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Anadjoint-basedmethodology for design optimization of unsteady turbulentflows ondynamic unstructured grids

is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable

of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete

equations for the primal and adjoint systems are presented for the backward-difference family of time-integration

schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons

with complex-variable computations. The current work is believed to be the first verified implementation of an

adjoint-based optimization methodology for the true time-dependent formulation of the Navier–Stokes equations in

a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tilt-

rotor geometry and a simulated aeroelastic motion of a fighter jet.

Nomenclature

a, b, c, d = temporal coefficients
C = aerodynamic coefficient
CT = rotor thrust coefficient
D = vector of design variables
E = total energy per unit volume
F = flux vector
Fi, Fv = inviscid and viscous flux vectors
f = cost function
f, s = general functions
G = grid operator
i =

�������
�1
p

i, j, k, n = indices
in = quantity at initial conditions
J = number of cost function components
K = mx �mx linear elasticity coefficient matrix
L = Lagrangian function
mq = size of vector Q
mx = size of vectorX
N = number of time levels
n̂ = outward-pointing normal vector
p = pressure, also cost function exponent
Q = mq � 1 vector of volume-averaged conserved

variables
q = mq � 1 vector of conserved variables
R = mq � 1 vector of spatial undivided residuals
R = mx �mx block-diagonal rotation matrix
R = 3 � 3 rotation matrix

RGCL = mq �mq diagonal geometric conservation
law residual matrix

S = control volume surface area
T = 4 � 4 transform matrix
t = time
u, v, w = Cartesian components of velocity
V = control volume
V = mq �mq diagonal matrix of cell volumes
W = 3 � 1 face velocity vector
X = mx � 1 vector of grid coordinates
x = 3 � 1 position vector
x = independent variable
x, y, z = Cartesian coordinate directions
" = perturbation
� = rotor blade collective setting
�f = mq � 1 flowfield adjoint variable
�g = mx � 1 grid adjoint variable
� = density
� = 3 � 1 translation vector
� = mx � 1 translation vector
� = rotor azimuth
! = cost function component weight
1 = quantity at freestream conditions
* = target quantity

Introduction

A S COMPUTATIONAL fluid dynamics (CFD) tools become
more efficient, accurate, and robust, their role in the analysis

and design of new aerospace configurations continues to increase.
Computational methods have already become a major integrated
component of industrial practices. The use of CFD has been tradi-
tionally confined to the steady regime; however, with recent algorith-
mic improvements and the persistent growth of computational
power, CFD methods have begun to make substantial inroads in
simulating unsteady flow phenomena. Target applications for these
methods are widely abundant; typical examples might include the
prediction of aeroelastic characteristics, maneuvering flight condi-
tions, 6 degree-of-freedom simulations, specified motion problems,
or flow control simulations, among many others.
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In recent years, steady-state CFD methods have been targeted
for use in automated design optimization frameworks. In gradient-
based design approaches, one of the major challenges is to ob-
tain sensitivity information for the flowfield at a reasonable cost.
Conventional black-box finite difference methods [1] suffer from
well-known step-size limitations and incur a computational expense
that grows linearly with the number of design variables. Forward, or
direct, differentiation methods [2] and techniques based on the use of
complex variables [3] mitigate the step-size limitation but still suffer
from excessive cost in the presence of many design variables, as is
often the case with aerodynamic design applications.

Adjoint methods provide a powerful alternative for aerodynamic
sensitivity analysis. In this approach, the sensitivities of an objective
function are determined through the solution of an auxiliary, or
adjoint, set of equations. Adjointmethodsmay be further categorized
into either continuous or discrete approaches, depending on the order
in which the governing equations are differentiated and discretized.
One of the features of the discrete approach is that it allows one to
account for mesh variation as well; a second adjoint system can be
solved to linearize the relationship between the design variables and
the mesh operator as described in [4]. The principal advantage of the
adjoint approach is that the computational cost is independent of
the number of design variables; a rigorous sensitivity analysis for
hundreds of variables can be performed at a cost equivalent to the
solution of the governing equations themselves. For examples of the
use of such methods, see the references cited in [5].

The role of adjoint-based methodologies in mesh adaptation
strategies should also be noted. Whereas many traditional mesh
adaptation schemes rely on heuristic connections between solution
gradient information and local mesh spacing requirements, the
adjoint equations establish a rigorous mathematical connection
between solution accuracy and the computational grid. The approach
has proven quite powerful and has enjoyed success where traditional
feature-based approaches have consistently failed. Fidkowski and
Darmofal [6] provide a reviewof recent applications and an extensive
list of references on the subject.

Some recent examples of adjoint-based strategies for unsteady
aerospace applications are given in [7–14]. The goal of the current
work is to extend the time-dependent adjoint formulation for static
grids introduced in[14]and thesteady-statediscreteadjointcapability
developed in [4,15–19] to the three-dimensional time-dependent
Euler and Reynolds averaged Navier–Stokes equations. The present
approach and implementation are valid for unsteady flows onvarious
grids including static grids, dynamic grids undergoing rigid motion,
and general morphing grids governed by amesh deformation scheme
based on a linear elasticity analog. Thiswork is believed to be thefirst
verified implementation of an adjoint-based optimization method-
ology for the true time-dependent formulation of the Navier–Stokes
equations in apractical computational code. In the following sections,
the unsteady governing equations are presented as well as various
mesh motion strategies. These are followed by the derivation of the
discrete adjoint equations for theflowfieldandmesh, includingdetails
concerning their implementation. Examples demonstrating the
discrete consistency of the implementation and applications of the
design optimization framework to large-scale problems are also
shown.

Flowfield Equations

Using the approach outlined in [20], the unsteady Euler and
Navier–Stokes equations may be written in the following form for
both moving and stationary control volumes:

@

@t

Z
V

q dV �
I
dV

�Fi � Fv� � n̂ dS� 0 (1)

whereV is the control volume bounded by the surface dV. Thevector
q represents the conserved variables for mass, momentum, and
energy, and the vectors Fi and Fv denote the inviscid and viscous
fluxes, respectively. Note that, for a moving control volume, the
inviscid flux vector must account for the difference in the fluxes due

to the movement of control volume faces. Given a flux vector F on a
static grid, the corresponding fluxFi on amoving grid can be defined
as Fi � F � q�W � n̂�, where W is a local face velocity and n̂ is an
outward-pointing unit face normal.

By defining a volume-averaged quantity Q within each control
volume,

Q �
R
V q dV

V
(2)

the conservation equations take the form

@�QV�
@t

�
I
dV

�Fi � Fv� � n̂ dS� 0 (3)

where the conserved variables and inviscidflux vectors are defined as
Q� ��; �u; �v; �w; E	T and

Fi �

��u �Wx�
�u�u �Wx� � p
�v�u �Wx�
�w�u �Wx�

�E� p��u �Wx� �Wxp

2
66666664

3
77777775
î

�

��v �Wy�
�u�v �Wy�

�v�v �Wy� � p
�w�v �Wy�

�E� p��v �Wy� �Wyp

2
66666664

3
77777775
ĵ

�

��w �Wz�
�u�w �Wz�
�v�w �Wz�

�w�w �Wz� � p
�E� p��w �Wz� �Wzp

2
66666664

3
77777775
k̂ (4)

The viscous flux vector Fv is not explicitly shown here. The
equations are closed with the perfect gas equation of state and an
appropriate turbulence model for the eddy viscosity. Finally, it is
worth noting that, for the special case of a spatially and temporally
constant state vector, for example, Q� �1; 0; 0; 0; 0�T , the
conservation equations reduce to the geometric conservation law
(GCL) [21]:

@V

@t
�
I
dV

W � n̂ dS (5)

In computational practice, the discrete GCL residual is added to the
flow equations to preserve a constant solution on dynamic grids [20].

Theflowsolverused in thecurrentwork isdescribed in [15,20,22].§

The code can be used to perform aerodynamic simulations across the
speed range, andanextensive list of options andsolutionalgorithms is
available for spatial and temporal discretizations on general static or
dynamic mixed-element unstructured meshes that may or may not
contain overset grid topologies.

In the current study, the spatial discretization uses a finite volume
approach in which the dependent variables are stored at the vertices
of tetrahedral meshes. Inviscid fluxes at cell interfaces are computed
using the upwind scheme of Roe [23], and viscous fluxes are formed
using an approach equivalent to a finite element Galerkin procedure.
For dynamicmesh cases, themesh velocity terms are evaluated using
backward differences consistent with the discrete time derivative;
this makes the spatial and GCL residuals dependent on grids at
previous time levels. The eddy viscosity is modeled using the one-

§Data available online at http://fun3d.larc.nasa.gov [retrieved 4 Jan-
uary 2010].
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equation approach of Spalart and Allmaras [24]. Massively parallel
scalability is achieved through domain decomposition and message
passing communication.

An approximate solution of the linear system of equations formed
within each time step is obtained through several iterations of a
multicolor Gauss–Seidel point-iterative scheme. The turbulence
model is integrated all the way to the wall without the use of wall
functions and is solved separately from the mean flow equations at
each time step with a time-integration and linear system solution
scheme identical to that employed for the mean flow equations.

Grid Equations

The general grid equations can be defined in the form
Gn�X;D� � 0, where X is the mesh (meshes at several time levels
may be involved), D is the vector of design variables, and n denotes
the time level and indicates that the grid operator may vary in time.
The specific formulations for different grid motions are introduced
next.

Grids Undergoing Rigid Motion

For problems inwhich rigidmeshmotion is required, themotion is
generated by a 4 � 4 transform matrix, T, as outlined in [20]. This
transform matrix enables general translations and rotations of the
grid according to the relation

x � Tx0 (6)

which moves a point from an initial position x0 � �x0; y0; z0�T to its
new position x� �x; y; z�T :

x
y
z
1

2
664

3
775�

R11 R12 R13 �x
R21 R22 R23 �y
R31 R32 R33 �z
0 0 0 1

2
664

3
775

x0

y0

z0

1

2
664

3
775 (7)

In an expanded form, x� Rx0 � �. Here, the 3 � 3 matrix R
defines a general rotation and the vector � specifies a translation.
The matrix T is generally time dependent. One useful feature of this
approach is that multiple transformations telescope via matrix
multiplication. This formulation is particularly attractive for compo-
site parent–child body motion, in which the motion of one body
is often specified relative to another. The reader is referred to the
discussion in [20] for more details. For this formulation, the grid
operator at time level n is defined as

G n�Xn;X0;D� 
 RnX0 � �n �Xn (8)

where X0 and Xn are the grid vectors at the initial and nth time
levels, respectively; Rn is an mx �mx block-diagonal matrix with
3 � 3 blocks representing rotation and mx being the size of vector
Xn; and �n is an mx-size translation vector. The matrix Rn and
vector �n may explicitly depend on D.

Deforming Grids

The simplest example of a deforminggrid simulation is a static grid
undergoing deformations as a result of a shape optimization process.
In this case, the grid is not time dependent and ismodeled as an elastic
medium that obeys the elasticity relations of solid mechanics. An
auxiliary system of linear partial differential equations (PDEs) is
solved to determine the mesh coordinates after each shape update.
Discretization of these PDEs yields a system of equations

KX�Xsurf (9)

whereK represents the elasticity coefficientmatrix,X is the vector of
grid coordinates being solved for, andXsurf is the vector of updated
surface coordinates, complemented by zeros for all interior
coordinates.

The coefficients of the matrix K depend on the coordinates of the
grid. In the approach followed here, the elasticity equations are

discretized on the grid corresponding to the initial time level. Thus,
the grid at the initial level satisfies the nonlinear equations

K 0�X0;D�X0 �X0
surf (10)

The material properties of the system are chosen based on the local
cell geometry and proximity to the surface, and the system is solved
using a preconditioned generalized minimal residual algorithm. For
further details on the approach, see [17,20,25].

For static grid formulations, the only grid operator used at all
times is

G �X;D� 
 Xsurf � KX (11)

where Xsurf may explicitly depend on D. There are situations in
which time-dependent deforming grids are required, including
aeroelastic deflections of the surface, for which the rigid motion as
described in the previous section is not valid. Instead, a morphing
mesh formulation is used. In this approach, the linear elasticity
equations given by Eq. (9) are solved at each time level with the
matrix K�K0 computed at the initial time level and fixed
throughout the time evolution; the vector Xn

surf represents the
current body positions. For morphing grids, the operator at time
level n is defined as

G n�Xn;D� 
 Xn
surf � K0Xn (12)

When the surface motion is governed by the rigid motion relations
given by Eq. (6), Xn

surf can be further specified as Xn
surf�

RnX0
surf � �n.

Cost Functions

The steady-state adjoint implementation described in [4,15–19]
permits multiple objective functions and explicit constraints of the
following form, each containing a summation of individual
components:

fi �
XJi
j�1

!j�Cj � C�j �pj (13)

Here, !j represents a user-defined weighting factor, Cj is an
aerodynamic coefficient such as the total drag or the pressure or
viscous contributions to such quantities, the superscript * indicates a
user-defined target value of Cj, and pj is a user-defined exponent
chosen so that fi is a convex functional. The user may specify
computational boundaries to which each component function
applies. The index i indicates a possibility of introducing several
different cost functions or constraints, whichmay be useful if the user
desires separate sensitivities, for example, for lift, drag, pitching
moment, etc.

For the unsteady formulation, similar general cost functions fni are
defined at each time leveln. The integrated cost function fi is defined
as a discrete time integral over a certain time interval �t1i ; t2i 	:

fi �
XN2

i

n�N1
i

fni�t (14)

where time levels N1
i and N

2
i correspond to t1i and t

2
i , respectively.

The user now supplies time intervals over which the cost functions
are to be used.

Derivation of the Time-Dependent Adjoint Equations

To derive the time-dependent form of the adjoint equations, the
methodology developed in [14] is used. The governing equations
given by Eq. (3) are rewritten as

@�QV�
@t

�R� 0; R 

I
dV

�Fi � Fv� � n̂ dS (15)
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Using a first-order backward difference (BDF1) in time, the equa-
tions can be evaluated at time level n as follows:

V nQ
n �Qn�1

�t
�Rn �RnGCLQn�1 � 0 (16)

Here, Vn and RnGCL are mq �mq diagonal matrices, mq is the length
of vector Qn, the GCL is discretized in a consistent fashion as

1

�t
�Vn � Vn�1� �RnGCL (17)

and Rn is the spatial undivided residual. Recall that Rn and RnGCL
depend on grids at the current and previous time levels. Note also that
although the BDF1 scheme has been shown here for the sake of
simplicity, the derivations for higher-order temporal schemes are
similar and included in the Appendix.

The discrete adjoint-based optimization methodology is based on
the method of Lagrange multipliers, which is used to enforce the
governing equations as constraints. For the sake of simplicity in the
following derivations, a single cost function is assumed; therefore,
the index i is omitted. For the time-dependent equations, the
Lagrangian functional is defined as follows:

L�D;Q;X;�f;�g� �
XN
n�1

fn�t�
XN
n�1
��n

f 	T
�
Vn

Qn �Qn�1

�t

�Rn �RnGCLQn�1
�
�t�

XN
n�1
��n

g	TGn�t

� �f0 � ��0
f 	TRin��t� ��0

g	TG0�t (18)

where fn 
 0 for n < N1 and n > N2;Gn � 0 are the grid equations
at time level n; �n

f and �n
g are vectors of Lagrange multipliers

associated with the flow and grid equations at time level n,
respectively; D is a vector of design variables; and Rin � 0 is the
initial condition for the flow equations.

The Lagrangian is differentiated with respect to D, assuming that
fn depends on Qn, Xn, and D; Rin depends on Q0, X0, and D; Rn

depends on Qn, Xn, Xn�1, and D; and RnGCL depends on Xn, Xn�1,
and D. Regrouping terms to isolate the coefficients of @Qn=@D and
equating the coefficients to zero yields the final form of the adjoint
equations for the flowfield:

1

�t
�Vn�n

f � Vn�1�n�1
f � �

�
@Rn

@Qn

�
T

�n
f �Rn�1GCL�

n�1
f

��
�
@fn

@Qn

�
T

; for 1 � n � N (19)

� 1

�t
V1�1

f �
�
@Rin

@Q0

�
T

�0
f �R1

GCL�
1
f

��
�
@f0

@Q0

�
T

for the initial time level (20)

where �N�1 � 0. Collecting the coefficients of @Xn=@D and
equating them to zero leads to similar adjoint equations for the grid.
Assuming that the grid operator at time level n,Gn, depends onXn,
X0, and D, the grid adjoint equations are defined as

�
�
@Gn

@Xn

�
T

�n
g �

�
@f

@Xn

�
T

�
�
@V

@Xn

Qn �Qn�1

�t

�
T

�n
f

�
X1
k�0

�
@Rn�k

@Xn
� @R

n�k
GCL

@Xn
Qn�k�1

�
T

�n�k
f ; for 1 � n � N (21)

�
�
@G0

@X0

�
T

�0
g �

XN
n�1

�
@Gn

@X0

�
T

�n
g �

�
@f0

@X0

�
T

�
�
@Rin

@X0

�
T

�0
f

�
�
@R1

@X0
� @R

1
GCL

@X0
Q0

�
T

�1
f (22)

The specific form of these equations will be discussed in subsequent
sections. With the adjoint coefficients satisfying the flowfield and
grid adjoint equations, the sensitivity derivatives are calculated as
follows:

dL

dD
�
XN
n�1

�
@fn

@D
� ��n

f 	T
�
@Rn

@D
� @R

n
GCL

@D
Qn�1

�
� ��n

g	T
@Gn

@D

�
�t

�
�
@f0

@D
� ��0

f	T
@Rin

@D
� ��0

g	T
@G0

@D

�
�t (23)

Implementation

Flowfield Adjoint Equations

The implementation and solution of Eqs. (19) and (20) are based
largely on the steady-state strategies described in [4,15–19]. In this
manner, a great deal of software development effort is avoided
because the steady and unsteady equations share many similar terms,
namely, the details of the spatial discretization. However, some
fundamental differences in the implementationmust be addressed for
time-dependent problems.

Implications of Reverse Time Integration

Although the discrete solution Qn for Eq. (3) is determined by
marching forward in physical time from n� 0 toN, due to the nature
of the adjoint equations and their boundary conditions, the solution
for�n

fmust instead be initiated fromn� N and proceed backward in

physical time. Because Eqs. (19) and (20) involve the linearizations
@Rn=@Q and @fn=@Q, the flow solutionQn at all time levels must be
available during the reverse integration.

In practice, the most straightforward approach to meeting this
requirement is to store Qn to disk for all n during the solution of
Eq. (16). In this case, the storage cost is significant, but the primary
advantage is ease of implementation. This is the approach used for
the current study. For problems in which the mesh is changing in
time, the grid point coordinates and associated speeds are also stored.
Although these mesh-related values could be recovered by
performing the mesh motion in reverse, ease of the full storage
implementation has been favored.

Solution Strategy

As described in [20], each solution vector Qn is determined
through a dual time-stepping procedure. In this approach, a sequence
of subiterations is performed within each physical time step. The
procedure relies on an approximate linearization of the discrete
residual combined with a pseudotime term to achieve a scheme
directly analogous to that used in [22] for steady flows. The same
subiterative strategy is employed for the time-dependent adjoint
equations, following an approach similar to that outlined in [18]. The
Jacobian matrix used to relax the adjoint system is constructed once
at each time step n based on the value of Qn and does not change
during the subiterative procedure.

A requirement for performing adjoint solutions is that the iteration
scheme be linearly stable. It has been observed in some cases, more
often for unsteady problems than for steady ones, that linear stability
is not satisfactory. Suggested explanations [19,26–28] vary from
physical instabilities to instabilities of the numerical schemes
involved. The generalized conjugate residual scheme described in
[29] has been used to wrap the multicolor Gauss–Seidel iteration as
well as the temporal subiterative procedure. This approach has been
found to work well in stabilizing otherwise problematic iterations.

Data Storage

For three-dimensional dynamic grid simulations using a one-
equation turbulence model, the reverse time-integration and solution
techniques outlined earlier require the storage of 12 floating-point
variables per grid point at each time step: six flowfield variables,
three mesh coordinates, and three mesh velocities. For large-scale
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problems involving many time steps, this strategy can easily result
in a storage requirement on the order of terabytes of disk space.
Strategies for circumventing storage limitations have been suggested
in the literature [9,30,31]; these may be the focus of future
investigations once an initial capability has been established.

In the current implementation, each processor is responsible for
reading and writing its local solution for the entire time history to a
unique file on disk. Because each file may contain several gigabytes
of data, requiring several hundred processors to parse sequential-
access files at each time step can be very inefficient. For this reason,
direct-access files are used so that the file pointer can be immediately
placed at the record of interest. It has been found that this approach
can decrease the time required for disk input/output (I/O) by as
much as two orders of magnitude for large cases. The use of
asynchronous file I/O was also examined, although it is not currently
being used.

Grid Adjoint and Sensitivity Equations

Depending on the nature of the grid operator G and the design
variablesD, the grid adjoint and sensitivity equations may need to be
solved at each time level n, once at n� 0, or not at all. If solutions at
each time step are required, they are performed at the completion of
each step of the adjoint solver, rather than subsequently performing
additional loops over the entire range of time levels. In this manner,
Qn, Xn, and the mesh velocities are the only vectors that must be
stored for alln, whereas�n

f and�
n
gmaybe discardedwhen no longer

needed.
The predominant challenge in the discretization and solution of

Eqs. (21–23) is the infrastructure required to simultaneously manage
data from several time levels. An inspection of Eqs. (A7–A9) in the
Appendix that are higher-order analogs to Eq. (21) shows that, for a
given time step n, the solution for �n

g may depend on values of Q
from adjacent time levels both before and subsequent to level n.
Values of �f must also be available at time level n as well as later
time levels. Moreover, this complexity increases with the temporal
order of the scheme.

The summation term in Eq. (21) is ultimately due to the
dependency of the mesh speeds on grid coordinates at multiple time
levels, according to the BDF scheme being used. Rather than
linearizingR andRGCL at several time levels with respect to the grid
coordinates at the current time level as indicated in the summation,
an inverse approach more amenable to the existing implementation
of the spatial linearizations is used. The residual at time level n is
linearized with respect to the grid coordinates at every time level in
the temporal stencil by seeding the linearizationswith the appropriate
BDF coefficient. The results are then stored temporarily for use in
evaluating the summation term at subsequent time levels within the
stencil, after which the linearizations are discarded.

Verification of Adjoint Implementation

To verify the accuracy of the implementation, comparisons are
made with results generated through an independent approach based
on the use of complex variables. This approach was originally
suggested in [32,33] and was first applied to a Navier–Stokes solver
in [3]. Using this formulation, an expression for the derivative of a
real-valued function f�x�may be found by expanding the function in
a complex-valued Taylor series, using an imaginary perturbation i":

@f

@x
� Im�f�x� i"�	

"
�O�"2� (24)

The primary advantage of this method is that true second-order
accuracymay be obtained by selecting step sizes without concern for
subtractive cancellation errors typically present in real-valued
divided differences. Through the use of an automated scripting
procedure outlined in [34], this capability can be immediately
recovered at any time for the baseline flow solver. For computations
using this method, the imaginary step size has been chosen to be
10�30, which highlights the robustness of the complex-variable

approach. For each verification test, all equations sets are converged
to machine precision for both the complex-variable and adjoint
approaches. When used, the elasticity matrix K is assumed to be
constant throughout the verification.

Static Grid

Test Case

The first test case is used to verify the implementation for unsteady
flows on static grids. For this example, fully turbulent flow over
the ONERA M6 wing [35] shown in Fig. 1 is considered. The grid
contains 16,391 nodes and 90,892 tetrahedral elements, and 16
processorsareusedfor thesimulation.ThefreestreamMachnumber is
0.3, the angle of attack is 1 deg, and the Reynolds number is 1 � 106

based on the mean aerodynamic chord (MAC). The simulation is
initiated from freestream conditions Q1, which leads to Rin 

Q1 �Q0. The solution is advanced five physical time steps using a
nondimensional �t of 0.1. Although this coarse spatial resolution,
relatively large time step, and brief duration of the simulation are not
sufficient to resolve theflowphysics of theproblem, theyareadequate
to evaluate the discrete consistency of the implementation.

Design Variables

For this test, two general classes of design variables are used. The
first class of variables is composed of global parameters unrelated to
the computational grid. These variables include parameters such as
the freestream Mach number and angle of attack. Such variables are
useful in verifying the implementation of the flowfield adjoint
equation, as the terms in Eq. (23) associated with these parameters
are generally trivial to implement or identically zero, and solution of
the mesh adjoint equations is not required.

The second class of design variables provides general shape
control of the configuration. The implementation allows the user to
employ a geometric parameterization scheme of choice, provided the
associated surface grid linearizations are available. For all examples
in the current study, the grid parameterization approach described in
[36] is used. This approach can be used to define general shape
parameterizations of existing grids using a set of aircraft-centric
design variables such as camber, thickness, shear, twist, and
planform parameters at various locations on the geometry. The user
also has the freedom to associate two or more design variables to
define more general parameters. In the event that multiple bodies of
the same shape are to be designed, the implementation allows for a
single set of designvariables to be used to simultaneously define such
bodies. In this fashion, the shape of each body is constrained to be
identical throughout the course of the design.

Grid Adjoint Equation

For this case, there is only one grid operator, G�X;D� 

Xsurf � KX, which does not depend on time. As a result, the grid
adjoint equation can be recast as

Fig. 1 Surface grid for ONERA M6 wing.
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and the sensitivity derivative is
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Computational Results

The test has been performed using the BDF1 scheme and all other
time-integration schemes described in the Appendix, and results are
listed in Table 1. Sensitivity derivatives of the lift coefficient at the
final time step with respect to the angle of attack and a camber
variable located at themidspan of thewing are shown. The results for
the adjoint implementation exhibit excellent agreement with the
complex-variable approach, differing at most in the fifteenth digit.

Rigidly Moving Grid

Test Case

The next test case is used to verify the implementation for rigidly
movingmeshes. For this case, the grid and freestream conditions and
computational environment are identical to those described for the
preceding test; however, the mesh is now subjected to an oscillatory
pitch-plunge motion based on the rigid mesh transform approach
outlined earlier. The nondimensional pitching and plunging reduced
frequencies are 0.5 and 0.1, respectively. The pitching amplitude is
5 deg and takes place about a vector normal to the symmetry plane
located 0.47MAC from thewing root leading edge. The amplitude of
the plunging motion is 0.38 MAC. The baseline wing position at
t� 0 is as shown in Fig. 1. As in the preceding test, the simulation
is initiated from freestream conditions Rin 
 Q1 �Q0 and is
advanced five physical time steps using a nondimensional�t of 0.1.

Design Variables

The design variables for the current test include those described
earlier for the static grid example, as well as a third class of
parameters governing the rigid motion procedure described earlier.
These include translation and rotation frequencies, amplitudes, and
directional vectors, as well as centers of rotation.

Grid Adjoint Equation

For this test case, the following grid operators are used: at the
zeroth time level, the grid is either unchanged or governed by the
elasticity equationsG0�X0;D� 
 X0

surf �K0X0; grids at other time
levels are governed by the rigid motion equation Gn�Xn;D� 

RnX0 � �n �Xn.

The grid adjoint equations are given by
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Under the assumption that the shape does not change (X0 is
constant), the sensitivity derivative is given by
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The formulation that would allow shape design is the following:
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and the corresponding sensitivity derivative is
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Computational Results

Results for the derivatives of the lift coefficient at the final time
step are shown in Table 2 for the current case. In addition to the angle
of attack and camber variables, derivatives with respect to the rigid
motion pitching frequency are also shown. The agreement with the
complex-variable formulation is excellent for each of the time-
integration schemes considered.

Table 1 Results for static grid test case where A denotes adjoint result and C denotes complex-variable result

Design variable BDF1 BDF2 BDF3 BDF2opt

Angle of attack A: 0.004249541855867
C: 0.004249541855867

A: 0.003734353591935
C: 0.003734353591935

A: 0.003687377975335
C: 0.003687377975335

A: 0.003708754474661
C: 0.003708754474661

Camber A: 0.010713047647152
C: 0.010713047647155

A: 0.013701437304586
C: 0.013701437304586

A: 0.014574974114575
C: 0.014574974114577

A: 0.014145698047604
C: 0.014145698047602

Table 2 Results for rigidly moving grid where A denotes adjoint result and C denotes complex-variable result

Design variable BDF1 BDF2 BDF3 BDF2opt

Angle of attack A: 0.004713138571667
C: 0.004713138571667

A: 0.004293218571759
C: 0.004293218571759

A: 0.004245785984455
C: 0.004245785984455

A: 0.004267302756747
C: 0.004267302756681

Pitching frequency A: �0:403740396501207
C: �0:403740396501207

A: �0:527819225717431
C: �0:527819225717432

A: �0:529833595955533
C: �0:529833595955533

A: �0:528894917963836
C: �0:528894917963837

Camber A: 0.011630821689945
C: 0.011630821689944

A: 0.013925365539211
C: 0.013925365539206

A: 0.014291228334440
C: 0.014291228334428

A: 0.014071544549783
C: 0.014071544549783
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Morphing Grid

Test Case

To evaluate the accuracy of the implementation for morphing
grids, the test case used for rigid motion described earlier is repeated
with slight modifications. For the current test, the surface grid of the
wing is moved using rigid motion, whereas the interior of the mesh
is determined using the elasticity relation given by Eq. (9). All other
input parameters remain unchanged.

Design Variables

The current test case uses the same design variables as the rigid
motion test case described earlier.

Grid Adjoint Equation

At all time levels, the grids are governed by the elasticity equations
Gn�Xn;D� 
 Xn

surf � K0Xn, and the surface coordinates are
governed by the rigid motion equation Xn

surf �RnX0
surf � �n.

The grid adjoint equations are given by
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The sensitivity derivative is
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Two observations can be made. First, note that in the absence of any
surface motion, that is, Rn is the identity matrix and �n � 0, the
morphing grid formulation is equivalent to the static grid formul-
ation. Also, with a constant transformation matrix T applied to all
computational boundaries, the morphing and rigidly moving grid
formulations are equivalent.

Computational Results

The results for the current test case are shown in Table 3.
Derivatives of the lift coefficient at the final time step with respect to
each of the design variables exhibit excellent agreement for the
adjoint implementation and complex-variable formulation.

Large-Scale Design Cases

Two large-scale design optimization examples are presented.
Although the grid motion in both cases is prescribed, a more realistic
treatment would involve the use of additional coupled computational
models such as 6 degrees of freedom or structural simulations.
Although such capabilities are available for use with the flow solver
[20], their effects have not been accounted for in the derivation and
implementation of the adjoint equations. This important develop-
ment is relegated to future work.

Both of the example cases shown next have been performed using
128 dual-socket quad-core nodes with 3.0 GHz Intel Xeon
processors in a fully dense fashion for a total of 1024 computational
cores. This environment has been chosen tomaximize computational
efficiency for the chosen test problems; numerical experiments have
shown that the solvers used in the current study scale well in this
range for the grid sizes selected.

The computational grid sizes and time steps for the examples
presented here have been chosenmerely to demonstrate optimization
capability for typical problems using immediately available
resources. Spatial and/or temporal refinement could be readily
performed if desired. Although the formulation places no restrictions
on initial conditions, all solutions are started from freestream
conditions. The grids have been generated using the method in [37],
and the optimizations have been performed using a trust region
method from the package described in [38].

Tilt-Rotor Configuration

The first large-scale example is a three-bladed tilt-rotor
configuration similar to that used by the V-22 aircraft and is based
on the tilt-rotor aeroacoustics model (TRAM) geometry described in
[39,40]. The grid used for this computation is designed for a blade
collective setting of �� 14 deg and consists of 5,048,727 nodes
and 29,802,252 tetrahedral elements. The rotational speed of the
rotor is held constant at a value corresponding to a tip Mach number
of 0.62 in a hover condition. The Reynolds number is 2:1 � 106

based on the blade tip chord. The physical time step is chosen to

Table 3 Results for morphing grid where A denotes adjoint result and C denotes complex-variable result

Design variable BDF1 BDF2 BDF3 BDF2opt

Angle of attack A: 0.004713528355526
C: 0.004713528355526

A: 0.004298221887378
C: 0.004298221887378

A: 0.004250753632738
C: 0.004250753632738

A: 0.004272205860974
C: 0.004272205860974

Pitching frequency A: �0:403961428430834
C: �0:403961428430834

A: �0:528263525075847
C: �0:528263525075847

A: �0:530205775809711
C: �0:530205775809710

A: �0:529295291075346
C: �0:529295291075346

Camber A: 0.011680362720549
C: 0.011680362720548

A: 0.013922237526691
C: 0.013922237526686

A: 0.014268675858452
C: 0.014268675858435

A: 0.014055458873064
C: 0.014055458873058
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correspond to 1 deg of rotor azimuth, for a total of 360 time steps per
revolution. TheBDF2opt formulation outlined in [41] is used with 10
subiterations per time step.

For this test, the prescribed rigid mesh motion consists of four
initial revolutions of the geometry designed to reach a quasi-steady
hover condition, followed by five additional revolutions during
which a 90 deg constant-rate pitch-upmaneuver into a forward-flight
mode is performed. A more realistic pitch-up scenario might consist
of many more revolutions; however, the prescribed motion was

chosen to keep the cost of the computation affordable given the
current resources. During the pitch-up phase of the motion, an
assumed forward-flight velocity profile based on a simple sine
function is imposed through the mesh speed terms. The schedule for
the shaft angle and forward-flight velocity is shown in Fig. 2, in
which the shaft angle is defined to be 0 deg in the hover condition and
90 deg in forward flight. The resulting motion is shown in Fig. 3, in
which a snapshot of the rotor is shown every 360 deg during the
course of the motion. An isosurface of the second invariant of the
velocity-gradient tensor, also known as the Q criterion from [42], at
the time step corresponding to�� 1440 deg is shown in Fig. 4. The
tip vortex system is maintained for 2–3 revolutions of the rotor.

The objective function for the current test case is to maximize the
rotor thrust coefficient over the time interval corresponding to the
pitch-up maneuver, 1441 deg � � � 3240 deg:

Fig. 4 Isosurface of Q criterion for TRAM rotor at �� 1440 deg.

Time Step

T
hr

us
t

500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Baseline
Design

Fig. 5 Thrust for TRAM rotor before and after design optimization.

Fig. 3 View of TRAM rotor motion.
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f�
X3240
n�1441

�CnT � 0:1�2�t (34)

Here, the target thrust coefficient value of 0.1 has been chosen to
sufficiently exceed the baseline thrust profile shown as the solid line
in Fig. 5. After the first four rotor revolutions, the thrust coefficient
has reached a quasi-steady value of approximately 0.015, which is in
good agreement with experimental data given in [39,40]. The thrust
coefficient shows a discontinuous behavior at the impulsive start of
the pitch-up motion (n� 1441) and gradually decreases to a lower
constant value in the forward-flight condition. A subtle 3=rev
oscillation in the thrust coefficient during the pitch-up maneuver can
also be seen.

The surface grid has been parameterized as described in [43]. This
approach yields a set of 44 active design variables describing the

thickness and camber of the blade geometry as shown in Fig. 6;
thinning of the blade is not allowed. Additional bound constraints
have been specified based on previous experience in avoiding
nonphysical geometries. In addition, a single twist variable is used to
modify the blade collective setting during the design.

The convergence history for six design cycles is shown in Fig. 7.
The optimizer quickly reduces the value of the objective function
over the first two design cycles, after which further improvements are
minimal. Closer inspection of the design variables indicates that the
majority of values have reached their bound constraints, preventing
any further reduction in the objective function. The final thrust
coefficient profile is included as the dashed line in Fig. 5. Cross
sections of the baseline blade geometry are compared with the
optimized geometry in Fig. 8. The optimization has increased the
camber of the blade across the span, as well as the blade collective
setting.

The cost of each solution to the unsteady flow and adjoint
equations for the current example is approximately 3.5 and 10.5wall-
clock hours, respectively; however, due to frequent file I/O, this
estimate varies with file system load. The optimization procedure
requires 12 calls to the flow solver and 6 calls to the adjoint solver, for
a total runtime of approximately 4.5 days of wall-clock time or
110,000 h of CPU time. The disk storage required for one complete
flow solution is approximately 1.5 terabytes.

Fighter Jet with Simulated Aeroelastic Effects

The second example uses a deforming grid approach to simulate
aeroelastic motion of the modified F-15 fighter jet configuration
known as NASA research aircraft 837, shown in Fig. 9.¶ The
computational model assumes half-plane symmetry in the spanwise
direction. The grid consists of 4,715,852 nodes and 27,344,343
tetrahedral elements and includes detailed features of the external
airframe as well as the internal ducting upstream of the engine fan
face and the plenum/nozzle combination downstream of the turbine.
For the current test, the freestream Mach number is 0.90, the angle
of attack is 0 deg, and the Reynolds number based on the MAC is
1 � 106. The static pressure ratio at the engine fan face is set to 0.9,
and the total pressure ratio at the plenum face is ramped linearly from
1.0 to its final value of 5.0 over the first 50 time steps.

The prescribed grid motion consists of 5 Hz 0.3 deg oscillatory
rotations of the canard, wing, and tail surfaces about their root chord
lines, with the wing oscillations 180 deg out of phase with the
canard and tail motion. In addition, the main wing is also subjected
to a 5 Hz oscillatory twisting motion for which the amplitude
decays linearly from 0.5 deg at the wing tip to 0 deg at the wing root
and takes place about the quarter-chord line. This composite motion

Baseline
Design

Tip

Fig. 8 Spanwise blade cross sections before and after optimization of

TRAM rotor.

Fig. 9 Modified F-15 with engine duct geometry.

Fig. 10 Range of prescribed motion for modified F-15 wing tip.
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¶Data available online at http://www.nasa.gov/centers/dryden/aircraft/
F-15B-837/index.html [retrieved 4 January 2010].
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results in a maximum wing tip deflection of approximately 1.3%
MAC, as shown in Fig. 10. The BDF2opt scheme is used with 10
subiterations and a physical time step corresponding to 100 steps
per cycle of grid motion.

The unsteady lift-to-drag ratio (L=D) for the baseline config-
uration undergoing the specified motion for 300 time steps is shown
as the solid line in Fig. 11. The L=D behavior begins to exhibit a
periodic response after approximately 100 time steps. The high-
frequency oscillations in the profile are believed to be due to a small
unsteadiness in the engine plume shown in Fig. 12; this behavior is
also present when the mesh is held fixed.

The objective function for the current test case is tomaximizeL=D
for the interval 201 � n � 300:

f�
X300
n�201
��L=D�n � 5:0	2�t (35)

where the target L=D value of 5.0 has been chosen to provide
sufficient room for optimization over the baseline profile. The
surface grids for the canard, wing, and tail have been parameterized
as shown in Fig. 13, resulting in a set of 98 active design variables
describing the thickness and camber of each surface. Thinning of the
geometry is not permitted, and other bound constraints are chosen to
avoid nonphysical geometries.

Convergence of the objective function is shown in Fig. 14. A large
reduction in the function is obtained after a single design cycle, after
which further improvements are minimal due to many of the design
variables having reached their bound constraints. The final L=D
profile is included as the dashed line in Fig. 11. The resulting shape
changes at various spanwise stations on the canard, wing, and tail are
shown in Fig. 15, in which the vertical scale has been exaggerated for
clarity. The design procedure has increased the thickness of the wing
and canard, as well as the camber across all three elements. Closer
inspection shows that the trailing edges of each surface have also
been deflected in a downward fashion.

Thewall-clock times required for single flow and adjoint solutions
for the current problem are approximately 1 and 1.5 h, respectively.
For the five design cycles shown in Fig. 14, the optimizer requires 10
flow solutions and 5 adjoint solutions, or a total wall-clock time of
approximately 18 h or 18,400 h of CPU time. The disk space
necessary to store a single unsteady flow solution is 136 gigabytes.

Conclusions

A discrete adjoint-based methodology for optimization of
unsteady flows governed by the three-dimensional Reynolds aver-
aged Navier–Stokes equations on dynamic unstructured grids has
been formulated and implemented. The methodology accounts for
mesh motion based on both rigid movement as well as deforming
grids. The accuracy of the implementation has been verified using
comparisons with an independent approach based on the use of
complex variables. Themethodology has been successfully used in a
massively parallel environment to perform two large-scale design
optimization examples: one for a tilt rotor in a pitch-upmaneuver into
a forward-flight regime and another for a fighter jet with simulated
aeroelastic effects.

Although the approach outlined in the current study represents
significant progress toward the goal of performing routine optimi-
zation of unsteady turbulentflows, a number of research areas remain
to be explored. The extension of the present formulation to overset
grid topologies is ongoing andwill allow for the treatment ofmultiple

Fig. 12 Cross-section of engine plume contours for modified F-15.

Fig. 13 Spanwise and design variable locations for modified F-15.
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bodies undergoing large relative motion. Methods aimed at reducing
the storage costs associated with the flow solution have the potential
to drastically reduce disk requirements. Techniques based on
variable or adaptive time steps as well as alternate time-integration
schemes should be examined. The effects of related computational
disciplines such as 6 degrees of freedomand structuralmodels should
also be properly accounted for. Finally, the use of the unsteady
flowfield adjoint solution holds tremendous potential for performing
mathematically rigorous mesh adaptation to specified error bounds.

Appendix A: Adjoint Equations for Higher-Order
Backward-Difference-Formula Schemes

The high-order (up to third-order) BDF discretizations for the time
derivative of a function s are defined as

@s

@t
� 1

�t
�asn � bsn�1 � csn�2 � dsn�3	 (A1)

wheren is a time level, and the coefficients are given in TableA1. The
coefficients listed for theBDF2opt scheme are a linear combination of
the BDF2 and BDF3 coefficients taken from [41]. The resulting
scheme is second-order-accurate but has a leading truncation error
term less than that of theBDF2 scheme.Although usually found to be
stable in practice, stability of the BDF2opt and third-order BDF3
scheme are not guaranteed. Discrete conservation laws are defined as
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Because themorphing grid formulation includes staticmeshes and
rigid motion as special cases, the derivation is provided only for this
formulation. Taking into account thatRn andRnGCL are dependent on
Xn�2 andXn�3, the procedure applied to the BDF1 scheme may also
be used to derive the following adjoint equations for the flowfield:
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and for the initial conditions:
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The corresponding mesh adjoint equations are obtained as follows.
Assuming RN�1 �RN�2 �RN�3 � 0 and RN�1GCL �RN�2GCL�
RN�3GCL � 0:
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and for the initial conditions, Rin 
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The sensitivity derivative for the higher-order BDF schemes is
evaluated using Eq. (23).
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