
is inserted into the left child of the root (Fig. 2b). The only vertex to
the left of (below) ð5;4Þ is ð2;3Þ, so it goes into the left child of the
root’s left child (Fig. 2c). Vertex ð4;7Þ is handled similarly (Fig. 2d).
Then control moves to the right half of the original sublist: ð8;1Þ
and ð9;6Þ. That sublist is sorted in the y-direction. The median is
ð9;6Þ, which is inserted into the right child of the root, and then
that child is split at that point (Fig. 2e). The only remaining node
is inserted into the left (bottom) child of the root’s right child
(Fig. 2f).

Searching a kd-tree for the vertex nearest to a query point~q can
begin at any node, though typically it begins at the root node. The
number of points stored in a node and its children is nv . If the node
has nv 6 mv , it is a leaf, and a simple exhaustive search is done over
its vertices. That is, the distance squared between q and p is com-
puted for each vertex and then compared to the smallest distance
found so far. If it is smaller, it becomes the new ‘‘best’’ distance,
and that vertex’s index is saved. Control then returns to the parent
node since leaf nodes have no children.

If the node has nv > mv , the distance squared between~q and the
one point actually stored in the node is computed and compared to
the minimum distance encountered so far. If the query point lies to
the left of the node’s split point (qd < sd), the left child is recur-
sively searched. Otherwise, the right child is searched. After that
search, the distance from the query point to the plane separating
the two children is computed. If it is smaller than the minimum
distance encountered so far, it is possible that the nearest vertex
to the query point lies just across that plane in the child that was
not searched previously. In that case the other child is searched
recursively as well. Finally, control is returned to the parent node.

Consider the example tree constructed earlier and a query point
ð1;5Þ. A search for the query point’s nearest neighbor begins at the
root node with vertex ð7;2Þ. The distance squared from the query
point to that vertex is 45 (Fig. 3a). Since the query point is to the
left of the root node’s split point, the search moves to the root’s left
child, which contains the vertex ð5;4Þ. The distance to that vertex
is 17, which is the minimum value encountered so far (Fig. 3b).
Since the query point is to the ‘‘right’’ of (above) the split point,
the right child with vertex ð4;7Þ is next examined. That distance
is 13, which now becomes the closest vertex (Fig. 3c). Since this
node has no children, the search computes the distance to the
plane separating it from its sibling. The distance to the plane is 1,
which is less than the distance to the best vertex found so far
(Fig. 3d). Therefore, a vertex lying just on the other side of the
plane could be a nearer neighbor, and the search evaluates the sib-
ling. The vertex contained in that sibling has a distance of 5 from
the query point, and so becomes the best candidate (Fig. 3e).
Now control returns to the parent node, with vertex ð5;4Þ. Both
its children have been searched, so control returns to the root node.
The distance from the query point to the root node’s split plane is
36, which is greater than the distance for the best candidate, and so
the right child of the root node need not be searched (Fig. 3f). The
nearest neighbor of the query point is ð2;3Þ. Since the search never
descended into the right tree, the expensive distance function was
never evaluated for those vertices.

4.2. Kd-tree performance evaluation

Performance of a kd-tree search will depend on several factors.
In order of importance, they are the total number of vertices con-
tained in the tree, Nv ; the maximum number of vertices contained
in any one node, mv ; and the efficiency with which the distance
function is evaluated. The third factor is addressed by always using
squared distances so as to avoid computing square roots and by
computing distances inline without a separate function call.

To determine how the search algorithm scales with the maxi-
mum number of vertices allowed per tree node, a simple scaling
study was done using four central processing units (CPU) on a
mesh with 154,082 vertices, varying mv . Altering mv essentially
changes the number of nodes in the kd-tree. Since kd-tree searches
scale logarithmically with the number of nodes, mv was changed
by powers of two. Fig. 4 shows the ratio of the average cost of a
kd-tree search to an exhaustive search vs. mv . In this test, the best
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Fig. 2. Graphical depiction of the algorithm for building an mv ¼ 1 kd-tree. The partitioning of physical space is shown on the left, and the data structure is shown on the
right.
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performance was obtained with mv set to either 64 or 128 (the dif-
ference between the two being negligible).

To determine the importance of Nv and mv , several actuator
blade simulations were undertaken on two similar grids. The grids
contained about 2.4 and 4.5 million vertices, respectively. Both
grids contained no solid boundaries. Mesh points were clustered
in a region between the rotor disc and another disc about three ro-
tor diameters downstream. The number of vertices in each CPU’s
tree was altered by varying the number of CPUs used in each sim-
ulation. The number of vertices per processor ranged from 17,651
to 282,420. For each of those node counts, simulations were con-
ducted using the pre-existing exhaustive search; a kd-tree search
with mv ¼ 128, previously identified as optimal; and a kd-tree
search with mv ¼ 16, a reasonable but still sub-optimal value.
The average search time, as well as the average total time (includ-
ing activities not related to actuator blades) per time step for the
kd-tree was compared to the exhaustive search.

The kd-tree to exhaustive search cost ratios are shown in Fig. 5.
Clearly, when the CPUs are very heavily loaded with a large num-
ber of vertices, the kd-tree is vastly superior, with less than 15% the
search cost of the exhaustive search (solid lines). There are dimin-
ishing returns from the kd-tree as the number of vertices per CPU
decreases (i.e., as the number of CPUs increases, since the total
number of vertices is fixed). On the larger mesh (grid 2), the
kd-tree is 88% as expensive as the exhaustive search. Also, at low
numbers of vertices, the search procedure is overall a very small
percentage of the total time per time step. This occurs because
the exhaustive search makes very efficient use of cache and avoids
the overhead of function calls.
In a Fortran implementation of the present search algorithm,
the memory usage for one kd-tree node is always:

memory per node ¼ 4þ 4þ 4mm þ 8kmm þ 8þ 8

¼ 24þ ð4þ 8kÞmm ð3Þ

In all applications considered here, k ¼ 3. In a best-case scenario for
memory usage, each leaf node would hold exactly mv vertices, min-
imizing the total number of nodes. In a worst-case scenario, each
would hold only one vertex, giving the largest possible number of
nodes and essentially wasting 28ðmv � 1Þ bytes per node. So mem-
ory usage will be in the range:

Nv

mv
½24þ 28mm� < total memory < Nv ½24þ 28mm�bytes ð4Þ

Currently, memory usage is within acceptable bounds. Should it be-
come necessary to reduce memory usage, the algorithm could be
modified to directly index the arrays holding the mesh vertices
rather than copying them. This would save 24mv bytes per node.

The effect of mv , the maximum number of vertices per tree
node, is striking. Allowing more vertices per tree node improves
performance of the kd-tree considerably, as can be seen in the dis-
tance between circles and triangles in Fig. 5. Increasing mv allows
the kd-tree algorithm to gain back some of the cache efficiency of
an exhaustive search. Furthermore, it reduces the maximum depth
of the tree so that fewer recursive function calls are required to
reach a leaf node. Indeed, as can be seen on the smaller of the
two grids (Fig. 5a), using 128 vertices per node rather than 16
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Fig. 4. Ratio of the cost of a kd-tree search to the cost of an exhaustive search vs. the
maximum number of vertices per CPU.
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ensures that the kd-tree search is always less expensive than
exhaustive search.

5. Wind turbine wake prediction

To demonstrate the capability of the actuator blade approach
for a rotating system, the NREL Phase VI wind turbine [37] was
chosen. A wind speed of 7 m/s was chosen since at higher speeds
the flow over the blades begins to stall. Obviously, if a blade
element module is used to determine the source strength, the
accuracy of the actuator blade method will diminish when the flow
is dominated by viscous effects near solid boundaries or other phe-
nomena, like stall, that depend greatly on the details of the geom-
etry involved. More complex methods that include stall models can
be applied in these situations. This approach and test cases were
chosen so that the method could be demonstrated without the
addition of uncertainties due to dynamic stall and other nonlinear-
ities, which are dependent on empirical stall models. It is empha-
sized that the model and approach are not limited to the linear
regime. The Reynolds number, based on the rotor radius of 5 m
and the tip speed of 37.7 m/s, was 1:3� 106.

The incompressible path in FUN3D was chosen to resolve the
flow field as the freestream and tip Mach numbers are very low,
less than 0.1. Since no solid boundaries are present in the CFD cal-
culation, the wall distance function used in most turbulence mod-
els cannot be evaluated, and so only laminar simulations were
performed. Current efforts involve modifying the distance function
to treat actuator sources as surface nodes for the purposes of calcu-
lating wall distance.

At each time step, source strengths were computed using a very
simple linear model, as described in Ref. [19]. Linear lift curve data
were estimated from S809 airfoil data in Ref. [37]. In particular, the
lift curve slope was estimated at 6.54/radian, and the zero-lift an-
gle of attack was estimated as 0:614�. Lift is limited to minimum
and maximum values of �0.8 and 1.03 when the effective angle
of attack is outside the linear region. For this demonstration, con-
stant chord blades were demonstrated, so the mid-span chord of
0.5475 m was used. It should be noted that the method is not lim-
ited to constant chord blades.



(a) Grid 1, with 2.4 million vertices (b) Grid 2, with 4.5 million vertices

Fig. 5. Ratio of the cost of the kd-tree search to the cost of the exhaustive search. Solid lines indicate the cost ratio for the search portion of a time step alone. Dashed lines
indicate the cost ratio for a complete time step.
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The actual twist distribution of the wind turbine blade, as sup-
plied in Ref. [37], was used. Fig. 6 shows the local twist extracted
from slices of the overset blade grid in comparison with that input
for the actuator blade simulation, confirming that the two are con-
sistent. Each actuator blade was represented by 2000 sources, 100
in the spanwise direction and 20 in the chordwise direction. This
results in a source distribution finer than the mesh in the vicinity
of the rotor, as shown in Fig. 1, ensuring that there are no mesh
vertices in the region currently occupied by a blade that do not re-
ceive a body force from a source.

An overset CFD simulation with two blades but without a tower
provided a comparison of the wake approximated by actuator
sources to the wake from actual rotating blades. The mesh for
the actuator blade simulation had a total of about 2.4 million
nodes, with a cell size of 0.05 m (about 13% tip chord) near the
hub. The mesh extended 8 rotor radii upstream of the hub, 10 radii
downstream, and 5 radii in the spanwise direction. This mesh also
served as the background mesh for the overset simulation. The
overset blade meshes had about 2.7 million nodes each, resulting
in a composite mesh of 7.8 million nodes. Surface spacing at the
tip was about 0.006 m in all directions (an approximately isotropic
surface mesh). Normal spacing of the grid was computed such that
yþ < 1, which is the recommended practice for turbulent flows. For
ease of comparison with actuator cases, the overset simulations
presented here are laminar. In engineering applications with over-
set grids, a turbulence model would be used, and so the turbulent
grid generation conventions were applied for the overset grid. On
the other hand, the source method is not constrained by highly re-
fined grid spacing near the blade. It is demonstrated later in this
paper that the tight spacing (and greater degrees of freedom)
Fig. 6. Blade twist distribution for the overset blades and actuator blades.
required to resolve boundary layers significantly increases compu-
tational expense compared to the actuator simulations.

In the overset and actuator cases, a time step equivalent to 1� of
azimuth per step was used, which has been observed for a number
of rotating system applications (rotorcraft) to be sufficient to cap-
ture the aerodynamic behavior of the rotor exclusive of dynamic
stall [38]. A temporal error controller was used to ensure that en-
ough Newton subiterations were used in each time step to reduce
flow solver residuals to 10% of an estimate of the temporal error
[39]. Fig. 7 shows the convergence of the x-momentum (R_2) and
y-momentum (R_4) residuals plotted on a semi-log scale. Both
simulations progressed for four rotor revolutions, after which the
integrated torque was observed to be periodic. The wakes were
stable without a turbulence model.

Fig. 8a and b shows a comparison of the vortical wake com-
puted by the actuator blade and overset methods. The isosurfaces
are defined by Q, which is given by

Q ¼ 1
2
jjXjj2 � jjSjj2
� �

ð5Þ

where X is the vorticity tensor, and S is the rate-of-strain tensor.
Away from the blades, the overset and actuator solutions are quite
similar. The tip vortices predicted by the actuator blades are indis-
tinguishable from those predicted by overset blades. The overall
Fig. 7. x-Momentum and y-momentum residuals showing convergence via the
temporal error controller.



(a) Actuator blades

(b) Overset blades

Fig. 8. Q ¼ 0:05 iso-surfaces and contours of axial velocity, w=V1 , along a centerline plane at V1 ¼ 7 m/s, zero yaw. Q is normalized by R and Utip . Both cases were run for four
revolutions at 1� of azimuth per step.
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wake deficit is also well-captured. The ‘‘jet’’ of higher speed flow
through the center of the disk is somewhat more diffuse in the actu-
ator solution. This can be attributed to differing geometry near the
hub. The inboard edge of the actuator blades corresponds to the first
radial station with an airfoil profile, 1.257 m from the axis of rota-
tion. The actual blades have a cylindrical root attachment starting
0.508 m from the hub followed by a gradual transition to the first
airfoil section at 1.257 m. This simplification was necessary because
the underlying blade element model of the actuator method as-
sumes a linear airfoil-like relationship between angle of attack
and lift, which will not hold for a cylindrical section. In contrast,
the overset blades match the actual NREL model blades. In addition
to being closer to the hub, the cylindrical root sheds a more power-
ful vortex than the actuator blades.

The trajectories of the vortices after leaving the blade root and
tip provide another useful comparison of the actuator and overset
blade methods. Fig. 9 shows the axial and radial components of
those trajectories. From the axial component, it is clear that the
actuator and overset blade methods convect tip vortices down-
stream at nearly the same speed. Conversely, the actuator blade
method convects the root vortices faster. This is qualitatively evi-
dent from the contour plots of w=V1 in Fig. 8, where the actuator
blade contour lines show a larger high speed core. This is due in
part to the difference in the root-hub model of the overset and
actuator blade configuration. There is little difference in the radial
positions of the vortices other than the offset in root vortex loca-
tion caused by the approximations made regarding blade
planform.
In addition to the wake features, it is also possible to compare
the blade loading for the actuator blade model with the full overset
simulation. Fig. 10 shows the variation of normal force coefficient
along the span of the blade for the two cases. For the overset sim-
ulation, the normal force coefficient was extracted from the pres-
sure distribution, whereas for the actuator blade simulation the
normal force coefficient is a function of the sectional lift, drag,
and local angle of attack according to Eqs. (1) and (2). The sectional
normal force is defined as the component of sectional force which
is normal to the rotor plane.

There are some differences between the normal force coeffi-
cients for the overset and actuator blade simulation, particularly
near the tip region, where the tip loss effects are not captured well
by the actuator blade model. In this approach, the focus is to devel-
op and demonstrate a cost-effective actuator blade model of a
rotating system. The simple a posteriori application of a tip loss
correction used in blade element theory [40] correctly mimics
the blade loading at the tip. Implementation of the tip correction
during the simulation in a closed-loop fashion may have an influ-
ence on the inboard loads. Additional improvements are also pos-
sible by using a lookup table, possibly with 3-D corrections, instead
of the unsophisticated loading model given by Eq. (1).

Further improvements in the accuracy of the actuator blade sec-
tional loads can be realized by linking with available rotorcraft
analysis tools. For example, comprehensive analysis codes such
as DYMORE, RCAS, and CAMRADII which are already coupled with
FUN3D and other rotorcraft CFD codes can be used for more accu-
rate sectional load prediction in the blade element model



(a) Axial position, z of vortices vs. vortex age.

(b) Radial position, r of vortices vs. vortex age.

Fig. 9. Trajectories of root and tip vortices for both overset and actuator blades. The
radial separation between the overset and actuator root vortices is approximately
equal to the distance between the overset and actuator blade roots.

Fig. 10. Comparison of normal force coefficient for overset and actuator blades.
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[18,19,31]. Comprehensive codes also facilitate aeroelastic simula-
tion of rotating systems. Aeroelastic effects are important for struc-
tural analysis and also because they influence the aerodynamic
loading of the blades. In the present work, a simple model of the
sectional loads was used whereby loads are distributed uniformly
along the chord. In the sophisticated approach discussed in prior
efforts (i.e., Refs. [18,19,31]), the loading could be distributed non-
uniformly to model the suction peak and match the sectional mo-
ment coefficient for the airfoil.

The computational cost of the overset and actuator simulations
can be compared via CPU time per degree of freedom per time step.
That is:

cost ¼ ðwall timeÞðno: CPUsÞ
ðno: mesh nodesÞðno: time stepsÞ ð6Þ

The overset simulation required a total wall time of 13.1 h on 320
CPUs, and the actuator simulation required a wall time of 8.9 h on
96 CPUs, or 20% of the total cost in CPU hours. Both were computed
for 1440 time steps (2 revolutions). Using the above definition, the
actuator blade simulations have a cost of 8:7� 10�4 CPU-seconds/
DOF/step, while the overset simulations have a cost of 1:3� 10�3

CPU-seconds/DOF/step. Note that this measurement is specific to
the particular computer used for the simulations. The majority of
the difference in cost is due to the difference in the degrees of free-
dom required to adequately resolve the flowfield. The basic CFD
solution algorithm (calculation of residuals and Jacobian, solution
of a linear system, etc.) is the same for both simulations. In addition
to requiring extra degrees of freedom to resolve blade surfaces, the
overset simulation incurs the cost of overset communication and
mesh movement, which is typically on the order of 15% of the total
computational expense.

The actuator blade method was originally developed for pre-
dicting unsteady loads on helicopter fuselages [18,19]. An analo-
gous problem for wind turbines is predicting loads on a turbine
tower and nacelle, but those loads are of little engineering interest
compared with the inertial loads of the spinning blades. However,
since the actuator blade method captures the gross features of the
turbine wake, it shows potential for use in predicting interactions
between multiple turbines in a wind farm. An upstream rotor with
actuator blades (or its steady-state counterpart, the actuator disc)
can be applied to predict the power loss experienced by a down-
stream turbine in its wake. Actuator blades could also approximate
an unsteady upstream wake feeding into a high fidelity overset
simulation downstream. In that manner, blade vortex interaction
between a turbine and its upstream neighbors could be predicted.
The principal difficulty in such a simulation would be the compu-
tational expense of running the simulation long enough to allow
the wake to convect from one turbine to the next and the require-
ment of fine enough grid resolution between them to avoid dissi-
pating the wake.

In order to address the issue of wake dissipation in the region
downstream of the turbine, an adaptive grid refinement algorithm
was implemented. The adaptive grid approach is similar to the one
used successfully for rotating-system simulations in the Helios sol-
ver [41,42], but it operates on tetrahedral meshes and works on
both near-body and background grids. This capability is present
in FUN3D for steady and unsteady simulations on single or overset
grids using a metric-based adaptation approach. The goal of the
metric-based grid adaptation approach is to refine the grid selec-
tively in regions where it is needed, and also to remove grid verti-
ces where possible, based on the features of the solution computed
on a coarser baseline grid. Using the computed solution, the grid is
refined in an efficient manner, adding vertices only where they are
required in the flow field. The metric may be based on vorticity
magnitude, Q, pressure, or other quantities. For unsteady simula-
tions, the metric is built up over a fixed time interval before adap-
tation occurs. Further information on metric-based adaptation in
FUN3D is given by Park and Darmofal [43] and Shenoy [44].

In the present study, the time-dependent adaptation metric is
constructed using the vorticity-magnitude indicator, according to
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the guidelines given by Shenoy et al. [45]. To generate the metric,
several revolutions of the actuator blade model are simulated on
the baseline grid to ensure that the wake is periodic, and then
the metric is computed on the grid during one half of a revolution
for the two-bladed turbine rotor. The adapted grid is then created
using information from the metric. In this study, this adaptation
procedure is performed twice; after the first adapted grid is cre-
ated, the simulation is re-run using this adapted grid, and a new
adaptation metric is constructed during the last one-half revolu-
tion. Finally, the simulation is re-run yet again using the new
adapted grid. The goal of an iterative procedure like this one is to
converge on a grid that is able to resolve critical features of the
solution to a desired level while adding vertices only where they
are needed. The obvious downside of the iterative procedure is that
it is expensive; however, in general it is less expensive in terms of
both engineering hours and computational hours than performing
a full grid convergence study.

Visualizations of the three grids used in this adaptation study
are given in Fig. 11. In this figure, the grids are sliced along the
x–z plane after the full four-revolution simulation has been per-
formed, and cells are colored by cell area in the sliced plane. The
(a) Baseline grid, with 2.4 million vertices

(c) Adapted grid 2, wit

Fig. 11. x–z slices of the baseline and adapted grids, with cell edges colored by contours
reader is referred to the web version of this article.)
baseline grid has 2.4 million vertices; after the first adaptation
the number increases to 3.5 million, and after the second adapta-
tion the final adapted grid has 5.5 million vertices. Each level of
adaptation demonstrates that vertices are being added primarily
in the regions of the wake where vorticity magnitude is large. Di-
rectly below the rotor, a significant number of vertices are added
across the span. Farther downstream, most of the added points
are located near the root and tip region because the shed vorticity
has rolled up into the traditional vortex structure (Fig. 8). In both
adapted grids, significant refinement can be seen greater than
two rotor radii downstream.

Fig. 12 shows the trajectories of the root and tip vortices for the
simulations using the baseline and adapted grids. There is little
noticeable difference in vortex trajectories between the three grids.
This result suggests the baseline grid is already sufficiently refined
to accurately predict the trajectories. If the vortex trajectories were
the quantities of interest in the simulation, the first adaptation
would have shown the baseline grid to be fine enough, and the sec-
ond adaptation would not have been needed.

A more telling indicator of the quality of the wake prediction is
the preservation of vortex strength as a function of vortex age. This
(b) Adapted grid 1, with 3.5 million vertices

h 5.5 million vertices

of cell area. (For interpretation of the references to color in this figure legend, the



(a) Axial position, z of vortices vs. vortex age.

(b) Radial position, r of vortices vs. vortex age.

Fig. 12. Trajectories of root and tip vortices for the baseline and adapted grids.

Fig. 13. Vorticity magnitude, normalized by R and Utip , at the core of the root and
tip vortices for the baseline and adapted grids.

(a) Baseline grid (b) Adapted grid 1

(c) Adapted grid 2

Fig. 14. Q ¼ 0:05 iso-surfaces normalized by R and Utip at V1 ¼ 7 m/s. All cases
were run for four revolutions at 1� azimuth per step.
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comparison is shown in Fig. 13, which tracks the magnitude of vor-
ticity at the core of the root and tip vortices over the first 180 de-
grees of vortex age. For both vortices, the vortex core is stronger in
the adapted grids throughout the simulation. Notably, the greatest
difference occurs within the first thirty degrees of vortex age while
vorticity along the span of each actuator blade rolls up to form the
root and tip vortices. This rollup occurs more quickly for the tip
vortex than the root vortex. Since there are still significant differ-
ences in the root vortex strength for low wake age, further itera-
tions of grid adaptation would be required for this feature to be
fully resolved.

Iso-surfaces of Q can also help to quantify wake preservation. In
Fig. 14, Q ¼ 0:05 iso-surfaces are shown for the baseline and two
adapted grid simulations. All simulations were run for four revolu-
tions at one degree azimuthal advance per time step, and the New-
ton subiterations converged to the same level. The first adapted
grid shows a modest improvement in wake age that is visible at
this level of Q (roughly 45 degrees for the tip vortex). The second
adapted grid shows a significant improvement, with the tip vortex
visible for greater than 180 additional degrees compared to the
baseline grid. This result indicates a significantly lower level of
wake dissipation on the adapted grids.
6. Conclusions

In this work, a practical new method to rapidly compute the
flow field around a complex rotating system is demonstrated.
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Simulation of wind turbine blades using a discrete source repre-
sentation removes the need to include the actual rotating blade
surfaces and associated near-body grids. Thus, the overall grid size
is reduced and the requirement of overset moving grids in the sim-
ulation is eliminated. An improved nearest neighbor search algo-
rithm based on kd-trees is presented here, which is shown to
dramatically improve the speed of source-to-node association with
a minimal impact on memory usage. This new search algorithm al-
lows each blade to be modeled individually as a moving cloud of
sources while maintaining computational efficiency sufficient for
practical use. Actuator blade simulations of the NREL Phase VI Un-
steady Aerodynamics Experiment at 7 m/s were compared against
high-fidelity overset simulations that model the real blade geome-
try to evaluate the approach. Key findings of this study include:

� Tip and root vortex trajectories in the near wake predicted by
the actuator blade method are in very close agreement with
predictions of the full overset method. The tip vortex trajectory
is nearly identical between the two methods, but there are
some differences in the root vortex position due to geometric
differences at the blade root.
� The actuator blade simulation required only 20% the computa-

tional cost, in terms of total CPU hours, of the overset simula-
tion. The dramatic cost reduction is due mostly to the fact
that fewer total grid nodes required for the actuator blade sim-
ulation. Additional savings are also afforded because the need to
move a large overset grid is not needed in the actuator blade
method.
� Blade loading predictions for the actuator blade method can be

improved by incorporating a tip loss model and airfoil lookup
tables.
� Grid adaptation can be used with the actuator blade method to

preserve wake features for long distances downstream while
making efficient use of added grid vertices. Possible applica-
tions of this grid adaptation work include turbine-to-turbine
interaction studies.

With minimal modifications, the actuator blade algorithm
could be extended to include the effects of blade flexibility or ac-
tive control surfaces. This would be a generalization of the rigid
flapping motion of actuator sources already available in the mod-
el. The actuator blade method would provide an additional signif-
icant computational benefit for aeroelastic analyses because it
eliminates the need to deform a large overset blade grid. Because
the wind turbine blades are slender, high aspect ratio compo-
nents, they can be modeled as flexible beams, which permits
the use of CFD/CSD coupling with comprehensive or multi-body
dynamics codes that have already been designed to output blade
motion for fully overset simulations. This process is routinely ap-
plied in rotorcraft applications [33,38,46]. Coupling with a com-
prehensive code could also provide finite state unsteady
aerodynamic predictions (e.g. via the finite state theory of Peters
et al. [47]) that are substantially more accurate than the simple
linear blade element model that is currently used to determine
source strengths.
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