
839

Latency, bandwidth, and concurrent issue limitations in
high-performance CFD

W.D. Gropp a, D.K. Kaushik a,Ł, D.E. Keyes b, B.F. Smith a

a Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
b Mathematics and Statistics Department, Old Dominion University, Norfolk, VA 23529, USA

Abstract

To achieve high performance, a parallel algorithm needs to effectively utilize the memory subsystem and minimize
the communication volume and the number of network transactions. These issues gain further importance on modern
architectures, where the peak CPU performance is increasing much more rapidly than the memory or network performance.
In this paper, we present some performance enhancing techniques that were employed on an unstructured mesh implicit
solver. Our experimental results show that this solver adapts reasonably well to the high memory and network latencies.

Keywords: Latency tolerance; Memory hierarchy; Memory bandwidth; Cache misses; Hybrid programming model;
High-performance computing

1. Introduction and motivation

Many of the ‘Grand Challenges’ of computational sci-
ence are formulated as partial differential equations (PDEs).
PDE solvers typically perform at a computational rate well
below other scientific simulations (e.g. with dense linear
algebra or N-body kernels) on modern architectures with
deep memory hierarchies. The primary reason for this rel-
atively poor performance is good algorithmic efficiency in
the traditional sense: low work to data size ratio, relative to
clock=bandwidth ratios in contemporary microprocessors.
High memory and network latencies and imbalances in
superscalar architecture also play a role.

In a typical PDE computation, four basic groups of
tasks can be identified, based on the criteria of arithmetic
concurrency, communication patterns, and the ratio of op-
eration complexity to data size within the task. These four
distinct groups, present in most implicit codes, are ver-
tex-based loops, edge-based loops, recurrences, and global
reductions. Each of these groups of tasks stresses a dif-
ferent subsystem of contemporary high-performance com-
puters. After tuning, linear algebraic recurrences run close
to the aggregate memory-bandwidth limit on performance,

Ł Corresponding author. Tel.: C1 (630) 252-6779; Fax: C1 (630)
252-5986; E-mail: kaushik@mcs.anl.gov

flux computation loops over edges are bounded either by
memory bandwidth or instruction scheduling, and parallel
efficiency is bounded primarily by slight load imbalances
at synchronization points [2,3].

In this paper, we present some strategies that have been
effective in tolerating the latencies arising from the hier-
archical memory system (Section 2) and network (Section
3). We also compare the different programming models in
Section 4 from a performance standpoint. Our demonstra-
tion code, PETSc-FUN3D, solves the Euler and Navier–
Stokes equations of fluid flow in incompressible and com-
pressible forms with second-order flux-limited characteris-
tics-based convection schemes and Galerkin-type diffusion
on unstructured meshes. The solution algorithm employed
in PETSc-FUN3D is pseudo-transient Newton–Krylov–
Schwarz (NKS) [5] with block-incomplete factorization
on each subdomain of the Schwarz preconditioner and with
varying degrees of overlap.

2. Adapting to the high memory latency

Since the gap between memory and CPU speeds is ever
widening [6], it is crucial to maximally utilize the data
brought into the levels of memory hierarchy that are close
to the CPU. The data structures for primary (e.g. momenta

 2001 Elsevier Science Ltd. All rights reserved.
Computational Fluid and Solid Mechanics
K.J. Bathe (Editor)

840 W.D. Gropp et al. / First MIT Conference on Computational Fluid and Solid Mechanics

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Secondary Cach Misses

1 .00 E + 0 4

1 .00 E + 0 5

1 .00 E + 0 6

1 .00 E + 0 7

1 .00 E + 0 8

1 .00 E + 0 9

B ase N O E R Interlacing N O E R B lo cking N O E R
B ase Interlacing B lo cking

TLB Misses

Fig. 1. TLB misses (log scale) and secondary cache misses (linear scale) on one processor of an Origin2000 for a 22,677-vertex case,
showing dramatic improvements in data locality due to data ordering (grid edge reordering and field variable interlacing) and blocking
techniques. (‘NOER’ denotes no edge ordering; otherwise edges are reordered by default.)

and pressure) and auxiliary (e.g. geometry and constitutive
parameter) fields must be adapted to hierarchical memory.
Three simple techniques have proved very useful in im-
proving the performance of the FUN3D code, which was
originally tuned for vector machines. We have used inter-
lacing (creating spatial locality for the data items needed
successively in time), structural blocking for a multicom-
ponent system of PDEs (cutting the number of integer loads
significantly, and enhancing reuse of data items in regis-
ters), and vertex and edge reorderings (increasing the level
of temporal and spatial locality in cache). These techniques
are discussed in detail in [3].

Fig. 1 shows the effectiveness of these techniques on
one processor of the SGI Origin2000. We observe that the
edge reordering reduces the TLB misses by two orders of
magnitude, while secondary cache misses are reduced by a
factor of 3.5.

Another aspect of memory hierarchy that attains im-
portance in the computation of PDEs is the large gap
between the required and the available memory band-
widths [2]. Since linear algebraic kernels run close to the
available memory bandwidth, we store elements of the
preconditioner for the Jacobian matrix in single-precision
to improve the performance of the sparse triangular ma-
trix solution phase. In our ‘matrix-free’ implementation,
the Jacobian itself is never explicitly needed; see [5]. All
computation with the preconditioner is still done in full
(double) precision. The performance advantages are shown
in Table 1, where the single-precision storage version runs
at almost twice the rate of the double-precision storage
version, clearly identifying memory bandwidth as the bot-
tleneck. The number of time steps needed to converge
is not affected, since the preconditioner is already very
approximate by design.

3. Tolerating the network limitations

Domain-decomposed parallelism for PDEs is a natural
means of overcoming Amdahl’s law in the limit of fixed
problem size per processor. Computational work on each
evaluation of the conservation residuals scales as the vol-
ume of the (equal-size) subdomains, whereas communica-
tion overhead scales only as the surface. This ratio is fixed
when problem size and processors are scaled in proportion,
leaving only global reduction operations over all processors
as an impediment to perfect performance scaling.

When the load is perfectly balanced (easily achieved
for static meshes) and local communication is not an issue
because the network is scalable, the optimal number of pro-
cessors is related to the network diameter. For logarithmic
networks, like a hypercube, the optimal number of proces-
sors, P, grows directly in proportion to the problem size,
N . For a d-dimensional torus network, P / Nd=dC1. The

Table 1
Execution times (in seconds) on a 250-MHz Origin2000 for a
fixed-size 357,900-vertex case with single- or double-precision
storage of the preconditioner matrix

Number of Computational phase
processors

Linear solve Overall

Double Single Double Single

16 223 136 746 657
32 117 67 373 331
64 60 34 205 181

120 31 16 122 106

The results suggest that the linear solver time is bottlenecked by
memory bandwidth. This conclusion is supported by analytical
estimates in [2].

W.D. Gropp et al. / First MIT Conference on Computational Fluid and Solid Mechanics 841

Table 2
Scalability bottlenecks on ASCI Red for a fixed-size 2.8M-vertex mesh

Number of processors Its Time (seconds) Speedup Efficiency

�overall �alg �impl

128 22 2039 1.00 1.00 1.00 1.00
256 24 1144 1.78 0.89 0.92 0.97
512 26 638 3.20 0.80 0.85 0.94
1024 29 362 5.63 0.70 0.76 0.93
2048 32 208 9.78 0.61 0.69 0.89
3072 34 159 12.81 0.53 0.65 0.82

Number of processors Percent times for Scatter scalability

Global Implicit Ghost point Total data sent Application level effective
reductions synchronizations scatters per iteration bandwidth per node

(GB) (MB=s)

128 5 4 3 3.6 6.9
256 3 6 4 5.0 7.5
512 3 7 5 7.1 6.0

1024 3 10 6 9.4 7.5
2048 3 11 8 11.7 5.7
3072 5 14 10 14.2 4.6

The preconditioner used in these results is block Jacobi with ILU(1) in each subdomain. We observe that the principal nonscaling factor
is the implicit synchronization.

proportionality constant is a ratio of work per subdomain
to the product of synchronization frequency and internode
communication latency.

In Table 2, we present a closer look at the relative cost of
computation for PETSc-FUN3D for a fixed-size problem of
2.8 million vertices on the ASCI Red machine, from 128 to
3072 nodes. The intent here is to identify the factors that re-
tard the scalability. The overall parallel efficiency (denoted
by �overall) is broken into two components: �alg measures the
degradation in the parallel efficiency due to the increased
iteration count of this (non-coarse-grid-enhanced) NKS
algorithm as the number of subdomains increases, while
�impl measures the degradation coming from all other non-
scalable factors, such as global reductions, load imbalance
(implicit synchronizations), and hardware limitations.

From Table 2, we observe that the buffer-to-buffer time
for global reductions for these runs is relatively small and
does not grow on this excellent network. The primary
factors responsible for the increased overhead of communi-
cation are the implicit synchronizations and the ghost point
updates (interprocessor data scatters).

The increase in the percentage of time (3–10%) for the
scatters results more from algorithmic issues than from
hardware=software limitations. With an increase in the
number of subdomains, the percentage of grid point data
that must be communicated also rises. For example, the
total amount of nearest neighbor data that must be commu-
nicated per iteration for 128 subdomains is 3.6 gigabytes,
while for 3072 subdomains it is 14.2 gigabytes. Although

more network wires are available when more processors
are employed, scatter time increases. When problem size
and processor count are scaled together, we expect scatter
time to occupy a fixed percentage of the total time and load
imbalance to be reduced at high granularity.

4. Choosing the right programming model

The performance results above are based on subdomain
parallelism using the Message Passing Interface (MPI) [4].
With the availability of large-scale SMP clusters, different
software models for parallel programming require a fresh
assessment. For machines with physically distributed mem-
ory, MPI is a natural and successful software model. For
machines with distributed shared memory and nonuniform
memory access, both MPI and OpenMP have been used
with respectable parallel scalability. For clusters with two
or more SMPs on a single node, the mixed software model
of threads within a node (OpenMP being a special case of
threads because of the potential for highly efficient han-
dling of the threads and memory by the compiler) and MPI
between the nodes appears natural. Several researchers (e.g.
[1,7]) have used this mixed model with reasonable success.

We investigate the mixed model by employing OpenMP
in the flux calculation phase only. This phase takes over
60% of the execution time on ASCI Red and is an ideal
candidate for shared-memory parallelism because it does
not suffer from the memory bandwidth bottleneck. In

842 W.D. Gropp et al. / First MIT Conference on Computational Fluid and Solid Mechanics

Table 3
Execution time (in seconds) on the 333 MHz Pentium Pro ASCI
Red machine for function evaluations only for a 2.8M-vertex
case, comparing the performance of the hybrid (MPI=OpenMP)
and the distributed memory (MPI alone) programming models

Nodes MPI=OpenMP threads MPI processes
per node per node

1 2 1 2

256 483 261 456 258
2560 76 39 72 45
3072 66 33 62 40

Table 3, we compare the performance of this phase when
the work is divided by using two OpenMP threads per node
with the performance when the work is divided using two
independent MPI processes per node. There is no commu-
nication in this phase. Both processors work with the same
amount of memory available on a node; in the OpenMP
case, it is shared between the two threads, while in the case
of MPI it is divided into two address spaces.

The hybrid MPI=OpenMP programming model appears
to be a more efficient way to employ shared memory
than that of heavyweight subdomain-based processes (MPI
alone), especially when the number of nodes is large. The
MPI model works with a larger number of subdomains
(equal to the number of MPI processors), resulting in
slower rate of convergence. The hybrid model works with
fewer chunkier subdomains (equal to the number of nodes),
resulting in faster convergence rate and shorter execution
time, despite the fact that there is some redundant work
when the data from the two threads is combined because
of the lack of a vector-reduce operation in the OpenMP
standard (version 1) itself.

5. Conclusions and future directions

Unstructured implicit CFD solvers are amenable to scal-
able implementation, but careful tuning is needed to obtain
the best product of per processor efficiency and paral-
lel efficiency. The principal nonscaling factor is implicit
synchronization, not the communication itself.

For solution algorithms for systems modeled by PDEs
on contemporary high-end architecture, critical research di-
rections are: (1) less synchronous algorithms; (2) memory
latency tolerant algorithms (e.g. algorithms that can reuse

matrix); and (3) hybrid programming models. To influence
future architectures while adapting to current ones, we
recommend adoption of new benchmarks featuring implicit
methods on unstructured grids, such as the application
featured here.

Acknowledgements

W.D.G. and B.F.S. were supported by the Mathemat-
ical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Comput-
ing Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38. D.K.K.’s support was provided by a
GAANN Fellowship from the U.S. Department of Educa-
tion and by Argonne National Laboratory under Contract
983572401. D.E.K. was supported by the National Sci-
ence Foundation under Grant ECS-9527169, by NASA
under Contracts NAS1-19480 and NAS1-97046, by Ar-
gonne National Laboratory under Contract 982232402, and
by Lawrence Livermore National Laboratory under Sub-
contract B347882.

References

[1] Bova SW, Breshears CP, Cuicchi CE, Demirbilek Z, Gabb
HA. Dual-level parallel analysis of harbor wave response
using MPI and OpenMP. Int J High Perform Comput Appl
2000;14:49–64.

[2] Gropp WD, Kaushik DK, Keyes DE, Smith BF. Toward re-
alistic performance bounds for implicit CFD codes. In: Pro-
ceedings of Parallel CFD ’99. Amsterdam: Elsevier, 1999,
pp. 233–240.

[3] Gropp WD, Kaushik DK, Keyes DE, Smith BF. Perfor-
mance Modeling and Tuning of an Unstructured Mesh CFD
Application. Proceedings of SC2000, Los Alamitos, IEEE
Computer Society, 2000.

[4] Gropp WD, Lusk E, Skjellum A. Using MPI: Portable Par-
allel Programming with the Message Passing Interface, 2nd
edn. Cambridge, MA: MIT Press, 1999.

[5] Gropp WD, McInnes LC, Tidriri MD, Keyes DE. Glob-
alized Newton–Krylov–Schwarz algorithms and software
for parallel implicit CFD. Int J High Perfor Comput Appl
2000;14:102–136.

[6] Hennessy JL, Patterson DA. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann: 1996.

[7] Mavriplis DJ. Parallel Unstructured Mesh Analysis of High-
Lift Configurations. AIAA 2000;923.

