NASA/TM-2012-217770

Production Level CFD Code Acceleration for
Hybrid Many-Core Architectures

Austen C. Duffy
National Institute of Aerospace, Hampton, Virginia

Dana P. Hammond and Eric J. Nielsen
Langley Research Center, Hampton, Virginia

October 2012

NASA STI Program

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

... in Profile

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page
at http://www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 443-757-5803

e Phone the NASA STI Information Desk at
443-757-5802

e \Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

http://www.sti.nasa.gov/
file:///C:/Users/shstewar/Documents/Templates_Reports/Templates_PubWebSite/Templates_RevJan2009/help@sti.nasa.gov

NASA/TM-2012-217770

Production Level CFD Code Acceleration for
Hybrid Many-Core Architectures

Austen C. Duffy
National Institute of Aerospace, Hampton, Virginia

Dana P. Hammond and Eric J. Nielsen
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

October 2012

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Abstract

In this work, a novel graphics processing unit (GPU) distributed sharing
model for hybrid many-core architectures is introduced and employed
in the acceleration of a production-level computational fluid dynamics
(CFD) code. The latest generation graphics hardware allows multiple
processor cores to simultaneously share a single GPU through concur-
rent kernel execution. This feature has allowed the NASA FUN3D code
to be accelerated in parallel with up to four processor cores sharing a
single GPU. For codes to scale and fully use resources on these and the
next generation machines, codes will need to employ some type of GPU
sharing model—as presented in this work. Findings include the effects of
GPU sharing on overall performance. A discussion of the inherent chal-
lenges that parallel unstructured CFD codes face in accelerator-based
computing environments is included, with considerations for future gen-
eration architectures. This work was completed by the author in August
2010, and reflects the analysis and results of the time.

1 Introduction

High performance computing systems are undergoing a rapid shift to-
wards the coupling of add-on hardware, such as graphics processing units,
Cell processors and field programmable gate arrays (FPGAs), with tra-
ditional multicore CPU. Hybrid clusters possess unprecedented price-to-
performance ratios and high-energy efficiency, having placed in the top
supercomputer rankings [1], and dominated the Green500 list [2]. In
the US, GPU clusters are already used for research in large scale hybrid
computing, including the Lincoln Tesla cluster at the National Center
for Supercomputing Applications [3]. Plans to build many more of these
machines in the very near future are already underway, and while new
codes can be developed with this in mind, an emerging challenge in this
modern heterogeneous computing landscape is updating old software to
make best use of newly available hardware. While a code often achieves
maximum benefit when designed from the start with GPUs in mind, this
is not a viable option for many widely used legacy codes whose devel-
opment has spanned multiple decades. In these scenarios, the use of
accelerator models in which tasks with large amounts of data parallelism
are ported to GPU code may provide the best solution. While some GPU
codes can demonstrate multiple orders of magnitude speedup, additional
constraints will likely prevent existing high level computational fluid dy-
namics (CFD) codes from realizing these gains, particularly when they
have already been highly optimized for large scale parallel computation,
or when the underlying spatial discretization is unstructured. Addition-
ally, architectures with many CPU cores typically need to share GPU
resources leading to further limits on the increased performance of a code

utilizing an entire cluster. The goal of the current work is to examine the
appropriateness of hybrid many-core computers for use in computation of
a large scale unstructured CFD legacy code, and to identify bottlenecks
or limitations that need to be addressed on the path towards exascale
computing. In this paper we will examine the acceleration of NASA’s
FUN3D code [4] with a novel GPU distributed sharing model, and dis-
cuss the current challenges that face production level unstructured CFD
codes in accelerator based computing environments.

1.1 Related Work

There have been a number of papers demonstrating the impressive per-
formance gains GPU computing can provide to applications across a
wide range of science, engineering and finance disciplines. For brevity,
we will mention here just those most closely related to the FUN3D un-
structured Navier-Stokes code. Some relevant works that have ported
CFD codes to GPUs can be found in [5] and [6], who achieved up to
40X speedups for the compressible Euler equations, the latter on an un-
structured grid. While both demonstrated significantly faster GPU code
times, we note that neither solved the full compressible Navier-Stokes
equations, and both used explicit Runge-Kutta solvers more suitable for
acceleration than the implicit algorithm in FUN3D. In addition, neither
of these works considered scaling to multiple processors, giving single-
core, single-GPU results against individual CPUs. The report by Jes-
persen [7] describes the porting of NASA’s OVERFLOW code to the
GPU; but again only for a single core setup and also in a structured grid
environment, which has more favorable memory access patterns. Jes-
persen [7] replaced the 64-bit implicit SSOR solver with a 32-bit GPU
Jacobi solver, resulting in a 2.5-3X speedup for the solver, and an over-
all code wall clock time reduction of 40%, representing more realistic
results for a high end CFD code. The work by Cohen and Molemaker [8]
is an excellent resource for anyone considering the development or port-
ing of CFD code for GPU computation, and includes double precision
considerations, an important aspect of CFD in general. We note that
accelerating solvers on multi-GPU desktops [9] is an interesting topic
with enormous benefits, as researchers have supercomputing power on
hand without the need to share resources. We, however, are more con-
cerned with the need to accelerate highly scalable CFD codes on large
clusters with many cores. Reviewing the literature one can see that,
until recently, the vast majority of the research in this field has focused
solely on utilizing a single CPU core with one or more GPUs as the pri-
mary source of computational power. Conversely, only a minor amount
of research has considered larger scale computations on many cores with
supporting GPUs, or even sharing a GPU among several CPU cores.
The latter is due to the fact that until the recent release of NVIDIA’s
latest architecture Fermi™cards, concurrent kernel execution was not

possible, and hence cores had to wait serially for access to a shared GPU.
Godekke and Strzodka [10-13], among others, have made a substantial
contribution to large scale computing on graphics clusters over the last
several years, with particular focus to the areas of multigrid and finite
element methods. We note some other recent works that have considered
using CFD codes in a GPU cluster environment including [14] where a
16 GPU cluster was used to achieve 88X speedup over a single core on
a block structured MBFLO solver, and [15] who achieved 130X speedup
over 8 CPU cores for incompressible flow with 128 GPUs on the afore-
mentioned Lincoln Tesla cluster. At this time we know of no published
works employing any type of GPU sharing model.

1.2 Challenges

When attempting to develop an accelerated version of a large parallel
CFD code, several challenges present themselves. To start with, these
codes have already been highly optimized for coarse-grain parallelism
usually involving multi-level cached based architectures. One must look
beyond coarse-grain parallelism (e.g., dividing a grid into blocks and
distributing them over multiple CPU cores) and seek fine-grained data
parallel tasks that can be ported to the GPU. If these opportunities exist
for a large scale code, it has the potential to benefit from an added level
of parallelism. Parallel codes also employ MPI communications, which
when used in an accelerator environment will implicitly invoke expensive
GPU-CPU data transfers. Scalability is also a big issue for all production
level CFD codes. With the rising number of CPU cores per processor
coupled with the rising cost and power consumption of an individual
GPU, the probability that future large scale hybrid architectures will be
able to maintain a 1:1 or better ratio of GPUs to CPU cores is not likely.
The new availability of concurrent kernel execution allows multiple cores
to share a single GPU. This feature should allow hybrid codes to scale
on systems with a GPU to CPU ratio below 1. This feature does come
at a price though, as increasing the number of CPU threads which si-
multaneously share a single GPU puts added demand on the available
memory and could put additional strains on other resources for large ker-
nels. In addition to these challenges, FUN3D’s unstructured-grid solver
is hindered by the unavoidable constraint of out-of-order memory access
patterns, which can cause very poor performance on a GPU. In the re-
mainder of this paper we will give a description of the FUN3D solver
along with the steps taken to port it for GPU computation, followed by
a results and discussion.

2 FUNS3D Code

References [16] and [4] describe the software used in the current work.
FUN3D consists of several hundred Fortran95 modules containing ap-

proximately 850,000 lines of source code. The software can be used
to perform steady or time-dependent aerodynamic simulations across
the speed range. Additionally, an extensive list of options and solution
algorithms is available for spatial and temporal discretizations on gen-
eral static or dynamic mixed-element unstructured meshes which may
or may not contain overset grid topologies. Options for performing
mathematically-rigorous mesh adaptation [17] and formal design opti-
mization [18] using a discrete adjoint formulation are also included. The
package has been distributed to hundreds of organizations and is rou-
tinely used by groups in academia, industry, and various government
agencies.

2.1 Mathematical Formulation

The current work focuses on the solution of the compressible Reynolds-
averaged Navier-Stokes equations. For the current study, the spatial dis-
cretization uses a finite-volume approach in which the dependent vari-
ables are stored at the vertices of tetrahedral meshes. Inviscid fluxes
at control volume interfaces are computed using the upwind scheme of
Roe [19], and viscous fluxes are formed using an approach equivalent to
a finite-element Galerkin procedure [16]. For turbulent flows, the eddy
viscosity is modeled using the one-equation approach of Spalart and All-
maras [20]. An approximate solution of the linear system of equations
formed within each time step is obtained through several iterations of a
multicolor point-iterative scheme. The turbulence model is integrated all
the way to the wall without the use of wall functions and is solved sepa-
rately from the mean flow equations at each time step with a time inte-
gration and linear system solution scheme identical to that employed for
the mean flow equations. In the current implementation, the grid nodes
are numbered using a reverse Cuthill-McKee technique [21] to improve
cache performance during flux and jacobian gather/scatter operations.
However, the multicolor point-iterative scheme forbids physically adja-
cent unknowns from residing within the same color group. Therefore,
the relaxation scheme is inherently cache unfriendly in its basic form.
Since the majority of the floating point operations required to advance
the solution take place in the relaxation phase, a mapping is introduced
which orders the data in the coefficient matrix by its assigned color as
the individual contributions to the jacobian elements are determined.
In this manner, memory is accessed in ideal sequential order during the
relaxation as would be achieved in a more simplistic scheme such as
point-Jacobi, while the substantial algorithmic benefits (improved sta-
bility and convergence) of the multicolor scheme are retained.

107 -

FUN3D CPU Time (S)

10"

— Ares 52M Nodes s
= = Linear (Ideal) ~
—— DPW4 105M Nodes (Westmere) ~
- DPW4 35M Nodes
—— DPW?2 12M Nodes ~
DPW2 65M Nodes S
= DPW4 105M Nodes ~

I

10 10° 10
CPU Cores

Figure 1. Parallel scaling results for FUN3D. Problems are given by node
size, with M equating to millions of nodes. There are approximately 6
times as many tetrahedral cells as there are nodes for a given problem
size. Ares is a rocket geometry and DPW grids represent aircraft con-
figurations from ATAA Drag Prediction Workshops. The linear dashed
line represents ideal scaling.

2.2 Parallelization and Scaling

Parallel scalability to thousands of processors is achieved through do-
main decomposition and message passing communication. Pre- and post-
processing operations are also performed in parallel using distributed
memory, avoiding the need for a single image of the mesh or solution
at any time and ultimately yielding a highly efficient end-to-end simu-
lation paradigm. Typical scaling performance for the solver on a range
of mesh sizes is shown in Figure 1, with meshes in the millions of nodes.
A mesh typically contains six times as many tetrahedral cells than the
number of nodes, and so the 105 million node mesh equates to 630 mil-
lion tetrahedral cells. The majority of these results have been gener-
ated on a SGI®Altix®ICE platform consisting of dual-socket, quad-
core Intel®Xeon®) “Harpertown” processors. The data marked “West-
mere” has been generated using dual- socket, hex-core “Westmere” pro-
cessors. The implementation scales well across the range of processing
cores shown.

One factor in maintaining scalable performance within FUN3D is the
load balancing of the computation and communication costs over the pro-
cessors, which requires efficient partitioning of the underlying unstruc-

tured grid. The mesh partitioning software Metis and ParMetis [22, 23]
is used by many CFD codes. Metis’ partitioning objectives attempt to
evenly distribute the number of nodes (work) to each processor, while
minimizing the number of adjacent elements assigned to different pro-
cessors (communication). In graph theory, these objectives translate to
minimizing the edge-cuts and minimizing the total communication vol-
ume.

3 GPU Acceleration

To improve the performance of the FUN3D code, a minimally invasive ac-
celerator model has been implemented in which code portions are ported
to the GPU. This allows for an increase in speed without altering the
proven methods of the underlying solvers. The FUN3D code portion tar-
geted for acceleration was the point implicit subroutine used for groups
of 5x5 matrix equations which represent the linearized form of the dis-
crete mean flow equations. These correspond to the density, velocity
and pressure variables p, u, v, w, and p. This routine can account for
as much as 70% of the program’s total CPU time (such as when solving
the Euler equations), but is typically closer to 30% (RANS), depend-
ing on the required number of sweeps by the colored Gauss-Seidel (GS)
solver for the particular problem. Cache size can play a significant role
on this routine and on unstructured codes in general. For this reason
along with the need for concurrent kernel execution capabilities, only
the latest generation NVIDIA Fermi(TM) architecture hardware is tar-
geted, since these possess true L1 and L2 caches which were previously
unavailable. On the CPU side, each core performs the colored GS solve
sequentially, so a natural mapping to the GPU is created with single
threads computing the solutions to the individual 5x5 block solves of a
color in parallel. A CUDA C subroutine call has been inserted into the
original Fortran point_solve_5 (PS5) subroutine to carry out the code
porting. The computation of the right hand side (RHS) solve between
colors has effectively been moved to the GPU when sufficient available
memory and double precision capabilities are present. A general outline
of PS5 is given in Algorithm 1, noting single precision (SP), double pre-
cision (DP) and mixed precision (MP) segments. For the test problems,
10,000s to 100,000s of threads are launched, each computing an entire
5x5 block solve corresponding to an individual equation for the particular
color. CUDA C was chosen because it allows for the most explicit user
control over the previously mentioned Fermi architecture GPUs that we
are employing as accelerators. CUDA C also provides portability as it
is widely used and the compiler is freely available. Given the code, one
could (with a little effort) extend this capability to other accelerators
with OpenCL, as the language extensions are similar. In general, any
accelerator used must have capabilities for both concurrent kernel exe-

cution and double precision arithmetic, though there are exceptions that
will be discussed further.

Algorithm 1 PS5 Subroutine Outline
for color =1 to max_colors do
b(:) = residual(:)
// Begin RHS solve
for n = start to end do
Step 1. Compute off diagonal contributions
for j = istart to iend do
bi = b, — Ei;éin,j * Licol (SP)
end for
Step 2. Compute 5x5 forward solve (DP)
Step 3. Compute 5x5 back solve (DP)
Step 4. Compute sum contribution, update RHS (MP)
Step 5. Accumulate Sum Contributions (GPU Only)
end for
// End color, do MPI communication
Call MPI transfer
end for

3.1 GPU Distributed Sharing Model

The GPU code has been developed with four different CUDA subrou-
tines; the first dedicated for a single core-single GPU scenario, and the
remaining three for multi-core scenarios that require MPI communica-
tion transfers at the end of each color sweep. The MPI versions are
based on what we call a GPU distributed sharing model. We will define
this as an accelerator model where work is efficiently distributed across
multiple processors that share a single GPU. This should be done in such
a manner that, if necessary, the CPU cores perform some amount of the
computational work that would otherwise be done by the GPU to en-
sure that kernel execution remains optimal. This is an important concept
since large kernels can place large demands on available GPU resources
when called simultaneously, particularly when they use many registers
and large chunks of shared and constant memory. In fact, if too many
resources are required, kernels from multiple threads could be scheduled
to execute sequentially, causing a substantial or complete loss of perfor-
mance gains. Sharing kernel work with multiple CPU threads should
also reduce core idle time, leading to more resource efficient execution.
One constraint we have found inherent to this model is a reduction in
available GPU memory. As data is distributed to multiple CPU cores,
there are more individual structures that are padded when put into GPU
memory, leading to a reduction in the available global memory for each
additional thread. In all of our test cases on a GTX 480 card, each

additional thread sharing the GPU reduces the available global memory
predictably within the 63-68 MB range, independent of problem size.
This yields an average loss of approximately 66.7 MB of available mem-
ory per shared CPU thread, for exactly the same amount of data being
stored.

We consider GPU sharing to be an important feature of new and
future hybrid CFD codes. We recognize that on a large shared hybrid
cluster one could simply use one core per GPU, allowing the remaining
cores of a node to be allocated to other tasks. However, with a scalable
CFED code it is optimal to utilize as many cores as possible, since this
should lead to the best overall performance. Consider running a CFD
code that easily scales to thousands of cores on a 256 GPU cluster.
Clearly, one would produce better times with 1,024 cores and 256 GPUs
than with only 256 cores and 256 GPUs, even if the speedup over the
CPU cores alone was not as dramatic.

3.2 CUDA Subroutines

We will now present the four new CUDA subroutines introduced into
the FUN3D code, and note that only solution data transfers to and from
the GPU are required within the subroutine itself. All other necessary
data is transferred externally in optimal locations. Also note that these
subroutines only replace a single sweep of the colored GS solver, as MPI
communications are typically necessary after every sweep.

e gs_gpu : The first subroutine is for a straightforward 1 core to 1
GPU setup where the entire GS solve is done in CUDA. The kernel
for this scenario computes the entire RHS solve, and is called re-
peatedly through the color sweeps without any data transfers. In
this case, a single GPU thread maps to a single control volume,
computing its own 5x5 block solve (steps one through four in Al-
gorithm 1). After a thread synchronization, the kernel keeps five
threads to accumulate the sum contributions for the five variables
(step 5 of Algorithm 1) before moving on to the next color. This
scenario does not require MPI communication and hence provides
the biggest performance gains, but is limited to a single processor.
We will refer to this routine as gs_gpu, which does not require con-
current kernel execution. The kernel for this routine allocates 21
registers per thread, and 136 bytes of constant memory per thread
block at compile time, as found by the --ptxas-options=-v com-
piler option. It requires one CPU to GPU solution transfer at the
beginning of the call, and one GPU to CPU transfer at the end,
but none between colors. We note that our unstructured code is
unable to effectively use the 48 KB shared memory space, and opt
instead to swap this larger section with the 16 KB L1 cache space
using the cudaFuncSetCacheConfig function. Using the larger L1

cache space provides a noticeable 6% performance increase over the
smaller version for this routine.

gs_mpiO : This case is identical to that above in terms of the
GPU kernel, however, it assumes that an MPI communication is
required at the end of each color. Here, the CUDA routine must
copy the solution back from the GPU and return it to the Fortran
subroutine to perform the transfer, providing additional overhead.
We will refer to this routine as gs_mpi0, which uses the same kernel
as gs_gpu and hence maintains identical GPU resource allocation
properties. This routine, along with the other MPI CUDA routines,
require two additional data transfers (one CPU to GPU and one
GPU to CPU) for each color.

gs_mpil : This subroutine is the first to consider the effects of GPU
sharing, by attempting to reduce the kernel size and distribute
a small portion of the workload to the CPU. When developing
kernels, one must try to reduce CPU-GPU memory copies at all
costs, even if that means performing less than ideal tasks on the
GPU side. The kernel of the first two subroutines performs a final
accumulation of sum contributions with a mere 5 threads; and so
this portion of code does not benefit from mass thread parallelism,
but does reduce transfer overhead by keeping sum contributions on
the GPU. As more threads share the GPU, this potential overhead
can be reduced since multiple CPU cores can copy their respective
sum contributions back in parallel. Once there, the more powerful
CPU cores should be able to perform the accumulations faster.
This concept is implemented in subroutine gs_mpil. Moving this
small amount of work to the CPU reduces the constant memory
by a mere 8 bytes and does not reduce the kernel register count.

gs_mpi2 : The final subroutine was designed to execute with many
threads sharing a single GPU. It shares a substantial amount of
computation with the CPU, and also eliminates all double pre-
cision calculations from the GPU side. This is accomplished by
cutting the kernel short and computing the double precision for-
ward and backward solves along with the sum and solution updates
on the CPU, only computing step 1 of Algorithm 1 on the GPU.
In the process, the need to transfer the diagonal of a matrix is
eliminated, leading to a reduction in data transfer costs and more
importantly, freeing up valuable global memory space. The kernel
for this subroutine reduces the register count by 1, while main-
taining the same constant memory requirements as the kernel of
gs_mpil.

Cores 1 2 3 4 5 6 7 8

1 339,206

2 168,161 171,045

4 85,339 84,626 84,861 84,380

8 42,824 40,608 42,828 42,622 42,555 42,525 42,726 42,518

Table 1. The grid partitioning shows that the grid-node distributions
are well balanced as the number of processors vary.

09 092094096098 1 1.021.04 106 1.08 1.1 1.12

Figure 2. Test problem 1 grid (left) and GPU computed pressure so-
lution for p/ps (right). Generic wing-body geometry, contains 339,206
nodes and 1,995,247 tetrahedral cells. Pressure solution obtained at
convergence of the FUN3D solver (132 iterations). Inviscid flow, Mach
Number = 0.3, Angle of Attack = 2.0 degrees.

4 Test Problems

The GPU accelerated FUN3D code has been tested with a number of
problem sizes ranging from approximately 16,000 to 1.1 million grid
nodes (96,000-6.6 million elements). This section describes two par-
ticular test problems in details; the first case is inviscid, the second is
viscous.

4.1 Test Problem 1

The first test problem is a generic wing-body geometry, which is a pure
tetrahedral grid with 37,834 triangular boundary faces, 339,206 Nodes
and 1,995,247 Cells. The node partitioning is given in Table 1, and the
surface grid is shown in Figure 2 along with the GPU-computed pressure
solution for p/pso at convergence. This setup calls 20 PS5 sweeps per
iteration, accounting for approximately 70% of the FUN3D total run
time. This problem is inviscid, has a Mach number of 0.3 and an angle
of attack of 2.0 degrees.

10

09 092094096098 1 1.021041.06 1.08

Figure 3. Test problem 2 grid (left) and GPU computed pressure so-
lution for p/ps (right). DLR-F6 wing-body configuration, contains ap-
proximately 650,000 nodes and 3.9 million tetrahedral cells. Turbulent
flow, Mach Number = 0.76, Angle of Attack = 0.0 degrees, Reynolds
Number = 1, 000, 000.

4.2 Test Problem 2

The second problem is a DLR-F6 wing-body configuration used in the
second international ATAA Drag Prediction Workshop (DPW-II) [24].
The versions used here include the coarse grid containing 1,121,301 nodes
and 6,558,758 tetrahedral cells, and also a reduced grid with approxi-
mately 650,000 nodes and 3.9 million tetrahedral cells. In this case, PS5
corresponds to approximately 30% of the total FUN3D wall clock time.
The smaller grid along with the corresponding GPU computed pressure
solution for p/p are given in Figure 3, corresponding to a turbulent
solution with a Mach number of 0.76, an angle of attack of 0.0 degrees
and a Reynolds number of 1 million.

5 Results and Discussion

Two machines were used for timing studies: a dual socket Dell worksta-
tion with Intel Xeon 5080 CPUs (2 cores @ 3.73 GHz, 2 MB L2) and a
single NVIDIA GTX 480 GPU. The second machine is a small Beowulf
GPU cluster with a head node and two Fermi equipped compute nodes
connected by a gigabit switch. Each compute node possesses an AMD
Athlon IT X4 620 processor (4 cores @ 2.6 GHz, 2 MB L2) and a single
NVIDIA GTX 470 card.

5.1 Single Core Performance

Performance results for a single sweep of the PS5 solver on the GTX
480 workstation for a range of grid node sizes are given in Figure 4.
The best performing subroutine, gs_gpu, achieves a speedup of approx-
imately 5.5X regardless of problem size. Performance for the gs_mpi0O

11

routine which utilizes the same CUDA kernel is cut in half as a result
of CPU-GPU data transfers necessary for MPI communication between
colors. We see that version gs_mpi2 comes closest to the performance of
gs_gpu, and believe that this is due to the removal of double precision
calculations, as the GeForce series cards have been purposely de-tuned
for these. We speculate that gs_mpil would achieve the best MPI per-
formance in the presence of higher end Tesla series cards with full double
precision capabilities. Single core speedups on the Beowulf cluster are
not as good, with a best case of 4.75X. This is due to the fact that
the CPU times are slightly better on a single AMD core, and that the
GTX 470 is slightly less capable than the 480 model. For the single
core scenario on both machines, the overall FUN3D code is accelerated
by a factor of 2X or more for test problem 1, which spends about 70%
of its total CPU time in the PS5 subroutine. We note that our CUDA
subroutines execute the fastest with only 816 threads per block, well
below the NVIDIA minimum recommendation of 64. This is likely due
to the additional cache resources available to each thread. While we are
primarily concerned with large scale parallel applications, these single
core results provide valuable insight. We have learned here that even in
the absence of MPI transfers, speedups are limited and well below the
bar set by so many other GPU accelerated applications. We do note,
however, that larger cache sizes could help narrow the gap between this
unstructured code and those that benefit from ordered memory access
patterns. We also find that in a single core setting our GPU accelerated
implicit solver has exceeded the 2.5-3X speedup achieved by that of the
OVERFLOW code [7], perhaps a more fitting standard for comparison.

5.2 Multiple Core Performance

The Beowulf GPU cluster allows us to study scenarios up to 8 cores, 2
GPUs. Figures 5 and 6 show strong and weak scaling results. Strong
scaling within a single node shows the limitations of a GPU distributed
sharing model, namely, that if developed properly, the GPU code should
execute at approximately the same speed regardless of the number of
cores per GPU. Due to this factor, local CPU scaling will ultimately
provide the limit on the number of cores that can share a single GPU. We
see here from the strong scaling figure that a core limit is not reached for
this machine, but it would likely be four with more cores present. Weak
scaling results are comparable to the original code on two nodes, but
testing on a larger cluster is needed to provide better insight. Viewing
the weak scaling results, we find that in a grid node for grid node manner
the PS5 subroutine runs about 40% faster when the nodes employ GPUs.
This may not seem significant considering the high expectations of GPU
accelerated codes, but one must consider that the code is unstructured,
there are 20 or more CPU-GPU solution transfers per sweep (one to the
GPU and one back to the CPU for each GS color), and this is achieved

12

1.4

— CPU

gs_gpu
121 gs_mpi0 b

PS5 Time (s)
o
»
T

o
o
T

0.4

400 500 700 800 900

600
Grid Points (Thousands)

Figure 4. CPU and GPU performances for a single PS5 sweep with
varying test case sizes. Tests were run on a single core of an Intel Xeon

5080 CPU mated with a single NVIDIA GTX 480 GPU.

with four processor cores sharing a single low cost (about $350) gaming
card.

5.3 Discussion

While the results obtained in this work are limited to a 2X overall code
speedup, they do indicate future potential for the use of large GPU
clusters with production level unstructured CFD codes. Considering that
GPU chips are advancing at a faster pace than CPU versions, this code
may perform substantially better on the next generation architecture
with larger cache sizes and faster memory access speeds. Table 2 provides
a look at the rapid advancements occurring in GPU technology, which
is beginning to noticeably outpace those of CPUs. Should these trends
continue with more available cache and faster memory access speeds,
hybrid clusters will become much more amenable to the acceleration
of unstructured codes. However, if GPUs are to play an integral role in
large scale parallel computations involving high level codes, data transfer
technologies will also need to improve to reduce the performance penalty
incurred through CPU-GPU data transfers, as these will provide the
biggest bottleneck.

6 Conclusions

The FUNSD code has been accelerated in a parallel setting with as many
as 4 processor cores sharing a single low cost GeForce series GPU by uti-

13

o5 — CPU
CPU/GPU

0.4~

o
w

PS5 Time (s)

o
N

0.1f

Cores

Figure 5. Strong scaling within a single node for a single sweep of the
PS5 subroutine using CUDA version gs_mpi2. Tests were run on 2 nodes
of a Beowulf GPU cluster, each running an AMD Athlon II X4 quad
core processor and NVIDIA GTX 470 GPU. Strong scaling results use a
340,000 grid node test problem on one node.

0.06

0.04

Scaled PS5 Time (s)

0.011 — CPU
CPU/GPU

.
0.8 1 1.2 14 1.6 1.8 2 2.2
Nodes

Figure 6. Weak scaling across two compute nodes for a single sweep of
the PS5 subroutine using CUDA version gs_mpi2. Tests were run on 2
nodes of a Beowulf GPU cluster, each running an AMD Athlon IT X4
quad core processor and NVIDIA GTX 470 GPU. Weak scaling results
use a 340,000 grid node problem on one node, and a 650,000 grid node
problem distributed across 2 nodes. Weak scaling times are per 100,000
grid nodes.

14

Architecture Year Cores L1 Cache L2 Cache Memory Access Speed

G80 2006 112 16 KB! 128 KB? 57.6 GB/s GDDR3
GT200 2008 240 24KB! 256 KB? 102 GB/s GDDR3
Fermi 2010 448 48/16 KB3 768 KB 144 GB/s GDDR5

Table 2. GPU architecture evolution from G80, which approximately
coincided with the release of Intel’s quad core CPUs, to Fermi which
coincided with the release of Intel’s six core processors. GPU advance-
ments over the last few years have noticeably outpaced those of CPUs.
Representative GPUs are: G80-GeForce 8800 GT, GT200-Tesla C1060,
Fermi-Tesla C2050. !shared memory, ? texture memory, >Configurable
L1/shared memory.

lizing a novel GPU distributed sharing model. The increased double
precision capabilities of a new Tesla series card may provide for accelera-
tion with more cores per GPU, but at the time of this writing, we do not
possess the hardware. The introduction of true L1 and L2 cache spaces
along with concurrent kernel execution capabilities in the Fermi chip has
opened the door for viable acceleration of large scale production level
unstructured CFD codes. If current hardware trends continue as high-
lighted in the discussion, much more meaningful performance gains from
this and other unstructured hybrid codes may be realized in the next
generation. Ultimately, however, when considering the parallel nature of
production level CFD codes it seems necessary that new hardware mod-
els should be developed to rapidly increase the speed of CPU-GPU data
transfers, as these currently provide a serious bottleneck when scaling to
multiple cores. Most advanced numerical methods require frequent shar-
ing of information, and so advanced scalable codes can not be expected
to run long GPU calculations without frequent external communication.

References
1. http://www.top500.org, last accessed Aug. 5, 2010.
2. http://www.green500.org, last accessed Aug. 16th, 2010.

3. Kindratenko, V.; Emnos, J.; Shi, G.; Showerman, M.; Arnold,
G.; Stone, J.; Phillips, J.; and Hwu, W.: GPU Clusters for
High-Performance Computing. IEEE Cluster 2009, New Orleans,
Louisiana, USA, September 2009.

4. http://fun3d.larc.nasa.gov, last accessed May 22, 2012.

5. Elsen, E.; LeGresley, P.; and Darve, E.: Large calculation of the flow
over a hypersonic vehicle using a GPU. J. Comput. Phys., vol. 227,
2008, pp. 10148-10161.

15

10.

11.

12.

13.

14.

15.

16.

Corrigan, A.; Camelli, F.; Lohner, R.; and Wallin, J.: Running Un-
structured Grid Based CFD Solvers on Modern Graphics Hardware.
19th AIAA CFD Conference, San Antonio, Texas, USA, June 2009.

Jesperson, D. C.: Acceleration of a CFD Code with a GPU.
NAS Technical Report NAS-09-003, NASA Ames Research Center,
November 2009.

Cohen, J. M.; and Molemaker, M. J.: A Fast Double Precision CFD
Code Using CUDA. Proceedings of Parallel CFD 2009, 2009.

Thibault, J. C.; and Senocak, I.: CUDA Implementation of a Navier-
Stokes Solver on Multi-GPU Desktop Platforms for Incompressible
Flows. 47th AIAA Aerospace Sciences Meeting, Orlando, Florida,
USA, January 2009.

Goddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Bui-
jssen, S. H.; Grajewski, M.; and Turek, S.: Exploring Weak Scala-
bility for FEM Calculations on a GPU Enhanced Cluster. Parallel
Comput., vol. 33, no. 10-11, 2007, pp. 685-699.

Goddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Wobker,
H.; Becker, C.; and Turek, S.: Using GPUs to Improve Multigrid
Solver Performance on a Cluster. Int. J. Comput. Sci. Eng., vol. 4,
no. 1, 2008, pp. 36-55.

Goddeke, D.; Buijssen, S. H.; Wobker, H.; and Turek, S.: GPU
Acceleration of an Unmodified Parallel Finite Element Navier-Stokes
Solver. High Performance Computing and Simulation 2009, Leipzig,
Germany, June 20009.

Goddeke, D.; and Strzodka, R.: Cyclic Reduction Tridiagonal
Solvers on GPUs Applied to Mixed Precision Multigrid. IEEE T.
Parall. Distr., March 2010. Special Issue: High Performance Com-
puting with Accelerators.

Phillips, E. H.; Zhang, Y.; Davis, R. L.; and Owens, J. D.: Rapid
Aerodynamic Performance Prediction on a Cluster of Graphics Pro-
cessing Units. Proceedings of the 47th AIAA Aerospace Sciences
Meeting, Orlando, Florida, USA, January 2009.

Jacobsen, D.; Thibault, J.; and Senocak, I.: An MPI-CUDA Imple-
mentation for Massively Parallel Incompressible Flow Computations
on Multi-GPU Clusters. 48th AIAA Aerospace Sciences Meeting,
Orlando, Florida, USA, January 2010.

Anderson, W.; and Bonhaus, D.: An Implicit Upwind Algorithm
for Computing Turbulent Flows on Unstructured Grids. Comput.
Fluids, vol. 23, no. 1, 1994, pp. 1-21.

16

17.

18.

19.

20.

21.

22.

23.

24.

Park, M.; and Carlson, J.-R.: Turbulent Output-Based Anisotropic
Adaptation. ATAA-2010-0168, January 2010.

Nielsen, E.; Diskin, B.; and Yamaleev, N.: Discrete Adjoint-Based
Design Optimization of Unsteady Turbulent Flows on Dynamic Un-
structured Grids. ATAA J., vol. 48, no. 6, 2010, pp. 1195-1206.

Roe, P.: Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes. J. Comp. Phys., vol. 43, no. 2, 1981, pp. 357—
372.

Spalart, P.; and Allmaras, S.: A One-Equation Turbulence Model
for Aerodynamic Flows. Rech. Aerospatiale, vol. 1, 1994, pp. 5-21.

Cuthill, E.; and McKee, J.: Reducing the Bandwidth of Sparse Sym-
metric Matrices. Proceedings of the 2/th Nat. Conf. ACM, 1969, pp.
157-172.

Karypis, G.; and Kumar, V.: Multilevel Algorithms for Multi-
Constraint Graph Partitioning. Proceedings of the 1998 ACM/IEEE
SC9Y98 Conference, 1998.

Karypis, G.; and Kumar, V.: Multilevel k-way Partitioning Scheme
for Irregular Graphs. J. Parallel Distrib. Comput., vol. 48, no. 1,
1998, pp. 96-129.

Lee-Rausch, E.; Frink, N.; Mavriplis, D.; Rausch, R.; and Milholen,
W.: Transonic drag prediction on a DLR-F6 transport configura-
tion using unstructured grid solvers. Comput. Fluids, vol. 38, 2009,
pp. 511-532.

17

REPORT DOCUMENTATION PAGE orar ApDroved o

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01-10- 2012 Technical Memorandum May 2010 - August 2010

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Production Level CFD Code Acceleration for Hybrid Many-Core 5b. GRANT NUMBER

Architectures

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J. Se. TASK NUMBER

5f. WORK UNIT NUMBER
877868.02.07.07.03.01.02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-2199

L-20136
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA

Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2012-217770

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 59

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is
introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest
generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel
execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores
sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to
employ some type of GPU sharing model-as presented in this work. Findings include the effects of GPU sharing on overall
performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based
computing environments is included, with considerations for future generation architectures. This work was completed by the
author in August 2010, and reflects the analysis and results of the time.

15. SUBJECT TERMS

Computational fluid dynamics; Computer architecture; Parallel algorithms

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT [b. ABSTRACT [c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U uu 22 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

